Skip to main content

2018 | OriginalPaper | Buchkapitel

5. Hochenergiebatterien nach Lithium-Ion

verfasst von : Peter Kurzweil, Prof. Dr.

Erschienen in: Elektrochemische Speicher

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Wiederaufladbare Batterien mit spezifischen Energien jenseits der 200 Wh kg−1 und herausragenden Leistungsdichten sollen die heutige Lithiumionen-Technologie in den nächsten Jahrzehnten ablösen. Manche Forschungsansätze reichen in die Zeit der Ölkrise in den 1970er und 1980er Jahren zurück. Das Kapitel beschreibt visionäre Konzepte von Metallionen- und Metall-Luft-Batterien, bis hin zu Festkörpertechnologien und Anionen-Batterien. Vor- und Nachteile werden im Hinblick auf eine baldige Nutzung in Speichersystemen abgewogen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agostini, M., Lee, D.-J., Scrosati, B., Sun, Y.K., Hassoun, J.: Characteristics of Li\({}_{\mathrm{2}}\)S\({}_{\mathrm{8}}\)-tetraglyme catholyte in a semi-liquid lithium-sulfur battery. J. Power Sources 265, 14–19 (2014) Agostini, M., Lee, D.-J., Scrosati, B., Sun, Y.K., Hassoun, J.: Characteristics of Li\({}_{\mathrm{2}}\)S\({}_{\mathrm{8}}\)-tetraglyme catholyte in a semi-liquid lithium-sulfur battery. J. Power Sources 265, 14–19 (2014)
2.
Zurück zum Zitat Chen, L., Shaw, L.L.: Recent advances in lithium-sulfur batteries. J. Power Sources 267, 770–783 (2014) Chen, L., Shaw, L.L.: Recent advances in lithium-sulfur batteries. J. Power Sources 267, 770–783 (2014)
3.
Zurück zum Zitat Ding, N., Chien, S.W., Hor, T.S.A., Liu, Z., Zong, Y.: Key parameters in design of lithium sulfur batteries. J. Power Sources 269, 111–116 (2014) Ding, N., Chien, S.W., Hor, T.S.A., Liu, Z., Zong, Y.: Key parameters in design of lithium sulfur batteries. J. Power Sources 269, 111–116 (2014)
4.
Zurück zum Zitat Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010) Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010)
5.
Zurück zum Zitat Hoss, R., Vögtle, F.: Templatsynthesen. Angew. Chem. 106(4), 389 (1994) Hoss, R., Vögtle, F.: Templatsynthesen. Angew. Chem. 106(4), 389 (1994)
6.
Zurück zum Zitat Huang, C., Xiao, J., Shao, Y., Zheng, J., Bennett, W.D., Lu, D., Saraf, L.V., Engelhard, M., Ji, L., Zhang, J., Li, X., Graff, G.L., Liu, J.: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nat. Commun. 5, 3015 (2014) Huang, C., Xiao, J., Shao, Y., Zheng, J., Bennett, W.D., Lu, D., Saraf, L.V., Engelhard, M., Ji, L., Zhang, J., Li, X., Graff, G.L., Liu, J.: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nat. Commun. 5, 3015 (2014)
7.
Zurück zum Zitat Kim, J., Lee, D.-J., Jung, H.-G., Sun, Y.-K., Hassoun, J., Scrosati, B.: An advanced lithium-sulfur battery. Adv. Funct. Mat. 23, 1076–1080 (2013) Kim, J., Lee, D.-J., Jung, H.-G., Sun, Y.-K., Hassoun, J., Scrosati, B.: An advanced lithium-sulfur battery. Adv. Funct. Mat. 23, 1076–1080 (2013)
8.
Zurück zum Zitat Lin, Z., Liu, Z., Fu, W., Dudney, N.J., Liang, C.: Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52, 7460–7463 (2013) Lin, Z., Liu, Z., Fu, W., Dudney, N.J., Liang, C.: Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52, 7460–7463 (2013)
9.
Zurück zum Zitat Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013) Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013)
10.
Zurück zum Zitat Scheers, J., Fantini, S., Johansson, P.: A review of electrolytes for lithium-sulphur batteries. J. Power Sources 255, 204–218 (2014) Scheers, J., Fantini, S., Johansson, P.: A review of electrolytes for lithium-sulphur batteries. J. Power Sources 255, 204–218 (2014)
11.
Zurück zum Zitat Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.C., Cui, Y.: Sulphur–TiO\({}_{\mathrm{2}}\) yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013) Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.C., Cui, Y.: Sulphur–TiO\({}_{\mathrm{2}}\) yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013)
13.
Zurück zum Zitat Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996) Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996)
14.
Zurück zum Zitat Aurbach, D., Daroux, M., Faguy, P., Yeager, E.: The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991) Aurbach, D., Daroux, M., Faguy, P., Yeager, E.: The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991)
15.
Zurück zum Zitat McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C.: Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2(10), 1161–1166 (2011) McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C.: Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2(10), 1161–1166 (2011)
16.
Zurück zum Zitat Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B.: An improved high-performance lithium-air battery. Nat. Chem. 4, 579–585 (2012) Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B.: An improved high-performance lithium-air battery. Nat. Chem. 4, 579–585 (2012)
17.
Zurück zum Zitat Li, F., Kitaura, H., Zhou, H.: The pursuit of rechargeable solid-state Li–air batteries. Energy Environ. Sci. 6, 2302–2311 (2013) Li, F., Kitaura, H., Zhou, H.: The pursuit of rechargeable solid-state Li–air batteries. Energy Environ. Sci. 6, 2302–2311 (2013)
18.
Zurück zum Zitat Lu, Y.C., Xu, Z., Gasteiger, H.A., Chen, S., et al.: Platinum-gold nanoparticles: a highly active functional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010) Lu, Y.C., Xu, Z., Gasteiger, H.A., Chen, S., et al.: Platinum-gold nanoparticles: a highly active functional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010)
19.
Zurück zum Zitat Kowalczk, I., Read, J., Salomon, M.: Li-air batteries: A classic example of limitations owing to solubilities. Pure Appl. Chem. 79, 851–860 (2007) Kowalczk, I., Read, J., Salomon, M.: Li-air batteries: A classic example of limitations owing to solubilities. Pure Appl. Chem. 79, 851–860 (2007)
20.
Zurück zum Zitat Littauer, E.L., Tsai, K.C.: Anodic behavior of lithium in aqueous electrolytes. J. Electrochem. Soc. 123, 771–776 (1976) Littauer, E.L., Tsai, K.C.: Anodic behavior of lithium in aqueous electrolytes. J. Electrochem. Soc. 123, 771–776 (1976)
21.
Zurück zum Zitat Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G.: Rechargeable Li\({}_{\mathrm{2}}\)O\({}_{\mathrm{2}}\) electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006) Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G.: Rechargeable Li\({}_{\mathrm{2}}\)O\({}_{\mathrm{2}}\) electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006)
22.
Zurück zum Zitat Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G.: A reversible and higher-rate Li-O\({}_{\mathrm{2}}\) battery. Science 337, 563–566 (2012) Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G.: A reversible and higher-rate Li-O\({}_{\mathrm{2}}\) battery. Science 337, 563–566 (2012)
23.
Zurück zum Zitat (a) Visco, S.J., Nimon, E., De Jonghe, L.C. In: Garche, J. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 376. Elsevier, Amsterdam (2009) (b) US 7645543 (2010), US 7282295 (2007), US 7282296 (2007), US 7824806 (2010), US 20130045428 (a) Visco, S.J., Nimon, E., De Jonghe, L.C. In: Garche, J. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 376. Elsevier, Amsterdam (2009) (b) US 7645543 (2010), US 7282295 (2007), US 7282296 (2007), US 7824806 (2010), US 20130045428
24.
Zurück zum Zitat Visco, S.J., Nimon, V.Y., Petrov, A., Pridatko, K., Goncharenko, N., Nimon, E., De Jonghe, L., Volfkovich, Y.M., Bograchev, D.A.: Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443–1456 (2014) Visco, S.J., Nimon, V.Y., Petrov, A., Pridatko, K., Goncharenko, N., Nimon, E., De Jonghe, L., Volfkovich, Y.M., Bograchev, D.A.: Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443–1456 (2014)
25.
Zurück zum Zitat Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., Addison, D.: A rechargeable Li–O\({}_{\mathrm{2}}\) battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013) Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., Addison, D.: A rechargeable Li–O\({}_{\mathrm{2}}\) battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013)
26.
Zurück zum Zitat Wang, J., Li, Y., Sun, X.: Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2, 443–467 (2013) Wang, J., Li, Y., Sun, X.: Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2, 443–467 (2013)
27.
Zurück zum Zitat Wang, Y., He, P., Zhou, H.: A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011) Wang, Y., He, P., Zhou, H.: A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011)
28.
Zurück zum Zitat (a) Xie, B., Lee, H.S., Li, H., Yang, X.Q., McBreen, J., Chen, L.Q.: New electrolytes using Li\({}_{\mathrm{2}}\)O or Li\({}_{\mathrm{2}}\)O\({}_{\mathrm{2}}\) oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008) (b) Li, L.F., Xie, B., Lee, H.S., Li, H., Yang, X.-Q., McBreen, J., Huang, X.J.: Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries. J. Power Sources 189, 539–542 (2009) (c) Shanmukaraj, D., Grugeon, S., Gachot, G., Laruelle, S., Mathiron, D., Tarascon, J.M., Armand, M.: Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J. Am. Chem. Soc. 132, 3055–3062 (2010) (a) Xie, B., Lee, H.S., Li, H., Yang, X.Q., McBreen, J., Chen, L.Q.: New electrolytes using Li\({}_{\mathrm{2}}\)O or Li\({}_{\mathrm{2}}\)O\({}_{\mathrm{2}}\) oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008) (b) Li, L.F., Xie, B., Lee, H.S., Li, H., Yang, X.-Q., McBreen, J., Huang, X.J.: Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries. J. Power Sources 189, 539–542 (2009) (c) Shanmukaraj, D., Grugeon, S., Gachot, G., Laruelle, S., Mathiron, D., Tarascon, J.M., Armand, M.: Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J. Am. Chem. Soc. 132, 3055–3062 (2010)
29.
Zurück zum Zitat Zhang, D., Li, R., Huang, T., Yu, A.: Novel composite polymer electrolyte for lithium air batteries. J. Power Sources 195, 1202–1206 (2010) Zhang, D., Li, R., Huang, T., Yu, A.: Novel composite polymer electrolyte for lithium air batteries. J. Power Sources 195, 1202–1206 (2010)
30.
Zurück zum Zitat Zheng, J.P., Liang, R.Y., Hendrickson, M., Plichta, E.J.: Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 155, A432–A437 (2008) Zheng, J.P., Liang, R.Y., Hendrickson, M., Plichta, E.J.: Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 155, A432–A437 (2008)
31.
Zurück zum Zitat Barpanda, P., Oyama, G., Nishimura, S., Chung, S.-C., Yamada, A.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014) Barpanda, P., Oyama, G., Nishimura, S., Chung, S.-C., Yamada, A.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014)
32.
Zurück zum Zitat Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of the P2–Na\({}_{x}\)CoO\({}_{\mathrm{2}}\) phase diagram. Nat. Mater. 10, 74–80 (2011) Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of the P2–Na\({}_{x}\)CoO\({}_{\mathrm{2}}\) phase diagram. Nat. Mater. 10, 74–80 (2011)
33.
Zurück zum Zitat Brandt, K.: Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994) Brandt, K.: Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994)
34.
Zurück zum Zitat Chen, S., Bi, J., Zhao, Y., Yang, L., Zhang, C., et al.: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(41), 5593–5597 (2012) Chen, S., Bi, J., Zhao, Y., Yang, L., Zhang, C., et al.: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(41), 5593–5597 (2012)
35.
Zurück zum Zitat Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011) Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011)
36.
Zurück zum Zitat Datta, D., Li, J., Shenoy, V.B.: Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 6, 1788–1795 (2014) Datta, D., Li, J., Shenoy, V.B.: Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 6, 1788–1795 (2014)
37.
Zurück zum Zitat Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013) Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013)
38.
Zurück zum Zitat Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Current opinion in solid state and materials. Science 16, 168–177 (2012) Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Current opinion in solid state and materials. Science 16, 168–177 (2012)
39.
Zurück zum Zitat Goodenough, J.B., Hong, H.Y.P., Kafalas, J.A.: Fast Na\({}^{\mathrm{+}}\)-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976) Goodenough, J.B., Hong, H.Y.P., Kafalas, J.A.: Fast Na\({}^{\mathrm{+}}\)-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976)
40.
Zurück zum Zitat Hartmann, P., Bender, C.L., Vracar, M., Dürr, A.K., Garsuch, A., Janek, J., Adelhelm, P.: A rechargeable room-temperature sodium superoxide (NaO\({}_{\mathrm{2}})\) battery. Nat. Mater. 12, 228–232 (2013) Hartmann, P., Bender, C.L., Vracar, M., Dürr, A.K., Garsuch, A., Janek, J., Adelhelm, P.: A rechargeable room-temperature sodium superoxide (NaO\({}_{\mathrm{2}})\) battery. Nat. Mater. 12, 228–232 (2013)
41.
Zurück zum Zitat Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53(38), 10169–10173 (2014) Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53(38), 10169–10173 (2014)
42.
Zurück zum Zitat Janek, J., Adelhelm, P.: Zukunftstechnologien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 16, S. 199–217. Springer, Berlin (2013) Janek, J., Adelhelm, P.: Zukunftstechnologien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 16, S. 199–217. Springer, Berlin (2013)
43.
Zurück zum Zitat Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., Fujiwara, K.: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011) Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., Fujiwara, K.: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011)
44.
Zurück zum Zitat Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M.H., Rojo, T.: Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 6, 2312–2337 (2013) Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M.H., Rojo, T.: Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 6, 2312–2337 (2013)
45.
Zurück zum Zitat Peled, E., Golodnitsky, D., Mazor, H., Goor, M., Avshalomov, S.: Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835 (2011) Peled, E., Golodnitsky, D., Mazor, H., Goor, M., Avshalomov, S.: Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835 (2011)
46.
Zurück zum Zitat Vesborg, P.C.K., Jaramillo, T.F.: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012) Vesborg, P.C.K., Jaramillo, T.F.: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012)
47.
Zurück zum Zitat Wenzel, S., Hara, T., Janek, J., Adelhelm, P.: Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342 (2011) Wenzel, S., Hara, T., Janek, J., Adelhelm, P.: Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342 (2011)
48.
Zurück zum Zitat Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., Inazawa, S.: Charge-discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide-potassium bis(fluorosulfonyl)amide. J. Power Sources 217, 479–484 (2012) Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., Inazawa, S.: Charge-discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide-potassium bis(fluorosulfonyl)amide. J. Power Sources 217, 479–484 (2012)
49.
Zurück zum Zitat Buschmann, H., Berendts, S., Mogwitz, B., Janek, J.: Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors Li\({}_{\mathrm{7}}\)La\({}_{\mathrm{3}}\)Zr\({}_{\mathrm{2}}\)O\({}_{\mathrm{12}}\) and Li\({}_{7-x}\)La\({}_{\mathrm{3}}\)Zr\({}_{2-x}\)Ta\({}_{x}\)O\({}_{\mathrm{12}}\) with garnet-type structure. J. Power Sources 206, 236–244 (2012) Buschmann, H., Berendts, S., Mogwitz, B., Janek, J.: Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors Li\({}_{\mathrm{7}}\)La\({}_{\mathrm{3}}\)Zr\({}_{\mathrm{2}}\)O\({}_{\mathrm{12}}\) and Li\({}_{7-x}\)La\({}_{\mathrm{3}}\)Zr\({}_{2-x}\)Ta\({}_{x}\)O\({}_{\mathrm{12}}\) with garnet-type structure. J. Power Sources 206, 236–244 (2012)
50.
Zurück zum Zitat Fergus, J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010) Fergus, J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010)
51.
Zurück zum Zitat Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009) Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009)
52.
Zurück zum Zitat Hartmann, P., Leichtweiss, Th., Busche, M.R., Schneider, M., Reich, M., Sann, J., Adelhelm, Ph., Janek, J.: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013) Hartmann, P., Leichtweiss, Th., Busche, M.R., Schneider, M., Reich, M., Sann, J., Adelhelm, Ph., Janek, J.: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013)
53.
Zurück zum Zitat Ma, Ch., Rangasamy, E., Liang, Ch., Sakamoto, J., More, K.L., Chi, M.: Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li\({}^{\mathrm{+}}\)/H\({}^{\mathrm{+}}\) exchange in aqueous solutions. Angew. Chem. 127(1), 131–135 (2015) Ma, Ch., Rangasamy, E., Liang, Ch., Sakamoto, J., More, K.L., Chi, M.: Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li\({}^{\mathrm{+}}\)/H\({}^{\mathrm{+}}\) exchange in aqueous solutions. Angew. Chem. 127(1), 131–135 (2015)
54.
Zurück zum Zitat Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011) Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011)
55.
Zurück zum Zitat Ohta, S., Kobayashi, T., Asaoka, T.: High lithium ionic conductivity in the garnet-type oxide Li\({}_{{7-X}}\) La\({}_{\mathrm{3}}\)(Zr\({}_{{2-X}}\), NbX)O\({}_{\mathrm{12}}\) (X \(=\) 0–2). J. Power Sources 196, 3342–3345 (2011) Ohta, S., Kobayashi, T., Asaoka, T.: High lithium ionic conductivity in the garnet-type oxide Li\({}_{{7-X}}\) La\({}_{\mathrm{3}}\)(Zr\({}_{{2-X}}\), NbX)O\({}_{\mathrm{12}}\) (X \(=\) 0–2). J. Power Sources 196, 3342–3345 (2011)
56.
Zurück zum Zitat Ohta, S., Komagata, S., Seki, J., Saeki, T., Morishita, Sh., Asaoka, T.: All-solid-state lithium ion battery using garnet-type oxide and Li\({}_{\mathrm{3}}\)BO\({}_{\mathrm{3}}\) solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53 (2013) Ohta, S., Komagata, S., Seki, J., Saeki, T., Morishita, Sh., Asaoka, T.: All-solid-state lithium ion battery using garnet-type oxide and Li\({}_{\mathrm{3}}\)BO\({}_{\mathrm{3}}\) solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53 (2013)
57.
Zurück zum Zitat Wang, L., Goodenough, J.B.: DOE Vehicle Technologies Annual Merit Review Meeting, May 14–18 (2012) Wang, L., Goodenough, J.B.: DOE Vehicle Technologies Annual Merit Review Meeting, May 14–18 (2012)
58.
Zurück zum Zitat Jones, K.S.: Ceramic Leadership Summit. American Ceramic Society, Baltimore, Aug 1–3, 2011 Jones, K.S.: Ceramic Leadership Summit. American Ceramic Society, Baltimore, Aug 1–3, 2011
59.
Zurück zum Zitat Arai, H.: Metal storage/metal air (Zn, Fe, Al, Mg). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 18, S. 337–344. Elsevier, Amsterdam (2015) Arai, H.: Metal storage/metal air (Zn, Fe, Al, Mg). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 18, S. 337–344. Elsevier, Amsterdam (2015)
60.
Zurück zum Zitat Arthur, T.S., Singh, N., Matsui, M.: Electrodeposited Bi, Sb and B\({}_{\mathrm{i}1-x}\)Sb\({}_{x}\) alloys as anodes for Mg-ion batteries. Electrochem. Commun. 16, 103–106 (2012) Arthur, T.S., Singh, N., Matsui, M.: Electrodeposited Bi, Sb and B\({}_{\mathrm{i}1-x}\)Sb\({}_{x}\) alloys as anodes for Mg-ion batteries. Electrochem. Commun. 16, 103–106 (2012)
61.
Zurück zum Zitat Aurbach, D., Weissman, I., Gofer, Y., Levi, E.: Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 3, 61–73 (2003) Aurbach, D., Weissman, I., Gofer, Y., Levi, E.: Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 3, 61–73 (2003)
62.
Zurück zum Zitat Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000) Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000)
63.
Zurück zum Zitat (a) Doe, R.E., Han, R., Hwang, J., Gmitter, A., Shterenberg, I., Yoo, H.D., et al.: Novel electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243–245 (2014) (b) WO/2013/096827A1 (2013), US 20130252112 (2013), US 20130252114 (2013) (a) Doe, R.E., Han, R., Hwang, J., Gmitter, A., Shterenberg, I., Yoo, H.D., et al.: Novel electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243–245 (2014) (b) WO/2013/096827A1 (2013), US 20130252112 (2013), US 20130252114 (2013)
64.
Zurück zum Zitat Gofer, Y., Chusid, O., Aurbach, D., Gan, R.: Magnesium batteries. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 285–301. Elsevier, Amsterdam (2009) Gofer, Y., Chusid, O., Aurbach, D., Gan, R.: Magnesium batteries. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 285–301. Elsevier, Amsterdam (2009)
65.
Zurück zum Zitat Jörissen, L.: Secondary batteries, metal-air systems: bifunctional oxygen electrodes. In: Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 356. Elsevier, Amsterdam (2009) Jörissen, L.: Secondary batteries, metal-air systems: bifunctional oxygen electrodes. In: Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 356. Elsevier, Amsterdam (2009)
66.
Zurück zum Zitat Kakibe, T., Hishii, J., Yoshimoto, N., Egashira, M., Morita, M.: Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries. J. Power Sources 203, 195–200 (2012) Kakibe, T., Hishii, J., Yoshimoto, N., Egashira, M., Morita, M.: Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries. J. Power Sources 203, 195–200 (2012)
67.
Zurück zum Zitat Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., et al.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011) Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., et al.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011)
68.
Zurück zum Zitat Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010) Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010)
69.
Zurück zum Zitat Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., et al.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012) Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., et al.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012)
70.
Zurück zum Zitat Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014) Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014)
71.
Zurück zum Zitat Singh, N., Arthur, T.S., Ling, C., Matsui, M., Mizuno, F.: A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149–151 (2013) Singh, N., Arthur, T.S., Ling, C., Matsui, M., Mizuno, F.: A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149–151 (2013)
72.
Zurück zum Zitat Wang, W., Jiang, B., Xiong, W., Sun, H., Lin, Z., et al.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3(3383) (2013) Wang, W., Jiang, B., Xiong, W., Sun, H., Lin, Z., et al.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3(3383) (2013)
73.
Zurück zum Zitat (a) Yu, X., Licht, S.: Advances in Fe(VI) charge storage, Part I. Primary alkaline super-iron batteries. J. Power Sources 171, 966–980 (2007) b) Advances in Fe(VI) charge storage: Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources 171(2), 1010–1022 (2007) (a) Yu, X., Licht, S.: Advances in Fe(VI) charge storage, Part I. Primary alkaline super-iron batteries. J. Power Sources 171, 966–980 (2007) b) Advances in Fe(VI) charge storage: Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources 171(2), 1010–1022 (2007)
74.
Zurück zum Zitat Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: \(\upalpha\)-MnO\({}_{\mathrm{2}}\) as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012) Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: \(\upalpha\)-MnO\({}_{\mathrm{2}}\) as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012)
75.
Zurück zum Zitat Placke, T., Fromm, O., Lux, S.F., Bieker, P., Rothermel, S., Meyer, H.W., Passerini, S., Winter, M.: Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159(11), A1755–A1765 (2012) Placke, T., Fromm, O., Lux, S.F., Bieker, P., Rothermel, S., Meyer, H.W., Passerini, S., Winter, M.: Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159(11), A1755–A1765 (2012)
76.
Zurück zum Zitat Reddy, A., Fichtner, M.: Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059–17062 (2011) Reddy, A., Fichtner, M.: Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059–17062 (2011)
77.
Zurück zum Zitat Zhao, X., Ren, Sh., Bruns, M., Fichtner, M.: Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014) Zhao, X., Ren, Sh., Bruns, M., Fichtner, M.: Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014)
78.
Zurück zum Zitat Amatucci, G.G., Pereira, N.: Fluoride based electrode materials for advanced energy storage devices. J. Fluorine Chem. 128, 243–262 (2007) Amatucci, G.G., Pereira, N.: Fluoride based electrode materials for advanced energy storage devices. J. Fluorine Chem. 128, 243–262 (2007)
79.
Zurück zum Zitat Bruce, P.G., Scrosati, B., Tarascon, J.-M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008) Bruce, P.G., Scrosati, B., Tarascon, J.-M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)
80.
Zurück zum Zitat Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010) Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010)
81.
Zurück zum Zitat Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000) Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)
Metadaten
Titel
Hochenergiebatterien nach Lithium-Ion
verfasst von
Peter Kurzweil, Prof. Dr.
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-658-21829-4_5