Skip to main content

2015 | OriginalPaper | Buchkapitel

5. Linear Transversely Isotropic Biphasic Model for Articular Cartilage Layer

verfasst von : Ivan Argatov, Gennady Mishuris

Erschienen in: Contact Mechanics of Articular Cartilage Layers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In Sect. 5.1, we develop a linear biphasic theory for the case of a transversely isotropic elastic solid matrix with transverse isotropy of permeability. In Sects. 5.2 and 5.3, we consider the linear biphasic models of confined and unconfined compression, respectively, for the biphasic stress relaxation and the biphasic creep tests. Finally, in Sect. 5.4 we outline the biphasic poroviscoelastic model, which accounts for the inherent viscoelasticity of the solid matrix.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Appleyard, R.C., Swain, M.V., Khanna, S., Murrell, G.A.C.: The accuracy and reliability of a novel handheld dynamic indentation probe for analysing articular cartilage. Phys. Med. Biol. 46, 541–550 (2001)CrossRef Appleyard, R.C., Swain, M.V., Khanna, S., Murrell, G.A.C.: The accuracy and reliability of a novel handheld dynamic indentation probe for analysing articular cartilage. Phys. Med. Biol. 46, 541–550 (2001)CrossRef
2.
Zurück zum Zitat Argatov, I.: Sinusoidally-driven flat-ended indentation of time-dependent materials: Asymptotic models for low and high rate loading. Mech. Mater. 48, 56–70 (2012)CrossRef Argatov, I.: Sinusoidally-driven flat-ended indentation of time-dependent materials: Asymptotic models for low and high rate loading. Mech. Mater. 48, 56–70 (2012)CrossRef
3.
4.
Zurück zum Zitat Argatov, I., Daniels, A.U., Mishuris, G., Ronken, S., Wirz, D.: Accounting for the thickness effect in dynamic spherical indentation of a viscoelastic layer: application to non-destructive testing of articular cartilage. Eur. J. Mech. A/Solids 37, 304–317 (2013)MathSciNetCrossRef Argatov, I., Daniels, A.U., Mishuris, G., Ronken, S., Wirz, D.: Accounting for the thickness effect in dynamic spherical indentation of a viscoelastic layer: application to non-destructive testing of articular cartilage. Eur. J. Mech. A/Solids 37, 304–317 (2013)MathSciNetCrossRef
5.
Zurück zum Zitat Armstrong, C.G., Lai, W.M., Mow, V.C.: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106, 165–173 (1984)CrossRef Armstrong, C.G., Lai, W.M., Mow, V.C.: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106, 165–173 (1984)CrossRef
6.
Zurück zum Zitat Ateshian, G.A., Ellis, B.J., Weiss, J.A.: Equivalence between short-time biphasic and incompressible elastic material responses. J. Biomech. Eng. 129, 405–412 (2007)CrossRef Ateshian, G.A., Ellis, B.J., Weiss, J.A.: Equivalence between short-time biphasic and incompressible elastic material responses. J. Biomech. Eng. 129, 405–412 (2007)CrossRef
7.
Zurück zum Zitat Ateshian, G.A., Lai, W.M., Zhu, W.B., Mow, V.C.: An asymptotic solution for the contact of two biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994)CrossRef Ateshian, G.A., Lai, W.M., Zhu, W.B., Mow, V.C.: An asymptotic solution for the contact of two biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994)CrossRef
8.
Zurück zum Zitat Ateshian, G.A., Warden, W.H., Kim, J.J., Grelsamer, R.P., Mow, V.C.: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30, 1157–1164 (1997)CrossRef Ateshian, G.A., Warden, W.H., Kim, J.J., Grelsamer, R.P., Mow, V.C.: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30, 1157–1164 (1997)CrossRef
9.
Zurück zum Zitat Barry, S.I., Aldis, G.K.: Comparison of models for flow induced deformation of soft biological tissue. J. Biomech. 23, 647–654 (1990)CrossRef Barry, S.I., Aldis, G.K.: Comparison of models for flow induced deformation of soft biological tissue. J. Biomech. 23, 647–654 (1990)CrossRef
10.
11.
Zurück zum Zitat Barry, S.I., Mercer, G.N.: Flow and deformation in poroelasticity—i unusual exact solutions. Math. Comp. Model. 30, 23–29 (1999)MATHMathSciNetCrossRef Barry, S.I., Mercer, G.N.: Flow and deformation in poroelasticity—i unusual exact solutions. Math. Comp. Model. 30, 23–29 (1999)MATHMathSciNetCrossRef
12.
13.
Zurück zum Zitat Boschetti, F., Pennati, G., Gervaso, F., Peretti, G.M., Dubini, G.: Biomechanical properties of human articular cartilage under compressive loads. Biorheology 41, 159–166 (2004) Boschetti, F., Pennati, G., Gervaso, F., Peretti, G.M., Dubini, G.: Biomechanical properties of human articular cartilage under compressive loads. Biorheology 41, 159–166 (2004)
14.
Zurück zum Zitat Buschmann, M.D.: Numerical conversion of transient to harmonic response functions for linear viscoelastic materials. J. Biomech. 30, 197–202 (1997)CrossRef Buschmann, M.D.: Numerical conversion of transient to harmonic response functions for linear viscoelastic materials. J. Biomech. 30, 197–202 (1997)CrossRef
15.
Zurück zum Zitat Chen, A.C., Klisch, S.M., Bae, W.C., Temple, M.M., McGowan, K.B., Gratz, K.R., Schumacher, B.L., Sah, R.L.: Mechanical characterization of native and tissue-engineered cartilage. In: de Ceuninck, F., Sabatini, M., Pastoureau, Ph (eds.) Cartilage and Osteoarthritis, pp. 157–190. Humana Press, Totowa, NJ (2004) Chen, A.C., Klisch, S.M., Bae, W.C., Temple, M.M., McGowan, K.B., Gratz, K.R., Schumacher, B.L., Sah, R.L.: Mechanical characterization of native and tissue-engineered cartilage. In: de Ceuninck, F., Sabatini, M., Pastoureau, Ph (eds.) Cartilage and Osteoarthritis, pp. 157–190. Humana Press, Totowa, NJ (2004)
16.
Zurück zum Zitat Chen, X., Dunn, A.C., Sawyer, W.G., Sarntinoranont, M.: A biphasic model for micro-indentation of a hydrogel-based contact lens. J. Biomech. Eng. 129, 156–163 (2007)CrossRef Chen, X., Dunn, A.C., Sawyer, W.G., Sarntinoranont, M.: A biphasic model for micro-indentation of a hydrogel-based contact lens. J. Biomech. Eng. 129, 156–163 (2007)CrossRef
17.
Zurück zum Zitat Chin, H.C., Khayat, G., Quinn, T.M.: Improved characterization of cartilage mechanical properties using a combination of stress relaxation and creep. J. Biomech. 44, 198–201 (2011)CrossRef Chin, H.C., Khayat, G., Quinn, T.M.: Improved characterization of cartilage mechanical properties using a combination of stress relaxation and creep. J. Biomech. 44, 198–201 (2011)CrossRef
18.
Zurück zum Zitat Cohen, N.P., Foster, R.J., Mow, V.C.: Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28, 203–215 (1998)CrossRef Cohen, N.P., Foster, R.J., Mow, V.C.: Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28, 203–215 (1998)CrossRef
19.
Zurück zum Zitat Cohen, B., Lai, W.M., Mow, V.C.: A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J. Biomech. Eng. 120, 491–496 (1998)CrossRef Cohen, B., Lai, W.M., Mow, V.C.: A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J. Biomech. Eng. 120, 491–496 (1998)CrossRef
20.
21.
Zurück zum Zitat DiSilvestro, M.R., Suh, J.-K.F.: A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34, 519–525 (2001)CrossRef DiSilvestro, M.R., Suh, J.-K.F.: A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34, 519–525 (2001)CrossRef
22.
Zurück zum Zitat Dortmans, L.J.M.G., van de Ven, A.A.F., Sauren, A.A.H.J.: A note on the reduced creep function corresponding to the quasi-linear visco-elastic model proposed by Fung. J. Biomech. Eng. 116, 373–375 (1994)CrossRef Dortmans, L.J.M.G., van de Ven, A.A.F., Sauren, A.A.H.J.: A note on the reduced creep function corresponding to the quasi-linear visco-elastic model proposed by Fung. J. Biomech. Eng. 116, 373–375 (1994)CrossRef
23.
Zurück zum Zitat Eberhardt, A.W., Keer, L.M., Lewis, J.L., Vithoontien, V.: An analytical model of joint contact. J. Biomech. Eng. 112, 407–413 (1990)CrossRef Eberhardt, A.W., Keer, L.M., Lewis, J.L., Vithoontien, V.: An analytical model of joint contact. J. Biomech. Eng. 112, 407–413 (1990)CrossRef
24.
Zurück zum Zitat Ehlers, W., Markert, B.: On the viscoelastic behaviour of fluid-saturated porous materials. Granular Matter 2, 153–161 (2000)CrossRef Ehlers, W., Markert, B.: On the viscoelastic behaviour of fluid-saturated porous materials. Granular Matter 2, 153–161 (2000)CrossRef
25.
Zurück zum Zitat Federico, S., Herzog, W.: On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech. Model. Mechanobiol. 7, 367–378 (2008) Federico, S., Herzog, W.: On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech. Model. Mechanobiol. 7, 367–378 (2008)
26.
Zurück zum Zitat Federico, S., Grillo, A., Giaquinta, G., Herzog, W.: A semi-analytical solution for the confined compression of hydrated soft tissue. Meccanica 44, 197–205 (2009)MATHCrossRef Federico, S., Grillo, A., Giaquinta, G., Herzog, W.: A semi-analytical solution for the confined compression of hydrated soft tissue. Meccanica 44, 197–205 (2009)MATHCrossRef
27.
Zurück zum Zitat Freutel, M., Schmidt, H., Dürselen, L., Ignatius, A., Galbusera, F.: Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin. Biomech. 29, 363–372 (2014)CrossRef Freutel, M., Schmidt, H., Dürselen, L., Ignatius, A., Galbusera, F.: Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin. Biomech. 29, 363–372 (2014)CrossRef
28.
Zurück zum Zitat Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York (1981) Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York (1981)
29.
Zurück zum Zitat Garcia, J.J., Altiero, N.J., Haut, R.C.: An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load. J. Biomech. Eng. 120, 608–613 (1998)CrossRef Garcia, J.J., Altiero, N.J., Haut, R.C.: An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load. J. Biomech. Eng. 120, 608–613 (1998)CrossRef
30.
Zurück zum Zitat Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, New York (1980) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, New York (1980)
31.
Zurück zum Zitat Gu, W.Y., Lai, W.M., Mow, V.C.: A mixture theory for charged hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J. Biomech. Eng. 120, 169–180 (1998)CrossRef Gu, W.Y., Lai, W.M., Mow, V.C.: A mixture theory for charged hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J. Biomech. Eng. 120, 169–180 (1998)CrossRef
32.
Zurück zum Zitat Hatami-Marbini, H., Etebu, E.: An experimental and theoretical analysis of unconfined compression of corneal stroma. J. Biomech. 46, 1752–1758 (2013)CrossRef Hatami-Marbini, H., Etebu, E.: An experimental and theoretical analysis of unconfined compression of corneal stroma. J. Biomech. 46, 1752–1758 (2013)CrossRef
33.
Zurück zum Zitat Higginson, G.R., Litchfield, M.R., Snaith, J.: Load-deformation-time characteristics of articular cartilage. Int. J. mech. Sci. 18, 481–486 (1976)CrossRef Higginson, G.R., Litchfield, M.R., Snaith, J.: Load-deformation-time characteristics of articular cartilage. Int. J. mech. Sci. 18, 481–486 (1976)CrossRef
34.
Zurück zum Zitat Hoang, S.K., Abousleiman, Y.N.: Poroviscoelasticity of transversely isotropic cylinders under laboratory loading conditions. Mech. Res. Commun. 37, 298–306 (2010)MATHCrossRef Hoang, S.K., Abousleiman, Y.N.: Poroviscoelasticity of transversely isotropic cylinders under laboratory loading conditions. Mech. Res. Commun. 37, 298–306 (2010)MATHCrossRef
35.
Zurück zum Zitat Hou, J.S., Mow, V.C., Lai, W.M., Holmes, M.H.: An analysis of the squeeze-film lubrication mechanism for articular cartilage. J. Biomech. 25, 247–259 (1992)CrossRef Hou, J.S., Mow, V.C., Lai, W.M., Holmes, M.H.: An analysis of the squeeze-film lubrication mechanism for articular cartilage. J. Biomech. 25, 247–259 (1992)CrossRef
36.
Zurück zum Zitat Huang, C.-Y., Mow, V.C., Ateshian, G.A.: The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng. 123, 410–417 (2001)CrossRef Huang, C.-Y., Mow, V.C., Ateshian, G.A.: The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng. 123, 410–417 (2001)CrossRef
37.
Zurück zum Zitat Huyghe, J.M., Janssen, J.D.: Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35, 793–802 (1997)MATHCrossRef Huyghe, J.M., Janssen, J.D.: Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35, 793–802 (1997)MATHCrossRef
38.
Zurück zum Zitat Iatridis, J.C., Setton, L.A., Weidenbaum, M., Mow, V.C.: The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J. Biomech. 30, 1005–1013 (1997) Iatridis, J.C., Setton, L.A., Weidenbaum, M., Mow, V.C.: The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J. Biomech. 30, 1005–1013 (1997)
39.
Zurück zum Zitat Itskov, M., Aksel, N.: Elastic constants and their admissible values for incompressible and slightly compressible anisotropic materials. Acta Mech. 157, 81–96 (2002)MATHCrossRef Itskov, M., Aksel, N.: Elastic constants and their admissible values for incompressible and slightly compressible anisotropic materials. Acta Mech. 157, 81–96 (2002)MATHCrossRef
40.
Zurück zum Zitat Johnson, M., Tarbell, J.M.: A biphasic, anisotropic model of the aortic wall. J. Biomech. Eng. 123, 52–57 (2000)CrossRef Johnson, M., Tarbell, J.M.: A biphasic, anisotropic model of the aortic wall. J. Biomech. Eng. 123, 52–57 (2000)CrossRef
41.
Zurück zum Zitat Knecht, S., Vanwanseele, B., Stüssi, E.: A review on the mechanical quality of articular cartilage—Implications for the diagnosis of osteoarthritis. Clin. Biomech. 21, 999–1012 (2006)CrossRef Knecht, S., Vanwanseele, B., Stüssi, E.: A review on the mechanical quality of articular cartilage—Implications for the diagnosis of osteoarthritis. Clin. Biomech. 21, 999–1012 (2006)CrossRef
42.
Zurück zum Zitat Kluge, J.A., Rosiello, N.C., Leisk, G.G., Kaplan, D.L., Dorfmann, A.L.: The consolidation behavior of silk hydrogels. J. Mech. Behav. Biomed. Mater. 3, 278–289 (2010)CrossRef Kluge, J.A., Rosiello, N.C., Leisk, G.G., Kaplan, D.L., Dorfmann, A.L.: The consolidation behavior of silk hydrogels. J. Mech. Behav. Biomed. Mater. 3, 278–289 (2010)CrossRef
43.
Zurück zum Zitat Korhonen, R.K., Laasanen, M.S.: Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H.J., Jurvelin, J.S.: Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35, 903–909 (2002) Korhonen, R.K., Laasanen, M.S.: Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H.J., Jurvelin, J.S.: Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35, 903–909 (2002)
44.
Zurück zum Zitat Lai, W.M., Mow, V.C.: Drug-induced compression of articular cartilage during a permeation experiment. Biorheology 17, 111–123 (1980) Lai, W.M., Mow, V.C.: Drug-induced compression of articular cartilage during a permeation experiment. Biorheology 17, 111–123 (1980)
45.
Zurück zum Zitat Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformational behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)CrossRef Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformational behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)CrossRef
46.
Zurück zum Zitat Lavrentyev, M.A., Shabat, B.V.: Methods of Complex Variable Functions. Nauka, Moscow (1987) (in Russian) Lavrentyev, M.A., Shabat, B.V.: Methods of Complex Variable Functions. Nauka, Moscow (1987) (in Russian)
47.
Zurück zum Zitat Leipzig, N.D., Athanasiou, K.A.: Unconfined creep compression of chondrocytes. J. Biomech. 38, 77–85 (2005)CrossRef Leipzig, N.D., Athanasiou, K.A.: Unconfined creep compression of chondrocytes. J. Biomech. 38, 77–85 (2005)CrossRef
48.
Zurück zum Zitat LePage, W.R.: Complex Variables and the Laplace Transform for Engineers. McGraw-Hill, New York (1961) LePage, W.R.: Complex Variables and the Laplace Transform for Engineers. McGraw-Hill, New York (1961)
49.
Zurück zum Zitat Li, L.P., Ahsanizadeh, S.: Computational modelling of articular cartilage. In: Jin, Z. (ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, pp. 205–243. Woodhead Publications, Cambridge (2014) Li, L.P., Ahsanizadeh, S.: Computational modelling of articular cartilage. In: Jin, Z. (ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, pp. 205–243. Woodhead Publications, Cambridge (2014)
50.
Zurück zum Zitat Li, L.P., Korhonen, R.K., Iivarinen, J., Jurvelin, J.S., Herzog, W.: Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage. Med. Eng. Phys. 30, 182–189 (2008)CrossRef Li, L.P., Korhonen, R.K., Iivarinen, J., Jurvelin, J.S., Herzog, W.: Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage. Med. Eng. Phys. 30, 182–189 (2008)CrossRef
51.
Zurück zum Zitat Li, S., Patwardhan, A.G., Amirouche, F.M.L., Havey, R., Meade, K.P.: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. J. Biomech. 28, 779–790 (1995)CrossRef Li, S., Patwardhan, A.G., Amirouche, F.M.L., Havey, R., Meade, K.P.: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. J. Biomech. 28, 779–790 (1995)CrossRef
52.
Zurück zum Zitat Lu, X.L., Mow, V.C.: Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40, 193–199 (2008)CrossRef Lu, X.L., Mow, V.C.: Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40, 193–199 (2008)CrossRef
53.
Zurück zum Zitat Lu, X.L., Miller, C., Chen, F.H., Guo, X.E., Mow, V.C.: The generalized triphasic correspondence principle for simultaneous determination of the mechanical properties and proteoglycan content of articular cartilage by indentation. J. Biomech. 40, 2434–2441 (2006) Lu, X.L., Miller, C., Chen, F.H., Guo, X.E., Mow, V.C.: The generalized triphasic correspondence principle for simultaneous determination of the mechanical properties and proteoglycan content of articular cartilage by indentation. J. Biomech. 40, 2434–2441 (2006)
54.
Zurück zum Zitat Mak, A.F.: The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J. Biomech. Eng. 108, 123–130 (1986)CrossRef Mak, A.F.: The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J. Biomech. Eng. 108, 123–130 (1986)CrossRef
55.
Zurück zum Zitat Markert, B.: A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transport Porous Med. 70, 427–450 (2007)MathSciNetCrossRef Markert, B.: A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transport Porous Med. 70, 427–450 (2007)MathSciNetCrossRef
56.
Zurück zum Zitat Meng, X.N., LeRoux, M.A., Laursen, T.A., Setton, L.A.: A nonlinear finite element formulation for axisymmetric torsion of biphasic materials. Int. J. Solids Struct. 39, 879–895 (2002)MATHCrossRef Meng, X.N., LeRoux, M.A., Laursen, T.A., Setton, L.A.: A nonlinear finite element formulation for axisymmetric torsion of biphasic materials. Int. J. Solids Struct. 39, 879–895 (2002)MATHCrossRef
57.
Zurück zum Zitat Mow, V.C., Guo, X.E.: Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu. Rev. Biomed. Eng. 4, 175–209 (2002)CrossRef Mow, V.C., Guo, X.E.: Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu. Rev. Biomed. Eng. 4, 175–209 (2002)CrossRef
59.
Zurück zum Zitat Mow, V.C., Holmes, M.H., Lai, W.M.: Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984)CrossRef Mow, V.C., Holmes, M.H., Lai, W.M.: Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984)CrossRef
60.
Zurück zum Zitat Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102, 73–84 (1980)CrossRef Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102, 73–84 (1980)CrossRef
61.
Zurück zum Zitat Neubert, H.K.P.: A simple model representing internal damping in solid materials. Aeronaut. Quart. 14, 187–210 (1963) Neubert, H.K.P.: A simple model representing internal damping in solid materials. Aeronaut. Quart. 14, 187–210 (1963)
62.
Zurück zum Zitat Oomens, C.W.J., Van Campen, D.H., Grootenboer, H.J.: A mixture approach to the mechanics of skin. J. Biomech. 20, 877–885 (1987)CrossRef Oomens, C.W.J., Van Campen, D.H., Grootenboer, H.J.: A mixture approach to the mechanics of skin. J. Biomech. 20, 877–885 (1987)CrossRef
63.
Zurück zum Zitat Park, S., Krishnan, R., Nicoll, S.B., Ateshian, G.A.: Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36, 1785–1796 (2003)CrossRef Park, S., Krishnan, R., Nicoll, S.B., Ateshian, G.A.: Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36, 1785–1796 (2003)CrossRef
64.
Zurück zum Zitat Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman and Hall/CRC Press, Boca Raton, London (2002) Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman and Hall/CRC Press, Boca Raton, London (2002)
65.
Zurück zum Zitat Peña, E., Del Palomar, A.P., Calvo, B., Martínez, M.A., Doblaré, M.: Computational modelling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch. Comput. Methods. Eng. 14, 47–91 (2007) Peña, E., Del Palomar, A.P., Calvo, B., Martínez, M.A., Doblaré, M.: Computational modelling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch. Comput. Methods. Eng. 14, 47–91 (2007)
66.
Zurück zum Zitat Raghunathan, S., Evans, D., Sparks, J.L.: Poroviscoelastic modeling of liver biomechanical response in unconfined compression. Ann. Biomed. Eng. 38, 1789–1800 (2010)CrossRef Raghunathan, S., Evans, D., Sparks, J.L.: Poroviscoelastic modeling of liver biomechanical response in unconfined compression. Ann. Biomed. Eng. 38, 1789–1800 (2010)CrossRef
67.
Zurück zum Zitat Reynaud, B., Quinn, T.M.: Anisotropic hydraulic permeability in compressed articular cartilage. J. Biomech. 39, 131–137 (2006)CrossRef Reynaud, B., Quinn, T.M.: Anisotropic hydraulic permeability in compressed articular cartilage. J. Biomech. 39, 131–137 (2006)CrossRef
68.
Zurück zum Zitat Setton, L.A., Zhu, W., Mow, V.C.: The biphasic poroviscoelastic model for articular cartilage: theory and experiment. J. Biomech. 26, 581–592 (1993)CrossRef Setton, L.A., Zhu, W., Mow, V.C.: The biphasic poroviscoelastic model for articular cartilage: theory and experiment. J. Biomech. 26, 581–592 (1993)CrossRef
69.
Zurück zum Zitat Soltz, M.A., Ateshian, G.A.: Experimental verification and theoretical prediction of interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech. 31, 927–934 (1998)CrossRef Soltz, M.A., Ateshian, G.A.: Experimental verification and theoretical prediction of interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech. 31, 927–934 (1998)CrossRef
70.
Zurück zum Zitat Soltz, M.A., Ateshian, G.A.: Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann. Biomed. Eng. 28, 150–159 (2000)CrossRef Soltz, M.A., Ateshian, G.A.: Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann. Biomed. Eng. 28, 150–159 (2000)CrossRef
71.
Zurück zum Zitat Spilker, R.L., Suh, J.K., Mow, V.C.: Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis. J. Biomech. Eng. 112, 138–146 (1990)CrossRef Spilker, R.L., Suh, J.K., Mow, V.C.: Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis. J. Biomech. Eng. 112, 138–146 (1990)CrossRef
72.
Zurück zum Zitat Suh, J.-K., Bai, S.: Finite element formulation of biphasic poroviscoelastic model for articular cartilage. J. Biomech. Eng. 120, 195–201 (1998)CrossRef Suh, J.-K., Bai, S.: Finite element formulation of biphasic poroviscoelastic model for articular cartilage. J. Biomech. Eng. 120, 195–201 (1998)CrossRef
73.
Zurück zum Zitat Suh, J.-K., Li, Z., Woo, S.L.-Y.: Dynamic behavior of a biphasic cartilage model under cyclic compressive loading. J. Biomech. 28, 357–364 (1995)CrossRef Suh, J.-K., Li, Z., Woo, S.L.-Y.: Dynamic behavior of a biphasic cartilage model under cyclic compressive loading. J. Biomech. 28, 357–364 (1995)CrossRef
74.
Zurück zum Zitat Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1942) Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1942)
75.
Zurück zum Zitat Wang, C.C.-B., Hung, C.T., Mow, V.C.: An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J. Biomech. 34, 75–84 (2001) Wang, C.C.-B., Hung, C.T., Mow, V.C.: An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J. Biomech. 34, 75–84 (2001)
76.
Zurück zum Zitat Wilson, W., Van Donkelaar, C.C., Van Rietbergen, R., Huiskes, R.: The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med. Eng. Phys. 27, 810–826 (2005)CrossRef Wilson, W., Van Donkelaar, C.C., Van Rietbergen, R., Huiskes, R.: The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med. Eng. Phys. 27, 810–826 (2005)CrossRef
77.
Zurück zum Zitat Wu, J.Z., Dong, R.G., Schopper, A.W.: Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests. J. Biomech. 37, 147–155 (2004)CrossRef Wu, J.Z., Dong, R.G., Schopper, A.W.: Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests. J. Biomech. 37, 147–155 (2004)CrossRef
Metadaten
Titel
Linear Transversely Isotropic Biphasic Model for Articular Cartilage Layer
verfasst von
Ivan Argatov
Gennady Mishuris
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-20083-5_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.