Skip to main content

2011 | OriginalPaper | Buchkapitel

Antimicrobial Surfaces

verfasst von : Joerg C. Tiller

Erschienen in: Bioactive Surfaces

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this review, the general principles of antimicrobial surfaces will be discussed in detail. Because many common products that keep microbes off surfaces have been banned in the past decade, the search for alternatives is in full run. In recent research, numerous new ways to produce so-called self-sterilizing surfaces have been introduced. These technologies are discussed with respect to their mechanism, particularly focusing on the distinction between biocide-releasing and non-releasing contact-active systems. New developments in the catalytic formation of biocides and their advantages and limitations are also covered. The combination of several mechanisms in one surface modification has considerable benefits, and will be discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lode HM (2009) Clinical impact of antibiotic-resistant Gram-positive pathogens. Clin Microbiol Infect 15:212–217CrossRef Lode HM (2009) Clinical impact of antibiotic-resistant Gram-positive pathogens. Clin Microbiol Infect 15:212–217CrossRef
2.
Zurück zum Zitat Gonzales FP, Maisch T (2010) XF drugs: a new family of antibacterials. Drug News Perspect 23:167–174CrossRef Gonzales FP, Maisch T (2010) XF drugs: a new family of antibacterials. Drug News Perspect 23:167–174CrossRef
3.
Zurück zum Zitat Klevens RM, Morrison MA, Nadle J et al. (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771CrossRef Klevens RM, Morrison MA, Nadle J et al. (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771CrossRef
4.
Zurück zum Zitat Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215CrossRef Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215CrossRef
5.
Zurück zum Zitat Meyer B (2003) Approaches to prevention, removal and killing of biofilms. Int Biodeterior Biodegradation 51:249–253CrossRef Meyer B (2003) Approaches to prevention, removal and killing of biofilms. Int Biodeterior Biodegradation 51:249–253CrossRef
6.
Zurück zum Zitat Landini P, Antoniani D, Burgess JG et al. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 86:813–823 Landini P, Antoniani D, Burgess JG et al. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 86:813–823
7.
Zurück zum Zitat Mah T-F, Pitts B, Pellock B et al. (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310CrossRef Mah T-F, Pitts B, Pellock B et al. (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310CrossRef
8.
Zurück zum Zitat Tiller JC (2008) Coatings for prevention or deactivation of biological contamination. In: Kohli R, Mittal KL (eds) Developments in surface contamination and cleaning. William Andrew, Norwich, NY, pp 1013–1065CrossRef Tiller JC (2008) Coatings for prevention or deactivation of biological contamination. In: Kohli R, Mittal KL (eds) Developments in surface contamination and cleaning. William Andrew, Norwich, NY, pp 1013–1065CrossRef
9.
Zurück zum Zitat Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586CrossRef Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586CrossRef
10.
Zurück zum Zitat Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384CrossRef Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384CrossRef
11.
Zurück zum Zitat Tew GN, Scott RW, Klein ML et al. (2010) De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 43:30–39CrossRef Tew GN, Scott RW, Klein ML et al. (2010) De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 43:30–39CrossRef
12.
Zurück zum Zitat Tiller JC (2006) Silver-based antimicrobial coatings. ACS Symp Ser 924:215–231CrossRef Tiller JC (2006) Silver-based antimicrobial coatings. ACS Symp Ser 924:215–231CrossRef
13.
Zurück zum Zitat Gettings RL, White WC (1987) Formation of polymeric antimicrobial surfaces from organofunctional silanes. Polym Mater Sci Eng 57:181–185 Gettings RL, White WC (1987) Formation of polymeric antimicrobial surfaces from organofunctional silanes. Polym Mater Sci Eng 57:181–185
14.
Zurück zum Zitat Kanazawa A, Ikeda T, Endo T (1993) Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films. J Poly Sci A Poly Chem 31: 1467–1472 Kanazawa A, Ikeda T, Endo T (1993) Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films. J Poly Sci A Poly Chem 31: 1467–1472
15.
Zurück zum Zitat Tiller JC, Sprich C, Hartmann L (2005) Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Control Release 103:355–367CrossRef Tiller JC, Sprich C, Hartmann L (2005) Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Control Release 103:355–367CrossRef
16.
Zurück zum Zitat Huttinger KJ, Muller H, Bomar MT (1982) Synthesis and effect of carrier-bound disinfectants. J Colloid Interface Sci 88:274–285CrossRef Huttinger KJ, Muller H, Bomar MT (1982) Synthesis and effect of carrier-bound disinfectants. J Colloid Interface Sci 88:274–285CrossRef
17.
Zurück zum Zitat Eknoian MW, Worley SD, Bickert J et al. (1998) Novel antimicrobial N-halamine polymer coatings generated by emulsion polymerization. Polymer 40:1367–1371CrossRef Eknoian MW, Worley SD, Bickert J et al. (1998) Novel antimicrobial N-halamine polymer coatings generated by emulsion polymerization. Polymer 40:1367–1371CrossRef
18.
Zurück zum Zitat Fallgren C, Utt M, Petersson AC et al. (1998) In vitro anti-staphylococcal activity of heparinized biomaterials bonded with combinations of rifampicin. Zentralbl Bakteriol 287:19–31 Fallgren C, Utt M, Petersson AC et al. (1998) In vitro anti-staphylococcal activity of heparinized biomaterials bonded with combinations of rifampicin. Zentralbl Bakteriol 287:19–31
19.
Zurück zum Zitat Brash JL, Uniyal S (1979) Dependence of albumin-fibrinogen simple and competitive adsorption on surface-properties of biomaterials. J Poly Sci C Poly Symp (66):377–389CrossRef Brash JL, Uniyal S (1979) Dependence of albumin-fibrinogen simple and competitive adsorption on surface-properties of biomaterials. J Poly Sci C Poly Symp (66):377–389CrossRef
20.
Zurück zum Zitat An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348CrossRef An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348CrossRef
21.
Zurück zum Zitat Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B Biointerfaces 14:105–119CrossRef Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B Biointerfaces 14:105–119CrossRef
22.
Zurück zum Zitat Humphries M, Nemcek J, Cantwell JB et al. (1987) The use of graft-copolymers to inhibit the adhesion of bacteria to solid-surfaces. FEMS Microbiol Ecol 45:297–304CrossRef Humphries M, Nemcek J, Cantwell JB et al. (1987) The use of graft-copolymers to inhibit the adhesion of bacteria to solid-surfaces. FEMS Microbiol Ecol 45:297–304CrossRef
23.
Zurück zum Zitat Jansen B, Kohnen W (1995) Prevention of biofilm formation by polymer modification. J Ind Microbiol 15:391–396CrossRef Jansen B, Kohnen W (1995) Prevention of biofilm formation by polymer modification. J Ind Microbiol 15:391–396CrossRef
24.
Zurück zum Zitat Park KD, Kim YS, Han DK et al. (1998) Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19:851–859CrossRef Park KD, Kim YS, Han DK et al. (1998) Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19:851–859CrossRef
25.
Zurück zum Zitat Tiller JC, Bonner G, Pan L-C et al. (2001) Improving biomaterial properties of collagen films by chemical modification. Biotechnol Bioeng 73:246–252CrossRef Tiller JC, Bonner G, Pan L-C et al. (2001) Improving biomaterial properties of collagen films by chemical modification. Biotechnol Bioeng 73:246–252CrossRef
26.
Zurück zum Zitat Lewis AL (2000) Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B Biointerfaces 18:261–275CrossRef Lewis AL (2000) Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B Biointerfaces 18:261–275CrossRef
27.
Zurück zum Zitat Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932 Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932
28.
Zurück zum Zitat Cheng G, Zhang Z, Chen SF et al. (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199CrossRef Cheng G, Zhang Z, Chen SF et al. (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199CrossRef
29.
Zurück zum Zitat Ista LK, Perez-Luna VH, Lopez GP (1999) Surface-grafted, environmentally sensitive polymers for biofilm release. Appl Environ Microbiol 65:1603–1609 Ista LK, Perez-Luna VH, Lopez GP (1999) Surface-grafted, environmentally sensitive polymers for biofilm release. Appl Environ Microbiol 65:1603–1609
30.
Zurück zum Zitat Pratt-Terpstra IH, Weerkamp AH, Busscher HJ (1987) Adhesion of oral Streptococci from a flowing suspension to uncoated and albumin-coated surfaces. J Gen Microbiol 133: 3199–3206 Pratt-Terpstra IH, Weerkamp AH, Busscher HJ (1987) Adhesion of oral Streptococci from a flowing suspension to uncoated and albumin-coated surfaces. J Gen Microbiol 133: 3199–3206
31.
Zurück zum Zitat Lichter JA, Thompson MT, Delgadillo M et al. (2008) Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules 9:1571–1578CrossRef Lichter JA, Thompson MT, Delgadillo M et al. (2008) Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules 9:1571–1578CrossRef
32.
Zurück zum Zitat Dowling DP, Donnelly K, McConnell ML et al. (2001) Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films 398–399:602–606CrossRef Dowling DP, Donnelly K, McConnell ML et al. (2001) Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films 398–399:602–606CrossRef
33.
Zurück zum Zitat Charville GW, Hetrick EM, Geer CB et al. (2008) Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials 29:4039–4044CrossRef Charville GW, Hetrick EM, Geer CB et al. (2008) Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials 29:4039–4044CrossRef
34.
Zurück zum Zitat Kristensen JB, Meyer RL, Laursen BS et al. (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26:471–481CrossRef Kristensen JB, Meyer RL, Laursen BS et al. (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26:471–481CrossRef
35.
Zurück zum Zitat Leroy C, Delbarre-Ladrat C, Ghillebaert F et al. (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24:11–22CrossRef Leroy C, Delbarre-Ladrat C, Ghillebaert F et al. (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24:11–22CrossRef
36.
Zurück zum Zitat Tasso M, Pettitt ME, Cordeiro AL et al. (2009) Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. Biofouling 25:505–516CrossRef Tasso M, Pettitt ME, Cordeiro AL et al. (2009) Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. Biofouling 25:505–516CrossRef
37.
Zurück zum Zitat Kim J, Delio R, Dordick JS (2002) Protease-containing silicates as active antifouling materials. Biotechnol Prog 18:551–555CrossRef Kim J, Delio R, Dordick JS (2002) Protease-containing silicates as active antifouling materials. Biotechnol Prog 18:551–555CrossRef
38.
Zurück zum Zitat Aldred N, Phang IY, Conlan SL et al. (2008) The effects of a serine protease, Alcalase (R), on the adhesives of barnacle cyprids (Balanus amphitrite). Biofouling 24:97–107CrossRef Aldred N, Phang IY, Conlan SL et al. (2008) The effects of a serine protease, Alcalase (R), on the adhesives of barnacle cyprids (Balanus amphitrite). Biofouling 24:97–107CrossRef
39.
Zurück zum Zitat Isquith AJ, Abbott EA, Walters PA (1972) Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl Microbiol 24:859–863 Isquith AJ, Abbott EA, Walters PA (1972) Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl Microbiol 24:859–863
40.
Zurück zum Zitat Tiller JC, Liao C-J, Lewis K et al. (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985CrossRef Tiller JC, Liao C-J, Lewis K et al. (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985CrossRef
41.
Zurück zum Zitat Tiller JC, Lee SB, Lewis K et al. (2002) Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng 79:465–471CrossRef Tiller JC, Lee SB, Lewis K et al. (2002) Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng 79:465–471CrossRef
42.
Zurück zum Zitat Lin J, Tiller JC, Lee SB et al. (2002) Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains. Biotechnol Lett 24:801–805CrossRef Lin J, Tiller JC, Lee SB et al. (2002) Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains. Biotechnol Lett 24:801–805CrossRef
43.
Zurück zum Zitat Lin J, Qiu SY, Lewis K et al. (2002) Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog 18:1082–1086CrossRef Lin J, Qiu SY, Lewis K et al. (2002) Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog 18:1082–1086CrossRef
44.
Zurück zum Zitat Haldar J, An DQ, de Cienfuegos LA et al. (2006) Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci USA 103:17667–17671CrossRef Haldar J, An DQ, de Cienfuegos LA et al. (2006) Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci USA 103:17667–17671CrossRef
45.
Zurück zum Zitat Milovic NM, Wang J, Lewis K et al. (2005) Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng 90:715–722CrossRef Milovic NM, Wang J, Lewis K et al. (2005) Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng 90:715–722CrossRef
46.
Zurück zum Zitat Lee SB, Koepsel RR, Morley SW et al. (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882CrossRef Lee SB, Koepsel RR, Morley SW et al. (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882CrossRef
47.
Zurück zum Zitat Kurt P, Wood L, Ohman DE et al. (2007) Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir 23:4719–4723CrossRef Kurt P, Wood L, Ohman DE et al. (2007) Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir 23:4719–4723CrossRef
48.
Zurück zum Zitat Waschinski CJ, Zimmermann J, Salz U et al. (2008) Design of contact-active antimicrobial acrylate-based materials using biocidal macromers. Adv Mater 20:104–108CrossRef Waschinski CJ, Zimmermann J, Salz U et al. (2008) Design of contact-active antimicrobial acrylate-based materials using biocidal macromers. Adv Mater 20:104–108CrossRef
49.
Zurück zum Zitat Waschinski CJ, Barnert S, Theobald A et al. (2008) Insights in the antibacterial action of poly(methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules 9:1764–1771CrossRef Waschinski CJ, Barnert S, Theobald A et al. (2008) Insights in the antibacterial action of poly(methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules 9:1764–1771CrossRef
50.
Zurück zum Zitat Waschinski CJ, Herdes V, Schueler F et al. (2005) Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci 5:149–156CrossRef Waschinski CJ, Herdes V, Schueler F et al. (2005) Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci 5:149–156CrossRef
51.
Zurück zum Zitat Waschinski CJ, Tiller JC (2005) Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules 6:235–243CrossRef Waschinski CJ, Tiller JC (2005) Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules 6:235–243CrossRef
52.
Zurück zum Zitat Kang S, Pinault M, Pfefferle LD et al. (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673CrossRef Kang S, Pinault M, Pfefferle LD et al. (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673CrossRef
53.
Zurück zum Zitat Gottenbos B, van der Mei HC, Klatter F et al. (2002) In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23:1417–1423CrossRef Gottenbos B, van der Mei HC, Klatter F et al. (2002) In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23:1417–1423CrossRef
54.
Zurück zum Zitat Madkour AE, Dabkowski JM, Nusslein K et al. (2009) Fast disinfecting antimicrobial surfaces. Langmuir 25:1060–1067CrossRef Madkour AE, Dabkowski JM, Nusslein K et al. (2009) Fast disinfecting antimicrobial surfaces. Langmuir 25:1060–1067CrossRef
55.
Zurück zum Zitat Bouloussa O, Rondelez F, Semetey V (2008) A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chem Commun:951–953 Bouloussa O, Rondelez F, Semetey V (2008) A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chem Commun:951–953
56.
Zurück zum Zitat Kugler R, Bouloussa O, Rondelez F (2005) Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151:1341–1348CrossRef Kugler R, Bouloussa O, Rondelez F (2005) Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151:1341–1348CrossRef
57.
Zurück zum Zitat Tiller JC, Liao CJ, Lewis K et al. (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985CrossRef Tiller JC, Liao CJ, Lewis K et al. (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985CrossRef
58.
Zurück zum Zitat Murata H, Koepsel RR, Matyjaszewski K et al. (2007) Permanent, non-leaching antibacterial surfaces - 2: How high density cationic surfaces kill bacterial cells. Biomaterials 28: 4870–4879CrossRef Murata H, Koepsel RR, Matyjaszewski K et al. (2007) Permanent, non-leaching antibacterial surfaces - 2: How high density cationic surfaces kill bacterial cells. Biomaterials 28: 4870–4879CrossRef
59.
Zurück zum Zitat Huang JY, Koepsel RR, Murata H et al. (2008) Nonleaching antibacterial glass surfaces via “Grafting Onto”: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir 24:6785–6795CrossRef Huang JY, Koepsel RR, Murata H et al. (2008) Nonleaching antibacterial glass surfaces via “Grafting Onto”: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir 24:6785–6795CrossRef
60.
Zurück zum Zitat Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem 19:3819–3831CrossRef Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem 19:3819–3831CrossRef
61.
Zurück zum Zitat Bieser A (2008) Surface modifications by hydrogelation and by coating with antimicrobial cellulose derivatives Dissertation, University of Freiburg Bieser A (2008) Surface modifications by hydrogelation and by coating with antimicrobial cellulose derivatives Dissertation, University of Freiburg
62.
Zurück zum Zitat Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323 Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323
63.
Zurück zum Zitat Bagheri M, Beyermann M, Dathe M (2009) Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob Agents Chemother 53:1132–1141CrossRef Bagheri M, Beyermann M, Dathe M (2009) Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob Agents Chemother 53:1132–1141CrossRef
64.
Zurück zum Zitat Glinel K, Jonas AM, Jouenne T et al. (2009) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20:71–77CrossRef Glinel K, Jonas AM, Jouenne T et al. (2009) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20:71–77CrossRef
65.
Zurück zum Zitat Humblot V, Yala JF, Thebault P et al. (2009) The antibacterial activity of Magainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30:3503–3512CrossRef Humblot V, Yala JF, Thebault P et al. (2009) The antibacterial activity of Magainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30:3503–3512CrossRef
66.
Zurück zum Zitat Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRef Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRef
67.
Zurück zum Zitat Salick DA, Kretsinger JK, Pochan DJ et al. (2007) Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel. J Am Chem Soc 129:14793–14799CrossRef Salick DA, Kretsinger JK, Pochan DJ et al. (2007) Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel. J Am Chem Soc 129:14793–14799CrossRef
68.
Zurück zum Zitat Chen R, Cole N, Willcox Mark DP et al. (2009) Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide. Biofouling 25:517–524CrossRef Chen R, Cole N, Willcox Mark DP et al. (2009) Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide. Biofouling 25:517–524CrossRef
69.
Zurück zum Zitat Hilpert K, Elliott M, Jenssen H et al. (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69CrossRef Hilpert K, Elliott M, Jenssen H et al. (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69CrossRef
70.
Zurück zum Zitat Statz Andrea R, Park Jong P, Chongsiriwatana Nathaniel P et al. (2008) Surface-immobilised antimicrobial peptoids. Biofouling 24:439–448CrossRef Statz Andrea R, Park Jong P, Chongsiriwatana Nathaniel P et al. (2008) Surface-immobilised antimicrobial peptoids. Biofouling 24:439–448CrossRef
71.
Zurück zum Zitat Willcox MDP, Hume EBH, Aliwarga Y et al. (2008) A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol 105:1817–1825CrossRef Willcox MDP, Hume EBH, Aliwarga Y et al. (2008) A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol 105:1817–1825CrossRef
72.
Zurück zum Zitat Xing BG, Yu CW, Chow KH et al. (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124:14846–14847CrossRef Xing BG, Yu CW, Chow KH et al. (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124:14846–14847CrossRef
73.
Zurück zum Zitat Roy S, Das PK (2008) Antibacterial hydrogels of amino acid-based cationic amphiphiles. Biotechnol Bioeng 100:756–764CrossRef Roy S, Das PK (2008) Antibacterial hydrogels of amino acid-based cationic amphiphiles. Biotechnol Bioeng 100:756–764CrossRef
74.
Zurück zum Zitat Debnath S, Shome A, Das D et al. Hydrogelation through self-assembly of Fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J Phys Chem B 114: 4407–4415 Debnath S, Shome A, Das D et al. Hydrogelation through self-assembly of Fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J Phys Chem B 114: 4407–4415
75.
Zurück zum Zitat Fleming A (1922) Containing papers of a biological character. Proc R Soc Lond B 93: 306–317CrossRef Fleming A (1922) Containing papers of a biological character. Proc R Soc Lond B 93: 306–317CrossRef
76.
Zurück zum Zitat Schindler CA, Schuhardt VT (1964) Lysostaphin – new bacteriolytic agent for Staphylococcus. Proc Natl Acad Sci USA 51:414–421CrossRef Schindler CA, Schuhardt VT (1964) Lysostaphin – new bacteriolytic agent for Staphylococcus. Proc Natl Acad Sci USA 51:414–421CrossRef
77.
Zurück zum Zitat Navarre WW, Ton-That H, Faull KF et al. (1999) Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi 11 – identification of a d-alanyl-glycine endopeptidase activity. J Biol Chem 274:15847–15856CrossRef Navarre WW, Ton-That H, Faull KF et al. (1999) Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi 11 – identification of a d-alanyl-glycine endopeptidase activity. J Biol Chem 274:15847–15856CrossRef
78.
Zurück zum Zitat Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889CrossRef Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889CrossRef
79.
Zurück zum Zitat Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172CrossRef Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172CrossRef
80.
Zurück zum Zitat Edwards JV, Sethumadhavan K, Ullah AHJ (2000) Conjugation and modeled structure/function analysis of lysozyme on glycine esterified cotton cellulose-fibers. Bioconjug Chem 11:469–473CrossRef Edwards JV, Sethumadhavan K, Ullah AHJ (2000) Conjugation and modeled structure/function analysis of lysozyme on glycine esterified cotton cellulose-fibers. Bioconjug Chem 11:469–473CrossRef
81.
Zurück zum Zitat Luckarift HR, Dickerson MB, Sandhage KH et al. (2006) Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small 2:640–643CrossRef Luckarift HR, Dickerson MB, Sandhage KH et al. (2006) Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small 2:640–643CrossRef
82.
Zurück zum Zitat Wang Q, Fan XR, Hu YJ et al. (2009) Antibacterial functionalization of wool fabric via immobilizing lysozymes. Bioprocess Biosyst Eng 32:633–639CrossRef Wang Q, Fan XR, Hu YJ et al. (2009) Antibacterial functionalization of wool fabric via immobilizing lysozymes. Bioprocess Biosyst Eng 32:633–639CrossRef
83.
Zurück zum Zitat Watanabe S, Kato H, Shimizu Y et al. (1981) Antibacterial biomaterials by immobilization of hen egg-white lysozyme onto collagen-synthetic polymer composites – histological-findings of immobilized lysozyme in the tissue of a different species. Artif Organs 5:309–309 Watanabe S, Kato H, Shimizu Y et al. (1981) Antibacterial biomaterials by immobilization of hen egg-white lysozyme onto collagen-synthetic polymer composites – histological-findings of immobilized lysozyme in the tissue of a different species. Artif Organs 5:309–309
84.
Zurück zum Zitat Liu WK, Brown MRW, Elliott TSJ (1997) Mechanisms of the bactericidal activity of low amperage electric current (DC). J Antimicrob Chemother 39:687–695CrossRef Liu WK, Brown MRW, Elliott TSJ (1997) Mechanisms of the bactericidal activity of low amperage electric current (DC). J Antimicrob Chemother 39:687–695CrossRef
85.
Zurück zum Zitat Grahl T, Maerkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45:148–157CrossRef Grahl T, Maerkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45:148–157CrossRef
86.
Zurück zum Zitat Dutreux N, Notermans S, Wijtzes T et al. (2000) Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. Int J Food Microbiol 54:91–98CrossRef Dutreux N, Notermans S, Wijtzes T et al. (2000) Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. Int J Food Microbiol 54:91–98CrossRef
87.
Zurück zum Zitat Conner CJ, Harper RJ Jr. (1979) Biocidal rating system for outdoor weathered cotton fabric. Textile Chemist Colorist 11:62–65 Conner CJ, Harper RJ Jr. (1979) Biocidal rating system for outdoor weathered cotton fabric. Textile Chemist Colorist 11:62–65
88.
Zurück zum Zitat Aymonier C, Schlotterbeck U, Antonietti L et al. (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun:3018–3019 Aymonier C, Schlotterbeck U, Antonietti L et al. (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun:3018–3019
89.
Zurück zum Zitat Brunt KD (1995) A silver lining for paints and coatings - a revolutionary preservative system. Spec Publ R Soc Chem 165:243–251 Brunt KD (1995) A silver lining for paints and coatings - a revolutionary preservative system. Spec Publ R Soc Chem 165:243–251
90.
Zurück zum Zitat Ho CH, Tobis J, Sprich C et al. (2004) Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 16:957–961CrossRef Ho CH, Tobis J, Sprich C et al. (2004) Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 16:957–961CrossRef
91.
Zurück zum Zitat de Nys R, Givskov M, Kumar N et al. (2006) Furanones. Prog Mol Subcell Biol 42:55–86 de Nys R, Givskov M, Kumar N et al. (2006) Furanones. Prog Mol Subcell Biol 42:55–86
92.
Zurück zum Zitat Kristinsson KG, Jansen B, Treitz U et al. (1991) Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone. J Biomater Appl 5:173–184CrossRef Kristinsson KG, Jansen B, Treitz U et al. (1991) Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone. J Biomater Appl 5:173–184CrossRef
93.
Zurück zum Zitat Kugel AJ, Jarabek LE, Daniels JW et al. (2009) Combinatorial materials research applied to the development of new surface coatings XII: novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates. J Coat Technol Res 6:107–121CrossRef Kugel AJ, Jarabek LE, Daniels JW et al. (2009) Combinatorial materials research applied to the development of new surface coatings XII: novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates. J Coat Technol Res 6:107–121CrossRef
94.
Zurück zum Zitat Nablo BJ, Schoenfisch MH (2003) Antibacterial properties of nitric oxide-releasing sol-gels. J Biomed Mater Res A 67A:1276–1283CrossRef Nablo BJ, Schoenfisch MH (2003) Antibacterial properties of nitric oxide-releasing sol-gels. J Biomed Mater Res A 67A:1276–1283CrossRef
95.
Zurück zum Zitat Li Y, Worley SD (2001) Biocidal copolymers of N-haloacryloxymethylhydantoin. J Bioact Compat Polym 16:493–506CrossRef Li Y, Worley SD (2001) Biocidal copolymers of N-haloacryloxymethylhydantoin. J Bioact Compat Polym 16:493–506CrossRef
96.
Zurück zum Zitat Matl FD, Zlotnyk J, Obermeier A et al. (2009) New anti-infective coatings of surgical sutures based on a combination of antiseptics and fatty acids. J Biomater Sci Polym Ed 20:1439–1449CrossRef Matl FD, Zlotnyk J, Obermeier A et al. (2009) New anti-infective coatings of surgical sutures based on a combination of antiseptics and fatty acids. J Biomater Sci Polym Ed 20:1439–1449CrossRef
97.
Zurück zum Zitat Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789CrossRef Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789CrossRef
98.
Zurück zum Zitat Norowski PA Jr, Bumgardner Joel D (2009) Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater 88:530–543 Norowski PA Jr, Bumgardner Joel D (2009) Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater 88:530–543
99.
Zurück zum Zitat Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces 1:1553–1560CrossRef Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces 1:1553–1560CrossRef
100.
Zurück zum Zitat Rudra JS, Dave K, Haynie DT (2006) Antimicrobial polypeptide multilayer nanocoatings. J Biomater Sci Polym Ed 17:1301–1315CrossRef Rudra JS, Dave K, Haynie DT (2006) Antimicrobial polypeptide multilayer nanocoatings. J Biomater Sci Polym Ed 17:1301–1315CrossRef
101.
Zurück zum Zitat Chuang HF, Smith RC, Hammond PT (2008) Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules 9:1660–1668CrossRef Chuang HF, Smith RC, Hammond PT (2008) Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules 9:1660–1668CrossRef
102.
Zurück zum Zitat Dai JH, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501CrossRef Dai JH, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501CrossRef
103.
Zurück zum Zitat Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586CrossRef Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586CrossRef
104.
Zurück zum Zitat Gollwitzer H, Ibrahim K, Meyer H et al. (2003) Antibacterial poly(d,l-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother 51:585–591CrossRef Gollwitzer H, Ibrahim K, Meyer H et al. (2003) Antibacterial poly(d,l-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother 51:585–591CrossRef
105.
Zurück zum Zitat Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Controll Release 128:2–22CrossRef Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Controll Release 128:2–22CrossRef
106.
Zurück zum Zitat Shukla A, Fleming Kathleen E, Chuang Helen F et al. (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31:2348–2357CrossRef Shukla A, Fleming Kathleen E, Chuang Helen F et al. (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31:2348–2357CrossRef
107.
Zurück zum Zitat Woo GLY, Yang ML, Yin HQ et al. (2002) Biological characterization of a novel biodegradable antimicrobial polymer synthesized with fluoroquinolones. J Biomed Mater Res 59:35–45CrossRef Woo GLY, Yang ML, Yin HQ et al. (2002) Biological characterization of a novel biodegradable antimicrobial polymer synthesized with fluoroquinolones. J Biomed Mater Res 59:35–45CrossRef
108.
Zurück zum Zitat Tanihara M, Suzuki Y, Nishimura Y et al. (1998) Thrombin-sensitive peptide linkers for biological signal-responsive drug release systems. Peptides 19:421–425CrossRef Tanihara M, Suzuki Y, Nishimura Y et al. (1998) Thrombin-sensitive peptide linkers for biological signal-responsive drug release systems. Peptides 19:421–425CrossRef
109.
Zurück zum Zitat Suzuki Y, Tanihara M, Nishimura Y et al. (1998) A new drug delivery system with controlled release of antibiotic only in the presence of infection. J Biomed Mater Res 42:112–116CrossRef Suzuki Y, Tanihara M, Nishimura Y et al. (1998) A new drug delivery system with controlled release of antibiotic only in the presence of infection. J Biomed Mater Res 42:112–116CrossRef
110.
Zurück zum Zitat Tanihara M, Suzuki Y, Nishimura Y et al. (1999) A novel microbial infection-responsive drug release system. J Pharm Sci 88:510–514CrossRef Tanihara M, Suzuki Y, Nishimura Y et al. (1999) A novel microbial infection-responsive drug release system. J Pharm Sci 88:510–514CrossRef
111.
Zurück zum Zitat Yancheva E, Paneva D, Maximova V et al. (2007) Polyelectrolyte complexes between (cross-linked) N-carboxyethylchitosan and (quaternized) poly[2-(dimethylamino)ethyl methacrylate]: preparation, characterization, and antibacterial properties. Biomacromolecules 8:976–984CrossRef Yancheva E, Paneva D, Maximova V et al. (2007) Polyelectrolyte complexes between (cross-linked) N-carboxyethylchitosan and (quaternized) poly[2-(dimethylamino)ethyl methacrylate]: preparation, characterization, and antibacterial properties. Biomacromolecules 8:976–984CrossRef
112.
Zurück zum Zitat Lichter JA, Rubner MF (2009) Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 25:7686–7694CrossRef Lichter JA, Rubner MF (2009) Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 25:7686–7694CrossRef
113.
Zurück zum Zitat Fujishima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRef Fujishima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRef
114.
Zurück zum Zitat Zeiger HJ, Henrich VE, Dresselhaus G (1977) Interaction of O2 and H2O with surface defects on TIO2 and SRTIO3. Bull Am Phys Soc 22:419–419 Zeiger HJ, Henrich VE, Dresselhaus G (1977) Interaction of O2 and H2O with surface defects on TIO2 and SRTIO3. Bull Am Phys Soc 22:419–419
115.
Zurück zum Zitat Watanabe T, Nakajima A, Wang R et al. (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351:260–263CrossRef Watanabe T, Nakajima A, Wang R et al. (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351:260–263CrossRef
116.
Zurück zum Zitat Jaeger CD, Bard AJ (1979) Spin trapping and electron-spin resonance detection of radical intermediates in the photo-decomposition of water at TiO2 particulate systems. J Phys Chem 83:3146–3152CrossRef Jaeger CD, Bard AJ (1979) Spin trapping and electron-spin resonance detection of radical intermediates in the photo-decomposition of water at TiO2 particulate systems. J Phys Chem 83:3146–3152CrossRef
117.
Zurück zum Zitat Nadtochenko V, Denisov N, Sarkisov O et al. (2006) Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO2. J Photochem Photobiol A Chem 181:401–407CrossRef Nadtochenko V, Denisov N, Sarkisov O et al. (2006) Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO2. J Photochem Photobiol A Chem 181:401–407CrossRef
118.
Zurück zum Zitat Dung DH, Serpone N, Gratzel M (1984) Integrated systems for water cleavage by visible-light – sensitization of TiO2 particles by surface derivatization with ruthenium complexes. Helv Chim Acta 67:1012–1018CrossRef Dung DH, Serpone N, Gratzel M (1984) Integrated systems for water cleavage by visible-light – sensitization of TiO2 particles by surface derivatization with ruthenium complexes. Helv Chim Acta 67:1012–1018CrossRef
119.
Zurück zum Zitat Houlding VH, Gratzel M (1983) Photochemical H2 generation by visible-light – sensitization of TiO2 particles by surface complexation with 8-hydroxyquinoline. J Am Chem Soc 105:5695–5696CrossRef Houlding VH, Gratzel M (1983) Photochemical H2 generation by visible-light – sensitization of TiO2 particles by surface complexation with 8-hydroxyquinoline. J Am Chem Soc 105:5695–5696CrossRef
120.
Zurück zum Zitat Sung-Suh HM, Choi JR, Hah HJ et al. (2004) Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photochem Photobiol A Chem 163:37–44CrossRef Sung-Suh HM, Choi JR, Hah HJ et al. (2004) Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photochem Photobiol A Chem 163:37–44CrossRef
121.
Zurück zum Zitat Hu C, Hu XX, Guo J et al. (2006) Efficient destruction of pathogenic bacteria with NiO∕SrBi2O4 under visible light irradiation. Environ Sci Technol 40:5508–5513CrossRef Hu C, Hu XX, Guo J et al. (2006) Efficient destruction of pathogenic bacteria with NiO∕SrBi2O4 under visible light irradiation. Environ Sci Technol 40:5508–5513CrossRef
122.
Zurück zum Zitat Raab O (1900) Effect of fluorescent substances on Infusoria. Z Biol 39:524 Raab O (1900) Effect of fluorescent substances on Infusoria. Z Biol 39:524
123.
Zurück zum Zitat Foote CS (1991) Definition of type-I and type-II photosensitized oxidation. Photochem Photobiol 54:659–659CrossRef Foote CS (1991) Definition of type-I and type-II photosensitized oxidation. Photochem Photobiol 54:659–659CrossRef
124.
Zurück zum Zitat Halliwell B, Gutteridge JMC (1984) Lipid-peroxidation, oxygen radicals, cell-damage, and antioxidant therapy. Lancet 1:1396–1397CrossRef Halliwell B, Gutteridge JMC (1984) Lipid-peroxidation, oxygen radicals, cell-damage, and antioxidant therapy. Lancet 1:1396–1397CrossRef
125.
Zurück zum Zitat Noimark S, Dunnill CW, Wilson M et al. (2009) The role of surfaces in catheter-associated infections. Chem Soc Rev 38:3435–3448CrossRef Noimark S, Dunnill CW, Wilson M et al. (2009) The role of surfaces in catheter-associated infections. Chem Soc Rev 38:3435–3448CrossRef
126.
Zurück zum Zitat Wilson M (2003) Light-activated antimicrobial coating for the continuous disinfection of surfaces. Infect Control Hosp Epidemiol 24:782–784CrossRef Wilson M (2003) Light-activated antimicrobial coating for the continuous disinfection of surfaces. Infect Control Hosp Epidemiol 24:782–784CrossRef
127.
Zurück zum Zitat Bozja J, Sherrill J, Michielsen S et al. (2003) Porphyrin-based, light-activated antimicrobial materials. J Polym Sci A Polym Chem 41:2297–2303CrossRef Bozja J, Sherrill J, Michielsen S et al. (2003) Porphyrin-based, light-activated antimicrobial materials. J Polym Sci A Polym Chem 41:2297–2303CrossRef
128.
Zurück zum Zitat Perni S, Piccirillo C, Pratten J et al. (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93CrossRef Perni S, Piccirillo C, Pratten J et al. (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93CrossRef
129.
Zurück zum Zitat Garcia-Garibay M, Luna-Salazar A, Casas LT (1995) Antimicrobial effect of the lactoperoxidase system in milk activated by immobilized enzymes. Food Biotechnol 9:157–166CrossRef Garcia-Garibay M, Luna-Salazar A, Casas LT (1995) Antimicrobial effect of the lactoperoxidase system in milk activated by immobilized enzymes. Food Biotechnol 9:157–166CrossRef
130.
Zurück zum Zitat Vartiainen J, Ratto M, Paulussen S (2005) Antimicrobial activity of glucose oxidase-immobilized plasma-activated polypropylene films. Packag Technol Sci 18:243–251CrossRef Vartiainen J, Ratto M, Paulussen S (2005) Antimicrobial activity of glucose oxidase-immobilized plasma-activated polypropylene films. Packag Technol Sci 18:243–251CrossRef
131.
Zurück zum Zitat Kristensen JB, Olsen SM, Laursen BS et al. (2010) Enzymatic generation of hydrogen peroxide shows promising antifouling effect. Biofouling 26:141–153CrossRef Kristensen JB, Olsen SM, Laursen BS et al. (2010) Enzymatic generation of hydrogen peroxide shows promising antifouling effect. Biofouling 26:141–153CrossRef
132.
Zurück zum Zitat Amitai G, Andersen J, Wargo S et al. (2009) Polyurethane-based leukocyte-inspired biocidal materials. Biomaterials 30:6522–6529CrossRef Amitai G, Andersen J, Wargo S et al. (2009) Polyurethane-based leukocyte-inspired biocidal materials. Biomaterials 30:6522–6529CrossRef
133.
Zurück zum Zitat Kuo PL, Chuang TF, Wang HL (1999) Surface-fragmenting, self-polishing, tin-free antifouling coatings. J Coat Technol 71:77–83CrossRef Kuo PL, Chuang TF, Wang HL (1999) Surface-fragmenting, self-polishing, tin-free antifouling coatings. J Coat Technol 71:77–83CrossRef
134.
Zurück zum Zitat Ibbitson D, Johnson AF, Morley NJ et al. (1986) Structure property relationships in TIN-based antifouling paints. ACS Symp Ser 322:326–340 Ibbitson D, Johnson AF, Morley NJ et al. (1986) Structure property relationships in TIN-based antifouling paints. ACS Symp Ser 322:326–340
135.
Zurück zum Zitat Qian PY, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234CrossRef Qian PY, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234CrossRef
136.
Zurück zum Zitat Cheng G, Xue H, Zhang Z et al. (2008) A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed 47:8831–8834CrossRef Cheng G, Xue H, Zhang Z et al. (2008) A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed 47:8831–8834CrossRef
137.
Zurück zum Zitat Liang J, Chen Y, Barnes K et al. (2006) N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials 27:2495–2501CrossRef Liang J, Chen Y, Barnes K et al. (2006) N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials 27:2495–2501CrossRef
138.
Zurück zum Zitat Li Z, Lee D, Sheng XX et al. (2006) Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22:9820–9823CrossRef Li Z, Lee D, Sheng XX et al. (2006) Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22:9820–9823CrossRef
139.
Zurück zum Zitat Sambhy V, MacBride MM, Peterson BR et al. (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808CrossRef Sambhy V, MacBride MM, Peterson BR et al. (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808CrossRef
140.
Zurück zum Zitat Guyomard A, De E, Jouenne T et al. (2008) Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18:758–765CrossRef Guyomard A, De E, Jouenne T et al. (2008) Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18:758–765CrossRef
Metadaten
Titel
Antimicrobial Surfaces
verfasst von
Joerg C. Tiller
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/12_2010_101

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.