Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 9/2013

01.11.2013 | LCA FOR ENERGY SYSTEMS

Life cycle optimization of energy-intensive processes using eco-costs

verfasst von: Etienne Bernier, François Maréchal, Réjean Samson

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 9/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

This study provides a general methodology to integrate LCA into a single- or multi-objective process design optimization context. It uses specific weightings for foreground emissions, for preventable background emissions and for unpreventable background emissions, for each impact category. It is illustrated for a natural gas combined cycle power plant with three scenarios to reduce its carbon dioxide emissions: CO2 capture and sequestration, fuel substitution with biogas or fuel substitution with synthetic gas from wood.

Methods

Assuming that the opportunity to prevent emissions elsewhere is an implicit part of the process design decision space, the optimal solution cannot waste such opportunities and is shown to minimize total life cycle costs, including emission avoidance costs based on the optimal combination of prevention and compensation measures in the background system. In the case study, background emissions are inventoried from the ecoinvent database, their compensation costs are derived from the Ecocosts 2007 impact assessment method and their prevention costs are estimated from the literature. The calculated avoidance costs (weightings) then show how the background system affects the final choice of CO2 reduction scenario.

Results and discussion

In the case study, all three options partially shift environmental burdens to the background system, which can be prevented or compensated. The corresponding minimum avoidance cost is highest overall for the biogas option, thus putting it at a disadvantage. For a vast majority of ecoinvent processes, energy efficiency is important to minimize total avoidance costs because they are dominated by background CO2. Furthermore, prevention cost data gathering can be simplified in some cases, without distorting design decisions, using a CO2-only background inventory. The non-CO2 background inventory is more useful after process design, for procurement decisions.

Conclusions

Over-investing in design modifications cannot achieve the same background impact reductions as a sensible green procurement policy. Thus, the proposed weighting methodology ensures that all types of design decisions integrate LCA without incorrectly assuming that emissions are necessarily unavoidable when in the background. Within a context of future emission taxes or tradable permits, the weightings can also anticipate the after-tax cost passed on by suppliers—a marketable benefit of LCA.

Recommendations

Since many LCA studies are equivalent to design optimization problems, the proposed weighting methodology provides a single-score impact method relevant to decision-making as well as a straightforward approach to LCA interpretation in terms of detailing the optimal combination of applicable design modifications, prevention measures and compensation measures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Azapagic A (1999) Life cycle assessment and its application to process selection, design and optimisation. Chem Eng J 73:1–21CrossRef Azapagic A (1999) Life cycle assessment and its application to process selection, design and optimisation. Chem Eng J 73:1–21CrossRef
Zurück zum Zitat Azapagic A, Clift R (1999) The application of life cycle assessment to process optimisation. Comput Chem Eng 23:1509–1526CrossRef Azapagic A, Clift R (1999) The application of life cycle assessment to process optimisation. Comput Chem Eng 23:1509–1526CrossRef
Zurück zum Zitat Bernier E, Samson R, Maréchal F (2008) Multi-objective Design Optimization of a NGCC Power Plant with CO2 Capture Using Life Cycle Assessment Results. In: Ziębik A, Kolenda Z, Stanek W (eds) ECOS 2008, Cracow-Gliwice, Poland, June 24–27, 2008. The Silesian University of Technology, pp 1339–1346 Bernier E, Samson R, Maréchal F (2008) Multi-objective Design Optimization of a NGCC Power Plant with CO2 Capture Using Life Cycle Assessment Results. In: Ziębik A, Kolenda Z, Stanek W (eds) ECOS 2008, Cracow-Gliwice, Poland, June 24–27, 2008. The Silesian University of Technology, pp 1339–1346
Zurück zum Zitat Bernier E, Marechal F, Samson R (2010) Multi-objective design optimization of a natural gas combined cycle with carbon dioxide capture in a life cycle perspective. Energy 35:1121–1128CrossRef Bernier E, Marechal F, Samson R (2010) Multi-objective design optimization of a natural gas combined cycle with carbon dioxide capture in a life cycle perspective. Energy 35:1121–1128CrossRef
Zurück zum Zitat Bernier E, Marechal F, Samson R (2012) Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment. Energy 37:639–648CrossRef Bernier E, Marechal F, Samson R (2012) Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment. Energy 37:639–648CrossRef
Zurück zum Zitat Bolliger R, Favrat D, Marechal F (2005) Advanced Power Plant Design Methodology using Process Integration and Multi-Objective Thermo-Economic Optimisation. In: ECOS 2005, Trondheim, Norway, pp 777–784 Bolliger R, Favrat D, Marechal F (2005) Advanced Power Plant Design Methodology using Process Integration and Multi-Objective Thermo-Economic Optimisation. In: ECOS 2005, Trondheim, Norway, pp 777–784
Zurück zum Zitat Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Heck T et al (2005) The ecoinvent database: overview and methodological framework. Int J Life Cycle Assess 10(1):3–9CrossRef Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Heck T et al (2005) The ecoinvent database: overview and methodological framework. Int J Life Cycle Assess 10(1):3–9CrossRef
Zurück zum Zitat Gassner M, Baciocchi R, Marechal F, Mazzotti M (2009) Integrated design of a gas separation system for the upgrade of crude SNG with membranes. Chem Eng Process 48(9):1391–1404CrossRef Gassner M, Baciocchi R, Marechal F, Mazzotti M (2009) Integrated design of a gas separation system for the upgrade of crude SNG with membranes. Chem Eng Process 48(9):1391–1404CrossRef
Zurück zum Zitat Gerber L, Gassner M, Marechal F Integration of LCA in a thermo-economic model for multi-objective process optimization of SNG production from woody biomass. In: Jezowski J, Thullie J (eds) ESCAPE19, Cracow, Poland, 2009. Elsevier, pp 1405–1410 Gerber L, Gassner M, Marechal F Integration of LCA in a thermo-economic model for multi-objective process optimization of SNG production from woody biomass. In: Jezowski J, Thullie J (eds) ESCAPE19, Cracow, Poland, 2009. Elsevier, pp 1405–1410
Zurück zum Zitat Guillen-Gosalbez G, Grossmann IE (2010) A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model. Comput Chem Eng 34:42–58CrossRef Guillen-Gosalbez G, Grossmann IE (2010) A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model. Comput Chem Eng 34:42–58CrossRef
Zurück zum Zitat Hugo A, Pistikopoulos EN (2005) Environmentally conscious long-range planning and design of supply chain networks. J Clean Prod 13:1471–1491CrossRef Hugo A, Pistikopoulos EN (2005) Environmentally conscious long-range planning and design of supply chain networks. J Clean Prod 13:1471–1491CrossRef
Zurück zum Zitat Martinez P, Eliceche AM (2009) Multi objective optimization using life cycle environmental impact and cost in the operation of utility plants. Comput Aided Chem Eng 27:1869–1874CrossRef Martinez P, Eliceche AM (2009) Multi objective optimization using life cycle environmental impact and cost in the operation of utility plants. Comput Aided Chem Eng 27:1869–1874CrossRef
Zurück zum Zitat USEPA (1999) Natural Gas Systems. Report on US methane emissions 1990–2020: inventories, projections, and opportunities for reductions, vol 3. Environmental Protection Agency, Washington, DC USEPA (1999) Natural Gas Systems. Report on US methane emissions 1990–2020: inventories, projections, and opportunities for reductions, vol 3. Environmental Protection Agency, Washington, DC
Zurück zum Zitat Vogtländer JG, Bijma A (2000) A new calculation model for interpreting the results of an LCA, the ´Virtual Pollution Prevention Costs ‘99’. Int J Life Cycle Assess 5(2):113–124CrossRef Vogtländer JG, Bijma A (2000) A new calculation model for interpreting the results of an LCA, the ´Virtual Pollution Prevention Costs ‘99’. Int J Life Cycle Assess 5(2):113–124CrossRef
Zurück zum Zitat Vogtländer JG, Brezet HC, Hendriks CF (2001) The virtual eco-costs ‘99, a single LCA-based indicator for sustainability and the eco-costs - value ratio (EVR) model for economic allocation. A new LCA-based calculation model to determine the sustainability of products and services. Int J Life Cycle Assess 6(3):157–166CrossRef Vogtländer JG, Brezet HC, Hendriks CF (2001) The virtual eco-costs ‘99, a single LCA-based indicator for sustainability and the eco-costs - value ratio (EVR) model for economic allocation. A new LCA-based calculation model to determine the sustainability of products and services. Int J Life Cycle Assess 6(3):157–166CrossRef
Zurück zum Zitat Vogtländer JG, Bijma A, Brezet HC (2002) Communicating the eco-efficiency of products and services by means of the eco-costs/value model. J Clean Prod 10:57–67CrossRef Vogtländer JG, Bijma A, Brezet HC (2002) Communicating the eco-efficiency of products and services by means of the eco-costs/value model. J Clean Prod 10:57–67CrossRef
Metadaten
Titel
Life cycle optimization of energy-intensive processes using eco-costs
verfasst von
Etienne Bernier
François Maréchal
Réjean Samson
Publikationsdatum
01.11.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 9/2013
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-013-0560-x

Weitere Artikel der Ausgabe 9/2013

The International Journal of Life Cycle Assessment 9/2013 Zur Ausgabe

LIFE CYCLE SUSTAINABILITY ASSESSMENT: FROM LCA TO LCSA

An approach to LCSA: the case of concrete recycling