Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

Top Chemical Opportunities from Carbohydrate Biomass: A Chemist’s View of the Biorefinery

verfasst von : Michiel Dusselier, Mark Mascal, Bert F. Sels

Erschienen in: Selective Catalysis for Renewable Feedstocks and Chemicals

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cheap fossil oil resources are becoming depleted and crude oil prices are rising. In this context, alternatives to fossil fuel-derived carbon are examined in an effort to improve the security of carbon resources through the development of novel technologies for the production of chemicals, fuels, and materials from renewable feedstocks such as biomass. The general concept unifying the conversion processes for raw biomass is that of the biorefinery, which integrates biofuels with a selection of pivot points towards value-added chemical end products via so-called “platform chemicals”. While the concept of biorefining is not new, now more than ever there is the motivation to investigate its true potential for the production of carbon-based products. A variety of renewable chemicals have been proposed by many research groups, many of them being categorized as drop-ins, while others are novel chemicals with the potential to displace petrochemicals across several markets. To be competitive with petrochemicals, carbohydrate-derived products should have advantageous chemical properties that can be profitably exploited, and/or their production should offer cost-effective benefits. The production of drop-ins will likely proceed in short term since the markets are familiar, while the commercial introduction of novel chemicals takes longer and demands more technological and marketing effort.
Rather than describing elaborate catalytic routes and giving exhaustive lists of reactions, a large part of this review is devoted to creating a guideline for the selection of the most promising (platform) chemicals derived via chemical-catalytic reaction routes from lignocellulosic biomass. The major rationale behind our recommendations is a maximum conservation of functionality, alongside a high atom economy. Nature provides us with complex molecules like cellulose and hemicellulose, and it should be possible to transform them into chemical products while maintaining aspects of their original structure, rather than taking them completely apart only to put them back together again in a different order, or turning them into metabolites and CO2. Thus, rather than merely pursuing energy content as in the case of biofuels, the chemist sees atom efficiency, functional versatility, and reactivity as the key criteria for the successful valorization of biomass into chemicals.
To guide the choice of renewable chemicals and their production, this review adopts the original van Krevelen plots and develops alternative diagrams by introducing a functionality parameter F and a functionality index F:C (rather than O:C). This index is more powerful than the O index to describe the importance of functional groups. Such plots are ideal to assess the effect of several reaction types on the overall functionality in biomass conversion. The atom economy is an additional arbitrator in the evaluation of the reaction types. The assessment is illustrated in detail for the case of carbohydrate resources, and about 25 chemicals, including drop-ins as well as novel chemicals, are selected.
Most of these chemicals would be difficult to synthesize from petrochemicals feeds, and this highlights the unique potential of carbohydrates as feedstocks, but, importantly, the products should have a strong applied dimension in existing or rising markets. Ultimately, the production scales of those markets must be harmonized to the biomass availability and its collection and storage logistics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489 Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489
2.
Zurück zum Zitat Levy PF, Sanderson JE, Kispert RG, Wise DL (1981) Biorefining of biomass to liquid fuels and organic chemicals. Enzyme Microb Tech 3:207–215 Levy PF, Sanderson JE, Kispert RG, Wise DL (1981) Biorefining of biomass to liquid fuels and organic chemicals. Enzyme Microb Tech 3:207–215
3.
Zurück zum Zitat Lipinsky ES (1978) Fuels from biomass: integration with food and materials systems. Science 199:644–651 Lipinsky ES (1978) Fuels from biomass: integration with food and materials systems. Science 199:644–651
4.
Zurück zum Zitat Bracannot H (1819) Sur la conversion du corps ligneux en gomme, en sucre, et en un acide d’une nature particuliere, par le moyen de l’acide sulfurique; conversion de la même substance ligneuse en ulmine par la potasse. Ann Chim Phys 12:172–195 Bracannot H (1819) Sur la conversion du corps ligneux en gomme, en sucre, et en un acide d’une nature particuliere, par le moyen de l’acide sulfurique; conversion de la même substance ligneuse en ulmine par la potasse. Ann Chim Phys 12:172–195
5.
Zurück zum Zitat Vogel O (1908) History of wood distillation II. Dusseldorf Chem Ztg 32:561 Vogel O (1908) History of wood distillation II. Dusseldorf Chem Ztg 32:561
6.
Zurück zum Zitat Fawsitt CA (1885) Wood naphtha. J Soc Chem Ind Lond 4:319–321 Fawsitt CA (1885) Wood naphtha. J Soc Chem Ind Lond 4:319–321
7.
Zurück zum Zitat Bungay HR (1982) Biomass refining. Science 218:643–646 Bungay HR (1982) Biomass refining. Science 218:643–646
8.
Zurück zum Zitat Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 13:83–114 Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 13:83–114
9.
Zurück zum Zitat Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73 Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73
10.
Zurück zum Zitat Yung MM, Jablonski WS, Magrini-Bair KA (2009) Review of catalytic conditioning of biomass-derived syngas. Energ Fuel 23:1874–1887 Yung MM, Jablonski WS, Magrini-Bair KA (2009) Review of catalytic conditioning of biomass-derived syngas. Energ Fuel 23:1874–1887
11.
Zurück zum Zitat Baliban RC, Elia JA, Floudas CA (2013) Biomass to liquid transportation fuels (BTL) systems: process synthesis and global optimization framework. Energ Environ Sci 6:267–287 Baliban RC, Elia JA, Floudas CA (2013) Biomass to liquid transportation fuels (BTL) systems: process synthesis and global optimization framework. Energ Environ Sci 6:267–287
12.
Zurück zum Zitat Cheng Y-T, Jae J, Shi J, Fan W, Huber GW (2012) Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew Chem Int Ed 51(6):1387–1390 Cheng Y-T, Jae J, Shi J, Fan W, Huber GW (2012) Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew Chem Int Ed 51(6):1387–1390
13.
Zurück zum Zitat Carlson TR, Vispute TP, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1(5):397–400 Carlson TR, Vispute TP, Huber GW (2008) Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1(5):397–400
14.
Zurück zum Zitat Elliott DC, Oasmaa A, Meier D, Preto F, Bridgwater AV (2012) Results of the IEA round robin on viscosity and aging of fast pyrolysis bio-oils: long-term tests and repeatability. Energ Fuel 26:7362–7366 Elliott DC, Oasmaa A, Meier D, Preto F, Bridgwater AV (2012) Results of the IEA round robin on viscosity and aging of fast pyrolysis bio-oils: long-term tests and repeatability. Energ Fuel 26:7362–7366
15.
Zurück zum Zitat Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen 407:1–19 Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen 407:1–19
16.
Zurück zum Zitat Centi G, van Santen RA (eds) (2007) Catalysis for renewables: from feedstock to energy production. Wiley-VCH, Weinheim Centi G, van Santen RA (eds) (2007) Catalysis for renewables: from feedstock to energy production. Wiley-VCH, Weinheim
17.
Zurück zum Zitat Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502 Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502
18.
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306 Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306
19.
Zurück zum Zitat Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3(1):82–94 Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3(1):82–94
20.
Zurück zum Zitat Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1(5):714–726 Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1(5):714–726
21.
Zurück zum Zitat Saha B (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291 Saha B (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291
22.
Zurück zum Zitat Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599 Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599
23.
Zurück zum Zitat Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50(17):3854–3871 Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50(17):3854–3871
24.
Zurück zum Zitat Foley PM, Beach ES, Zimmerman JB (2011) Algae as a source of renewable chemicals: opportunities and challenges. Green Chem 13(6):1399–1405 Foley PM, Beach ES, Zimmerman JB (2011) Algae as a source of renewable chemicals: opportunities and challenges. Green Chem 13(6):1399–1405
25.
Zurück zum Zitat Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699 Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699
26.
Zurück zum Zitat Lammens TM, De Biase D, Franssen MCR, Scott EL, Sanders JPM (2009) The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid. Green Chem 11(10):1562–1567 Lammens TM, De Biase D, Franssen MCR, Scott EL, Sanders JPM (2009) The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid. Green Chem 11(10):1562–1567
27.
Zurück zum Zitat Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2008) Green biorefineries: the green biorefinery concept – fundamentals and potential. In: Biorefineries-industrial processes and products. Wiley-VCH, Weinheim, pp 253–294 Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2008) Green biorefineries: the green biorefinery concept – fundamentals and potential. In: Biorefineries-industrial processes and products. Wiley-VCH, Weinheim, pp 253–294
28.
Zurück zum Zitat Song J, Fan H, Ma J, Han B (2013) Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chem 15(10):2619–2635 Song J, Fan H, Ma J, Han B (2013) Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chem 15(10):2619–2635
29.
Zurück zum Zitat Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426(6967):611–612 Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426(6967):611–612
30.
Zurück zum Zitat Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107 Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107
31.
Zurück zum Zitat Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed 50(45):10502–10509 Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed 50(45):10502–10509
32.
Zurück zum Zitat ten Dam J, Hanefeld U (2011) Renewable chemicals: dehydroxylation of glycerol and polyols. ChemSusChem 4(8):1017–1034 ten Dam J, Hanefeld U (2011) Renewable chemicals: dehydroxylation of glycerol and polyols. ChemSusChem 4(8):1017–1034
33.
Zurück zum Zitat Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549 Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549
34.
Zurück zum Zitat Sels B, D’Hondt E, Jacobs P (2007) Catalytic transformation of glycerol. In: Catalysis for renewables. Wiley-VCH, Weinheim, pp 223–255 Sels B, D’Hondt E, Jacobs P (2007) Catalytic transformation of glycerol. In: Catalysis for renewables. Wiley-VCH, Weinheim, pp 223–255
36.
Zurück zum Zitat Huber GW, Cortright RD, Dumesic JA (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Ed 43:1549–1551 Huber GW, Cortright RD, Dumesic JA (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Ed 43:1549–1551
37.
Zurück zum Zitat Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308(5727):1446–1450 Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308(5727):1446–1450
38.
Zurück zum Zitat Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gartner CA, Dumesic JA (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322:417–421 Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gartner CA, Dumesic JA (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322:417–421
39.
Zurück zum Zitat Corma A, de la Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50:2375–2378 Corma A, de la Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50:2375–2378
40.
Zurück zum Zitat Tompsett GA, Li N, Huber GW (2011) Catalytic conversion of sugars to fuels. In: Thermochemical processing of biomass. John Wiley & Sons, Ltd, pp 232–279 Tompsett GA, Li N, Huber GW (2011) Catalytic conversion of sugars to fuels. In: Thermochemical processing of biomass. John Wiley & Sons, Ltd, pp 232–279
41.
Zurück zum Zitat Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513 Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513
42.
Zurück zum Zitat Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16(2):516–547 Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16(2):516–547
43.
Zurück zum Zitat Sutton AD, Waldie FD, Wu R, Schlaf M, ‘Pete’ Silks LA, Gordon JC (2013) The hydrodeoxygenation of bioderived furans into alkanes. Nat Chem 5(5):428–432 Sutton AD, Waldie FD, Wu R, Schlaf M, ‘Pete’ Silks LA, Gordon JC (2013) The hydrodeoxygenation of bioderived furans into alkanes. Nat Chem 5(5):428–432
44.
Zurück zum Zitat Lange J-P, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem 5(1):150–166 Lange J-P, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem 5(1):150–166
45.
Zurück zum Zitat Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conservat Recycl 28(3–4):227–239 Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conservat Recycl 28(3–4):227–239
46.
Zurück zum Zitat Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49(26):4479–4483 Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49(26):4479–4483
47.
Zurück zum Zitat Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15(3):584–595 Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15(3):584–595
48.
Zurück zum Zitat Mascal M, Dutta S, Gandarias I (2014) Hydrodeoxygenation of the Angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7–C10 gasoline-like hydrocarbons. Angew Chem Int Ed 53:1854–1857 Mascal M, Dutta S, Gandarias I (2014) Hydrodeoxygenation of the Angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7–C10 gasoline-like hydrocarbons. Angew Chem Int Ed 53:1854–1857
49.
Zurück zum Zitat Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Catalytic upgrading of levulinic acid to 5-nonanone. Green Chem 12:574–577 Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Catalytic upgrading of levulinic acid to 5-nonanone. Green Chem 12:574–577
50.
Zurück zum Zitat Bond JQ, Martin-Alonso D, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114 Bond JQ, Martin-Alonso D, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114
51.
Zurück zum Zitat Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554 Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554
52.
Zurück zum Zitat Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15(7):1740–1763 Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15(7):1740–1763
53.
Zurück zum Zitat Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558 Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558
55.
Zurück zum Zitat Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46(38):7184–7201 Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46(38):7184–7201
56.
Zurück zum Zitat Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46(38):7164–7183 Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46(38):7164–7183
57.
Zurück zum Zitat Carlos Serrano-Ruiz J, Dumesic JA (2009) Catalytic upgrading of lactic acid to fuels and chemicals by dehydration/hydrogenation and C-C coupling reactions. Green Chem 11(8):1101–1104 Carlos Serrano-Ruiz J, Dumesic JA (2009) Catalytic upgrading of lactic acid to fuels and chemicals by dehydration/hydrogenation and C-C coupling reactions. Green Chem 11(8):1101–1104
58.
Zurück zum Zitat Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energ Environ Sci 4(1):83–99 Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energ Environ Sci 4(1):83–99
59.
Zurück zum Zitat Yan X, Inderwildi OR, King DA (2010) Biofuels and synthetic fuels in the US and China: a review of well-to-wheel energy use and greenhouse gas emissions with the impact of land-use change. Energ Environ Sci 3(2):190–197 Yan X, Inderwildi OR, King DA (2010) Biofuels and synthetic fuels in the US and China: a review of well-to-wheel energy use and greenhouse gas emissions with the impact of land-use change. Energ Environ Sci 3(2):190–197
60.
Zurück zum Zitat Inderwildi OR, King DA (2009) Quo vadis biofuels? Energ Environ Sci 2(4):343–346 Inderwildi OR, King DA (2009) Quo vadis biofuels? Energ Environ Sci 2(4):343–346
61.
Zurück zum Zitat Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3(10):1106–1133 Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3(10):1106–1133
62.
Zurück zum Zitat Azapagic A, Perdan S, Clift R (eds) (2004) Sustainable development in practice: case studies for engineers and scientists. John Wiley & Sons Ltd. Chichester, UK. Azapagic A, Perdan S, Clift R (eds) (2004) Sustainable development in practice: case studies for engineers and scientists. John Wiley & Sons Ltd. Chichester, UK.
63.
Zurück zum Zitat Van Krevelen D (1950) Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29(12):269–284 Van Krevelen D (1950) Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29(12):269–284
65.
Zurück zum Zitat Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem 75(20):5336–5344 Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem 75(20):5336–5344
66.
Zurück zum Zitat Wildschut J, Iqbal M, Mahfud FH, Cabrera IM, Venderbosch RH, Heeres HJ (2010) Insights in the hydrotreatment of fast pyrolysis oil using a ruthenium on carbon catalyst. Energ Environ Sci 3(7):962–970 Wildschut J, Iqbal M, Mahfud FH, Cabrera IM, Venderbosch RH, Heeres HJ (2010) Insights in the hydrotreatment of fast pyrolysis oil using a ruthenium on carbon catalyst. Energ Environ Sci 3(7):962–970
67.
Zurück zum Zitat Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energ Environ Sci 4(9):3601–3610 Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energ Environ Sci 4(9):3601–3610
68.
Zurück zum Zitat de Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JFM, Pescarmona PP, Jacobs PA, Sels BF (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon–silica catalysts. J Am Chem Soc 134(24):10089–10101 de Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JFM, Pescarmona PP, Jacobs PA, Sels BF (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon–silica catalysts. J Am Chem Soc 134(24):10089–10101
69.
Zurück zum Zitat Li J, Ding D-J, Deng L, Guo Q-X, Fu Y (2012) Catalytic air oxidation of biomass-derived carbohydrates to formic acid. ChemSusChem 5(7):1313–1318 Li J, Ding D-J, Deng L, Guo Q-X, Fu Y (2012) Catalytic air oxidation of biomass-derived carbohydrates to formic acid. ChemSusChem 5(7):1313–1318
70.
Zurück zum Zitat Ooms R, Dusselier M, Geboers JA, Op de Beeck B, Verhaeven R, Gobechiya E, Martens J, Redl A, Sels BF (2014) Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem 16:695–707 Ooms R, Dusselier M, Geboers JA, Op de Beeck B, Verhaeven R, Gobechiya E, Martens J, Redl A, Sels BF (2014) Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem 16:695–707
72.
Zurück zum Zitat Sasaki M, Goto K, Tajima K, Adschiri T, Arai K (2002) Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water. Green Chem 4(3):285–287 Sasaki M, Goto K, Tajima K, Adschiri T, Arai K (2002) Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water. Green Chem 4(3):285–287
73.
Zurück zum Zitat Zhang J, Liu X, Sun M, Ma X, Han Y (2012) Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal 2(8):1698–1702 Zhang J, Liu X, Sun M, Ma X, Han Y (2012) Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal 2(8):1698–1702
74.
Zurück zum Zitat Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energ Environ Sci 6(5):1415–1442 Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energ Environ Sci 6(5):1415–1442
75.
Zurück zum Zitat Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem Int Ed 51(13):3249–3253 Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem Int Ed 51(13):3249–3253
76.
Zurück zum Zitat Biella S, Prati L, Rossi M (2002) Selective oxidation of D-glucose on gold catalyst. J Catal 206(2):242–247 Biella S, Prati L, Rossi M (2002) Selective oxidation of D-glucose on gold catalyst. J Catal 206(2):242–247
77.
Zurück zum Zitat Bui L, Luo H, Gunther WR, Román-Leshkov Y (2013) Domino reaction catalyzed by zeolites with brønsted and lewis acid sites for the production of γ-valerolactone from furfural. Angew Chem Int Ed 52(31):8022–8025 Bui L, Luo H, Gunther WR, Román-Leshkov Y (2013) Domino reaction catalyzed by zeolites with brønsted and lewis acid sites for the production of γ-valerolactone from furfural. Angew Chem Int Ed 52(31):8022–8025
78.
Zurück zum Zitat Yi G, Zhang Y (2012) One-pot selective conversion of hemicellulose (xylan) to xylitol under mild conditions. ChemSusChem 5(8):1383–1387 Yi G, Zhang Y (2012) One-pot selective conversion of hemicellulose (xylan) to xylitol under mild conditions. ChemSusChem 5(8):1383–1387
79.
Zurück zum Zitat Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) “One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1(4):408–410 Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) “One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1(4):408–410
80.
Zurück zum Zitat Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16(2):548–572 Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16(2):548–572
81.
Zurück zum Zitat Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF (2010) Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem 3(6):698–701 Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF (2010) Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem 3(6):698–701
82.
Zurück zum Zitat Op de Beeck B, Geboers J, Van de Vyver S, Van Lishout J, Snelders J, Huijgen WJJ, Courtin CM, Jacobs PA, Sels BF (2013) Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon. ChemSusChem 6(1):199–208 Op de Beeck B, Geboers J, Van de Vyver S, Van Lishout J, Snelders J, Huijgen WJJ, Courtin CM, Jacobs PA, Sels BF (2013) Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon. ChemSusChem 6(1):199–208
83.
Zurück zum Zitat An D, Ye A, Deng W, Zhang Q, Wang Y (2012) Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles. Chem Eur J 18(10):2938–2947 An D, Ye A, Deng W, Zhang Q, Wang Y (2012) Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles. Chem Eur J 18(10):2938–2947
84.
Zurück zum Zitat Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111(1–2):119–132 Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111(1–2):119–132
85.
Zurück zum Zitat Gorbanev YY, Klitgaard SK, Woodley JM, Christensen CH, Riisager A (2009) Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem 2(7):672–675 Gorbanev YY, Klitgaard SK, Woodley JM, Christensen CH, Riisager A (2009) Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem 2(7):672–675
86.
Zurück zum Zitat Assary RS, Curtiss LA (2011) Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxyacetone by lewis acid active site models. J Phys Chem A 115:8754–8760 Assary RS, Curtiss LA (2011) Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxyacetone by lewis acid active site models. J Phys Chem A 115:8754–8760
87.
Zurück zum Zitat Schwartz TJ, Goodman SM, Osmundsen CM, Taarning E, Mozuch MD, Gaskell J, Cullen D, Kersten PJ, Dumesic JA (2013) Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. ACS Catal 3(12):2689–2693 Schwartz TJ, Goodman SM, Osmundsen CM, Taarning E, Mozuch MD, Gaskell J, Cullen D, Kersten PJ, Dumesic JA (2013) Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. ACS Catal 3(12):2689–2693
88.
Zurück zum Zitat Zhang J, Zhao Y, Pan M, Feng X, Ji W, Au C-T (2011) Efficient acrylic acid production through bio lactic acid dehydration over NaY zeolite modified by alkali phosphates. ACS Catal 1:32–41 Zhang J, Zhao Y, Pan M, Feng X, Ji W, Au C-T (2011) Efficient acrylic acid production through bio lactic acid dehydration over NaY zeolite modified by alkali phosphates. ACS Catal 1:32–41
89.
Zurück zum Zitat Wolfel R, Taccardi N, Bosmann A, Wasserscheid P (2011) Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chem 13(10):2759–2763 Wolfel R, Taccardi N, Bosmann A, Wasserscheid P (2011) Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chem 13(10):2759–2763
90.
Zurück zum Zitat Albert J, Wolfel R, Bosmann A, Wasserscheid P (2012) Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators. Energ Environ Sci 5(7):7956–7962 Albert J, Wolfel R, Bosmann A, Wasserscheid P (2012) Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators. Energ Environ Sci 5(7):7956–7962
91.
Zurück zum Zitat Zhang J, Liu X, Hedhili MN, Zhu Y, Han Y (2011) Highly selective and complete conversion of cellobiose to gluconic acid over Au/Cs2HPW12O40 nanocomposite catalyst. ChemCatChem 3(8):1294–1298 Zhang J, Liu X, Hedhili MN, Zhu Y, Han Y (2011) Highly selective and complete conversion of cellobiose to gluconic acid over Au/Cs2HPW12O40 nanocomposite catalyst. ChemCatChem 3(8):1294–1298
92.
Zurück zum Zitat Wang Y, Van de Vyver S, Sharma KK, Roman-Leshkov Y (2014) Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem 16(2):719–726 Wang Y, Van de Vyver S, Sharma KK, Roman-Leshkov Y (2014) Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem 16(2):719–726
93.
Zurück zum Zitat Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E, Seo JW, Courtin CM, Gaigneaux EM, Jacobs PA, Sels BF (2012) Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. ChemSusChem 5(8):1549–1558 Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E, Seo JW, Courtin CM, Gaigneaux EM, Jacobs PA, Sels BF (2012) Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. ChemSusChem 5(8):1549–1558
94.
Zurück zum Zitat Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47(19):5590–5592 Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47(19):5590–5592
95.
Zurück zum Zitat Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem 13(2):326–333 Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem 13(2):326–333
96.
Zurück zum Zitat de Almeida RM, Li J, Nederlof C, O’Connor P, Makkee M, Moulijn JA (2010) Cellulose conversion to isosorbide in molten salt hydrate media. ChemSusChem 3(3):325–328 de Almeida RM, Li J, Nederlof C, O’Connor P, Makkee M, Moulijn JA (2010) Cellulose conversion to isosorbide in molten salt hydrate media. ChemSusChem 3(3):325–328
97.
Zurück zum Zitat Rose M, Palkovits R (2012) Isosorbide as a renewable platform chemical for versatile applications—Quo Vadis? ChemSusChem 5(1):167–176 Rose M, Palkovits R (2012) Isosorbide as a renewable platform chemical for versatile applications—Quo Vadis? ChemSusChem 5(1):167–176
98.
Zurück zum Zitat Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793 Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793
99.
Zurück zum Zitat Saha B, Mosier N, Abu-Omar M (2014) Catalytic dehydration of lignocellulosic derived xylose to furfural. In: McCann MC, Buckeridge MS, Carpita NC (eds) Plants and bioenergy, vol 4, Advances in plant biology. Springer, New York, pp 267–276 Saha B, Mosier N, Abu-Omar M (2014) Catalytic dehydration of lignocellulosic derived xylose to furfural. In: McCann MC, Buckeridge MS, Carpita NC (eds) Plants and bioenergy, vol 4, Advances in plant biology. Springer, New York, pp 267–276
100.
Zurück zum Zitat Dusselier M, Van Wouwe P, de Clippel F, Dijkmans J, Gammon DW, Sels BF (2013) Mechanistic insight into the conversion of tetrose sugars to novel α-hydroxy acid platform molecules. ChemCatChem 5(2):569–575 Dusselier M, Van Wouwe P, de Clippel F, Dijkmans J, Gammon DW, Sels BF (2013) Mechanistic insight into the conversion of tetrose sugars to novel α-hydroxy acid platform molecules. ChemCatChem 5(2):569–575
101.
Zurück zum Zitat Lin H, Strull J, Liu Y, Karmiol Z, Plank K, Miller G, Guo Z, Yang L (2012) High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media. Energy Environ Sci 5(12):9773–9777 Lin H, Strull J, Liu Y, Karmiol Z, Plank K, Miller G, Guo Z, Yang L (2012) High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media. Energy Environ Sci 5(12):9773–9777
102.
Zurück zum Zitat Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG (2013) Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc 135(10):3997–4006 Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG (2013) Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc 135(10):3997–4006
103.
Zurück zum Zitat Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energ Environ Sci 5(6):7559–7574 Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energ Environ Sci 5(6):7559–7574
104.
Zurück zum Zitat Dapsens PY, Mondelli C, Kusema B, Verel R, Perez-Ramirez J (2013) Continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green Chem Dapsens PY, Mondelli C, Kusema B, Verel R, Perez-Ramirez J (2013) Continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green Chem
105.
Zurück zum Zitat Xu P, Qiu J, Gao C, Ma C (2008) Biotechnological routes to pyruvate production. J Biosci Bioeng 105(3):169–175 Xu P, Qiu J, Gao C, Ma C (2008) Biotechnological routes to pyruvate production. J Biosci Bioeng 105(3):169–175
106.
Zurück zum Zitat Vitasari CR, Meindersma GW, de Haan AB (2012) Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock. Green Chem 14:321–325 Vitasari CR, Meindersma GW, de Haan AB (2012) Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock. Green Chem 14:321–325
107.
Zurück zum Zitat Chahal SP, Starr JN (2000) Lactic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim Chahal SP, Starr JN (2000) Lactic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim
108.
Zurück zum Zitat Peng J, Li X, Tang C, Bai W (2014) Barium sulphate catalyzed dehydration of lactic acid to acrylic acid. Green Chem 16(1):108–111 Peng J, Li X, Tang C, Bai W (2014) Barium sulphate catalyzed dehydration of lactic acid to acrylic acid. Green Chem 16(1):108–111
109.
Zurück zum Zitat Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catalytic study of the conversion of ethanol into 1,3-butadiene. Catal Today 198(1):338–344 Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catalytic study of the conversion of ethanol into 1,3-butadiene. Catal Today 198(1):338–344
110.
Zurück zum Zitat Bruijnincx PCA, Weckhuysen BM (2013) Shale gas revolution: an opportunity for the production of biobased chemicals? Angew Chem Int Ed 52(46):11980–11987 Bruijnincx PCA, Weckhuysen BM (2013) Shale gas revolution: an opportunity for the production of biobased chemicals? Angew Chem Int Ed 52(46):11980–11987
111.
Zurück zum Zitat Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7(7):445–452 Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7(7):445–452
112.
Zurück zum Zitat Boucher-Jacobs C, Nicholas KM (2013) Catalytic deoxydehydration of glycols with alcohol reductants. ChemSusChem 6(4):597–599 Boucher-Jacobs C, Nicholas KM (2013) Catalytic deoxydehydration of glycols with alcohol reductants. ChemSusChem 6(4):597–599
113.
Zurück zum Zitat Yi J, Liu S, Abu-Omar MM (2012) Rhenium-catalyzed transfer hydrogenation and deoxygenation of biomass-derived polyols to small and useful organics. ChemSusChem 5(8):1401–1404 Yi J, Liu S, Abu-Omar MM (2012) Rhenium-catalyzed transfer hydrogenation and deoxygenation of biomass-derived polyols to small and useful organics. ChemSusChem 5(8):1401–1404
114.
Zurück zum Zitat Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem 120(44):8638–8641 Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem 120(44):8638–8641
115.
Zurück zum Zitat Wang S, Yin K, Zhang Y, Liu H (2013) Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported noble metal catalysts. ACS Catal 3(9):2112–2121 Wang S, Yin K, Zhang Y, Liu H (2013) Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported noble metal catalysts. ACS Catal 3(9):2112–2121
116.
Zurück zum Zitat Zhao G, Zheng M, Zhang J, Wang A, Zhang T (2013) Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system. Ind Eng Chem Res 52(28):9566–9572 Zhao G, Zheng M, Zhang J, Wang A, Zhang T (2013) Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system. Ind Eng Chem Res 52(28):9566–9572
117.
Zurück zum Zitat Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71(3–4):227–241 Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71(3–4):227–241
118.
Zurück zum Zitat Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967 Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967
119.
Zurück zum Zitat D’Hondt E, Van de Vyver S, Sels BF, Jacobs PA (2008) Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen. Chem Commun (Cambridge):6011–6012 D’Hondt E, Van de Vyver S, Sels BF, Jacobs PA (2008) Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen. Chem Commun (Cambridge):6011–6012
120.
Zurück zum Zitat Corthals S, Van Nederkassel J, De Winne H, Geboers J, Jacobs P, Sels B (2011) Design of active and stable NiCeO2ZrO2MgAl2O4 dry reforming catalysts. Appl Catal B 105(3–4):263–275 Corthals S, Van Nederkassel J, De Winne H, Geboers J, Jacobs P, Sels B (2011) Design of active and stable NiCeO2ZrO2MgAl2O4 dry reforming catalysts. Appl Catal B 105(3–4):263–275
121.
Zurück zum Zitat Corthals S, Van Nederkassel J, Geboers J, De Winne H, Van Noyen J, Moens B, Sels B, Jacobs P (2008) Influence of composition of MgAl2O4 supported NiCeO2ZrO2 catalysts on coke formation and catalyst stability for dry reforming of methane. Catal Today 138(1–2):28–32 Corthals S, Van Nederkassel J, Geboers J, De Winne H, Van Noyen J, Moens B, Sels B, Jacobs P (2008) Influence of composition of MgAl2O4 supported NiCeO2ZrO2 catalysts on coke formation and catalyst stability for dry reforming of methane. Catal Today 138(1–2):28–32
122.
Zurück zum Zitat Palo DR, Dagle RA, Holladay JD (2007) Methanol steam reforming for hydrogen production. Chem Rev 107(10):3992–4021 Palo DR, Dagle RA, Holladay JD (2007) Methanol steam reforming for hydrogen production. Chem Rev 107(10):3992–4021
123.
Zurück zum Zitat Trost B (1991) The atom economy–a search for synthetic efficiency. Science 254(5037):1471–1477 Trost B (1991) The atom economy–a search for synthetic efficiency. Science 254(5037):1471–1477
124.
Zurück zum Zitat Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41(4):1437–1451 Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41(4):1437–1451
125.
Zurück zum Zitat Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 29:3352–3365 Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 29:3352–3365
126.
Zurück zum Zitat Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9(12):1273–1283 Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9(12):1273–1283
127.
Zurück zum Zitat Trost BM (1995) Atom economy—a challenge for organic synthesis: homogeneous catalysis leads the way. Angew Chem Int Ed English 34(3):259–281 Trost BM (1995) Atom economy—a challenge for organic synthesis: homogeneous catalysis leads the way. Angew Chem Int Ed English 34(3):259–281
128.
Zurück zum Zitat Danon B, Marcotullio G, de Jong W (2014) Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem 16(1):39–54 Danon B, Marcotullio G, de Jong W (2014) Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem 16(1):39–54
129.
Zurück zum Zitat Hayashi Y, Sasaki Y (2005) Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution. Chem Commun 2716–2718 Hayashi Y, Sasaki Y (2005) Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution. Chem Commun 2716–2718
131.
Zurück zum Zitat Burk MJ, Van DSJ, Burgard A, Niu W (2008) A synthetic metabolic pathway for the biosynthesis of 1,4-butanediol and a transgenic microorganism for the fermentation of the diol. WO2008115840A2 Burk MJ, Van DSJ, Burgard A, Niu W (2008) A synthetic metabolic pathway for the biosynthesis of 1,4-butanediol and a transgenic microorganism for the fermentation of the diol. WO2008115840A2
132.
Zurück zum Zitat Mascal M (2012) Chemicals from biobutanol: technologies and markets. Biofuel Bioprod Biorefining 6(4):483–493 Mascal M (2012) Chemicals from biobutanol: technologies and markets. Biofuel Bioprod Biorefining 6(4):483–493
133.
Zurück zum Zitat West RM, Braden DJ, Dumesic JA (2009) Dehydration of butanol to butene over solid acid catalysts in high water environments. J Catal 262(1):134–143 West RM, Braden DJ, Dumesic JA (2009) Dehydration of butanol to butene over solid acid catalysts in high water environments. J Catal 262(1):134–143
134.
Zurück zum Zitat Le Van MR, Levesque P, McLaughlin G, Dao LH (1987) Ethylene from ethanol over zeolite catalysts. Appl Catal 34:163–179 Le Van MR, Levesque P, McLaughlin G, Dao LH (1987) Ethylene from ethanol over zeolite catalysts. Appl Catal 34:163–179
135.
Zurück zum Zitat Sun P, Long X, He H, Xia C, Li F (2013) Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate. ChemSusChem 6(11):2190–2197 Sun P, Long X, He H, Xia C, Li F (2013) Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate. ChemSusChem 6(11):2190–2197
136.
Zurück zum Zitat Liang G, Wu C, He L, Ming J, Cheng H, Zhuo L, Zhao F (2011) Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chem 13(4):839–842 Liang G, Wu C, He L, Ming J, Cheng H, Zhuo L, Zhao F (2011) Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chem 13(4):839–842
137.
Zurück zum Zitat Chung P-W, Charmot A, Olatunji-Ojo OA, Durkin KA, Katz A (2014) Hydrolysis catalysis of miscanthus xylan to xylose using weak-acid surface sites. ACS Catal 4(1):302–310 Chung P-W, Charmot A, Olatunji-Ojo OA, Durkin KA, Katz A (2014) Hydrolysis catalysis of miscanthus xylan to xylose using weak-acid surface sites. ACS Catal 4(1):302–310
138.
Zurück zum Zitat Dusselier M, Van Wouwe P, De Smet S, De Clercq R, Verbelen L, Van Puyvelde P, Du Prez FE, Sels BF (2013) Toward functional polyester building blocks from renewable glycolaldehyde with Sn cascade catalysis. ACS Catal 3:1786–1800 Dusselier M, Van Wouwe P, De Smet S, De Clercq R, Verbelen L, Van Puyvelde P, Du Prez FE, Sels BF (2013) Toward functional polyester building blocks from renewable glycolaldehyde with Sn cascade catalysis. ACS Catal 3:1786–1800
139.
Zurück zum Zitat Jin F, Yun J, Li G, Kishita A, Tohji K, Enomoto H (2008) Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem 10(6):612–615 Jin F, Yun J, Li G, Kishita A, Tohji K, Enomoto H (2008) Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem 10(6):612–615
140.
Zurück zum Zitat Comotti M, Della Pina C, Falletta E, Rossi M (2006) Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Adv Synth Catal 348(3):313–316 Comotti M, Della Pina C, Falletta E, Rossi M (2006) Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Adv Synth Catal 348(3):313–316
141.
Zurück zum Zitat Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid. Appl Catal A 343:49–54 Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid. Appl Catal A 343:49–54
142.
Zurück zum Zitat Komanoya T, Kobayashi H, Hara K, Chun W-J, Fukuoka A (2013) Simultaneous formation of sorbitol and gluconic acid from cellobiose using carbon-supported ruthenium catalysts. J Energ Chem 22(2):290–295 Komanoya T, Kobayashi H, Hara K, Chun W-J, Fukuoka A (2013) Simultaneous formation of sorbitol and gluconic acid from cellobiose using carbon-supported ruthenium catalysts. J Energ Chem 22(2):290–295
143.
Zurück zum Zitat Schiweck H, Bär A, Vogel R, Schwarz E, Kunz M, Dusautois C, Clement A, Lefranc C, Lüssem B, Moser M, Peters S (2000) Sugar alcohols. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim Schiweck H, Bär A, Vogel R, Schwarz E, Kunz M, Dusautois C, Clement A, Lefranc C, Lüssem B, Moser M, Peters S (2000) Sugar alcohols. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim
144.
Zurück zum Zitat Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem Commun 46(20):3577–3579 Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem Commun 46(20):3577–3579
145.
Zurück zum Zitat Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51(11):2564–2601 Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51(11):2564–2601
146.
Zurück zum Zitat Bilik V (1972) Reactions of saccharides catalyzed by molybdate ions. II. Epimerization of d-glucose and d-mannose. Chem Zvesti 26:183–186 Bilik V (1972) Reactions of saccharides catalyzed by molybdate ions. II. Epimerization of d-glucose and d-mannose. Chem Zvesti 26:183–186
147.
Zurück zum Zitat Gunther WR, Wang Y, Ji Y, Michaelis VK, Hunt ST, Griffin RG, Román-Leshkov Y (2012) Sn-beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat Commun 3:1109 Gunther WR, Wang Y, Ji Y, Michaelis VK, Hunt ST, Griffin RG, Román-Leshkov Y (2012) Sn-beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat Commun 3:1109
148.
Zurück zum Zitat Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y, Hwang S-J, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME (2012) Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc Natl Acad Sci U S A 109(25):9727–9732 Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y, Hwang S-J, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME (2012) Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc Natl Acad Sci U S A 109(25):9727–9732
149.
Zurück zum Zitat Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49:8954–8957 Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49:8954–8957
150.
Zurück zum Zitat Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3(12):2655–2668 Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3(12):2655–2668
151.
Zurück zum Zitat Gounder R, Davis ME (2013) Titanium-beta zeolites catalyze the stereospecific isomerization of d-glucose to l-sorbose via intramolecular C5–C1 hydride shift. ACS Catal 3(7):1469–1476 Gounder R, Davis ME (2013) Titanium-beta zeolites catalyze the stereospecific isomerization of d-glucose to l-sorbose via intramolecular C5–C1 hydride shift. ACS Catal 3(7):1469–1476
Metadaten
Titel
Top Chemical Opportunities from Carbohydrate Biomass: A Chemist’s View of the Biorefinery
verfasst von
Michiel Dusselier
Mark Mascal
Bert F. Sels
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/128_2014_544

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.