Skip to main content

2016 | OriginalPaper | Buchkapitel

The Flows of Engineered Nanomaterials from Production, Use, and Disposal to the Environment

verfasst von : Bernd Nowack, Nikolaus Bornhöft, Yaobo Ding, Michael Riediker, Araceli Sánchez Jiménez, Tianyin Sun, Martie van Tongeren, Wendel Wohlleben

Erschienen in: Indoor and Outdoor Nanoparticles

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this chapter is to evaluate what information is needed in order to quantify the flows of ENM to the environment by reviewing the current state of knowledge. The life cycle thinking forms the basis of the evaluation. The first step in release assessment is the knowledge about the production and use of ENM. Data on production are crucial for the assessment, because they determine the maximal amount that could potentially be released. The different life cycles of products containing the ENM are determining the release potential. The knowledge about the product distribution is therefore key to release estimation. The three important life cycle steps that need to be considered are production/manufacturing, the use phase, and the end of life (EoL) treatment. Release during production and manufacturing to the environment may occur because large amounts of pure material are handled. During the use and EoL phase, experimental data from real-world release studies are preferred; however, in most cases release has been estimated or guessed based on standard knowledge about product use and behavior. The mass flows discussed in this chapter provide the input data to derive environmental concentrations needed for environmental risk assessment of ENM. The mass flows to the environment will also be needed for environmental fate models that are based on mechanistic description of the reactions and the behavior of the released ENM in environmental compartments such as water or soils.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat EU (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Offi J L 275:38–40 EU (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Offi J L 275:38–40
2.
Zurück zum Zitat Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300CrossRef Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300CrossRef
3.
Zurück zum Zitat von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ et al (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49CrossRef von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ et al (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49CrossRef
4.
Zurück zum Zitat Gottschalk F, Nowack B (2011) Release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155CrossRef Gottschalk F, Nowack B (2011) Release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155CrossRef
5.
Zurück zum Zitat Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI et al (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269:160–169CrossRef Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI et al (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269:160–169CrossRef
6.
Zurück zum Zitat Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42:2253–2260CrossRef Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42:2253–2260CrossRef
7.
Zurück zum Zitat Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569CrossRef Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569CrossRef
8.
Zurück zum Zitat Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials for Europe and the world. J Nanoparticle Res 14:1109CrossRef Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials for Europe and the world. J Nanoparticle Res 14:1109CrossRef
9.
Zurück zum Zitat Keller A, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15:1–17CrossRef Keller A, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15:1–17CrossRef
11.
Zurück zum Zitat ANSES (2013) Éléments issus des déclarations des substances à l’état nanoparticulaire. RAPPORT d’étude. ANSES (l’Agence nationale de sécurité sanitaire) ANSES (2013) Éléments issus des déclarations des substances à l’état nanoparticulaire. RAPPORT d’étude. ANSES (l’Agence nationale de sécurité sanitaire)
12.
Zurück zum Zitat Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive modeling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76CrossRef Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive modeling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76CrossRef
13.
Zurück zum Zitat Keller AA, Lazareva A (2013) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70CrossRef Keller AA, Lazareva A (2013) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70CrossRef
14.
Zurück zum Zitat Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233CrossRef Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233CrossRef
16.
Zurück zum Zitat Berube DM, Searson EM, Morton TS, Cummings CL (2010) Project on emerging nanotechnologies – consumer product inventory evaluated. Nanoetchnol Law Bus 7:152–163 Berube DM, Searson EM, Morton TS, Cummings CL (2010) Project on emerging nanotechnologies – consumer product inventory evaluated. Nanoetchnol Law Bus 7:152–163
17.
Zurück zum Zitat Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306CrossRef Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306CrossRef
18.
Zurück zum Zitat Lo LY, Li Y, Yeung KW, Yuen CWM (2007) Indicating the development stage of nanotechnology in the textile and clothing industry. Int J Nanotechnol 4:667–679CrossRef Lo LY, Li Y, Yeung KW, Yuen CWM (2007) Indicating the development stage of nanotechnology in the textile and clothing industry. Int J Nanotechnol 4:667–679CrossRef
20.
Zurück zum Zitat Nowack B, Brouwer C, Geertsma RE, Heugens EHW, Ross BL, Toufektsian M-C et al (2013) Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nanotoxicology 7(6):1152–1156CrossRef Nowack B, Brouwer C, Geertsma RE, Heugens EHW, Ross BL, Toufektsian M-C et al (2013) Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nanotoxicology 7(6):1152–1156CrossRef
21.
Zurück zum Zitat Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M et al (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11CrossRef Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M et al (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11CrossRef
22.
Zurück zum Zitat Geranio L, Heuberger M, Nowack B (2009) Behavior of silver nano-textiles during washing. Environ Sci Technol 43:8113–8118CrossRef Geranio L, Heuberger M, Nowack B (2009) Behavior of silver nano-textiles during washing. Environ Sci Technol 43:8113–8118CrossRef
23.
Zurück zum Zitat Lorenz C, Windler L, Lehmann RP, Schuppler M, Von Goetz N, Hungerbühler K et al (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89:817–824CrossRef Lorenz C, Windler L, Lehmann RP, Schuppler M, Von Goetz N, Hungerbühler K et al (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89:817–824CrossRef
24.
Zurück zum Zitat Windler L, Lorenz C, Von Goetz N, Hungerbuhler H, Amberg M, Heuberger M et al (2012) Release of titanium dioxide from textiles during washing. Environ Sci Technol 46:8181–8188CrossRef Windler L, Lorenz C, Von Goetz N, Hungerbuhler H, Amberg M, Heuberger M et al (2012) Release of titanium dioxide from textiles during washing. Environ Sci Technol 46:8181–8188CrossRef
25.
Zurück zum Zitat Lombi E, Donner E, Scheckel K, Sekine R, Lorenz C, von Götz N et al (2014) Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358CrossRef Lombi E, Donner E, Scheckel K, Sekine R, Lorenz C, von Götz N et al (2014) Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358CrossRef
26.
Zurück zum Zitat Farkas J, Peter H, Christian P, Urrea JAG, Hassellov M, Tuoriniemi J et al (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37:1057–1062CrossRef Farkas J, Peter H, Christian P, Urrea JAG, Hassellov M, Tuoriniemi J et al (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37:1057–1062CrossRef
27.
Zurück zum Zitat Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI et al (2012) Pilot estuarine mesocosm study on the environmental fate of Silver nanomaterials leached from consumer products. Sci Total Environ 421:267–272CrossRef Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI et al (2012) Pilot estuarine mesocosm study on the environmental fate of Silver nanomaterials leached from consumer products. Sci Total Environ 421:267–272CrossRef
28.
Zurück zum Zitat Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R et al (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905CrossRef Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R et al (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905CrossRef
29.
Zurück zum Zitat Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S et al (2013) Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ Sci Process Impacts 15:2186–2193CrossRef Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S et al (2013) Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ Sci Process Impacts 15:2186–2193CrossRef
30.
Zurück zum Zitat Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S et al (2015) Characterization of materials released into water from paint containing nano-SiO2. Chemosphere 119:1314–1321CrossRef Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S et al (2015) Characterization of materials released into water from paint containing nano-SiO2. Chemosphere 119:1314–1321CrossRef
31.
Zurück zum Zitat Künniger T, Gerecke AC, Ulrich A, Huch A, Vonbank R, Heeb M et al (2014) Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environ Pollut 184:464–471CrossRef Künniger T, Gerecke AC, Ulrich A, Huch A, Vonbank R, Heeb M et al (2014) Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environ Pollut 184:464–471CrossRef
32.
Zurück zum Zitat Hauri JF, Niece BK (2011) Leaching of silver from silver-impregnated food storage containers. J Chem Educ 88:1407–1409CrossRef Hauri JF, Niece BK (2011) Leaching of silver from silver-impregnated food storage containers. J Chem Educ 88:1407–1409CrossRef
33.
Zurück zum Zitat Huang YM, Chen SX, Bing X, Gao CL, Wang T, Yuan B (2011) Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packag Technol Sci 24:291–297CrossRef Huang YM, Chen SX, Bing X, Gao CL, Wang T, Yuan B (2011) Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packag Technol Sci 24:291–297CrossRef
34.
Zurück zum Zitat Song H, Li B, Lin QB, Wu HJ, Chen Y (2011) Migration of silver from nanosilver-ìpolyethylene composite packaging into food simulants. Food Addi Contam Part A 28:1758–1762 Song H, Li B, Lin QB, Wu HJ, Chen Y (2011) Migration of silver from nanosilver-ìpolyethylene composite packaging into food simulants. Food Addi Contam Part A 28:1758–1762
35.
Zurück zum Zitat von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Günther D, Hungerbühler K (2013) Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addi Contam Part A 30:612–620CrossRef von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Günther D, Hungerbühler K (2013) Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addi Contam Part A 30:612–620CrossRef
36.
Zurück zum Zitat Harper S, Wohlleben W, Doa M, Nowack B, Clancy S, Canady R et al (2015) Measuring nanomaterial release from carbon nanotube composites: review of the state of the science. J Phys Conf Ser 617: 012026 Harper S, Wohlleben W, Doa M, Nowack B, Clancy S, Canady R et al (2015) Measuring nanomaterial release from carbon nanotube composites: review of the state of the science. J Phys Conf Ser 617: 012026
37.
Zurück zum Zitat Hirth S, Cena L, Cox G, Tomovic Z, Peters T, Wohlleben W (2013) Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials. J Nanoparticle Res 15:1504CrossRef Hirth S, Cena L, Cox G, Tomovic Z, Peters T, Wohlleben W (2013) Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials. J Nanoparticle Res 15:1504CrossRef
38.
Zurück zum Zitat Wohlleben W, Vilar G, Fernández-Rosas E, González-Gálvez D, Gabriel C, Hirth S et al (2014) A pilot interlaboratory comparison of protocols that simulate aging of nanocomposites and detect released fragments. Environ Chem 11:402–418CrossRef Wohlleben W, Vilar G, Fernández-Rosas E, González-Gálvez D, Gabriel C, Hirth S et al (2014) A pilot interlaboratory comparison of protocols that simulate aging of nanocomposites and detect released fragments. Environ Chem 11:402–418CrossRef
39.
Zurück zum Zitat Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45:10713–10719CrossRef Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45:10713–10719CrossRef
40.
Zurück zum Zitat Lorenz C, Hagendorfer H, von Goetz N, Kaegi R, Gehrig R, Ulrich A et al (2011) Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J Nanoparticle Res 13:3377–3391CrossRef Lorenz C, Hagendorfer H, von Goetz N, Kaegi R, Gehrig R, Ulrich A et al (2011) Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J Nanoparticle Res 13:3377–3391CrossRef
41.
Zurück zum Zitat Botta C, Labille J, Auffan M, Borschneck D, Miche H, Cabie M et al (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ Pollut 159:1543–1548CrossRef Botta C, Labille J, Auffan M, Borschneck D, Miche H, Cabie M et al (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ Pollut 159:1543–1548CrossRef
42.
Zurück zum Zitat Gondikas AP, Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational lake. Environ Sci Technol 48:5415–5422CrossRef Gondikas AP, Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational lake. Environ Sci Technol 48:5415–5422CrossRef
43.
Zurück zum Zitat Holbrook DR, Motabar D, Quiñones O, Stanford B, Vanderford B, Moss D (2013) Titanium distribution in swimming pool water is dominated by dissolved species. Environ Pollut 181:68–74CrossRef Holbrook DR, Motabar D, Quiñones O, Stanford B, Vanderford B, Moss D (2013) Titanium distribution in swimming pool water is dominated by dissolved species. Environ Pollut 181:68–74CrossRef
44.
Zurück zum Zitat Mueller NC, Buha J, Wang J, Ulrich A, Nowack B (2013) Modeling the flows of engineered nanomaterials during waste handling. Environ Sci Process Impacts 15:251–259CrossRef Mueller NC, Buha J, Wang J, Ulrich A, Nowack B (2013) Modeling the flows of engineered nanomaterials during waste handling. Environ Sci Process Impacts 15:251–259CrossRef
45.
Zurück zum Zitat Froggett S, Clancy S, Boverhof D, Canady R (2014) A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol 11:17CrossRef Froggett S, Clancy S, Boverhof D, Canady R (2014) A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol 11:17CrossRef
46.
Zurück zum Zitat Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRef Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRef
47.
Zurück zum Zitat von Goetz N, Lorenz C, Windler L, Nowack B, Heuberger M, Hungerbuhler K (2013) Migration of Ag- and TiO2-(nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol 47:9979–9987CrossRef von Goetz N, Lorenz C, Windler L, Nowack B, Heuberger M, Hungerbuhler K (2013) Migration of Ag- and TiO2-(nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol 47:9979–9987CrossRef
48.
Zurück zum Zitat Nowack B (2014) Emissions from consumer products containing engineered nanomaterials over their lifecycle. In: Wohlleben W, Kuhlbusch TAJ, Lehr C-M, Schnekenburger J (eds) Safety of nanomaterials along their lifecycle: release, exposure and human hazards. Taylor & Francis, London. ISBN 978-1-46-656786-3 Nowack B (2014) Emissions from consumer products containing engineered nanomaterials over their lifecycle. In: Wohlleben W, Kuhlbusch TAJ, Lehr C-M, Schnekenburger J (eds) Safety of nanomaterials along their lifecycle: release, exposure and human hazards. Taylor & Francis, London. ISBN 978-1-46-656786-3
49.
Zurück zum Zitat Bello D, Wardle BL, Yamamoto N, de Villoria RG, Garcia EJ, Hart AJ et al (2009) Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanoparticle Res 11:231–249CrossRef Bello D, Wardle BL, Yamamoto N, de Villoria RG, Garcia EJ, Hart AJ et al (2009) Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanoparticle Res 11:231–249CrossRef
50.
Zurück zum Zitat Demou E, Stark W, Hellweg S (2009) Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann Occup Hyg 53:829–838CrossRef Demou E, Stark W, Hellweg S (2009) Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann Occup Hyg 53:829–838CrossRef
51.
Zurück zum Zitat Demou E, Peter P, Hellweg S (2008) Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 52:695–706CrossRef Demou E, Peter P, Hellweg S (2008) Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 52:695–706CrossRef
52.
Zurück zum Zitat Evans DE, Ku BK, Birch ME, Dunn KH (2010) Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 54:514–531CrossRef Evans DE, Ku BK, Birch ME, Dunn KH (2010) Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 54:514–531CrossRef
53.
Zurück zum Zitat Huang C-H, Tai C-Y, Huang C-Y, Tsai C-J, Chen C-W, Chang C-P et al (2010) Measurements of respirable dust and nanoparticle concentrations in a titanium dioxide pigment production factory. J Environ Sci Health A 45:1227–1233CrossRef Huang C-H, Tai C-Y, Huang C-Y, Tsai C-J, Chen C-W, Chang C-P et al (2010) Measurements of respirable dust and nanoparticle concentrations in a titanium dioxide pigment production factory. J Environ Sci Health A 45:1227–1233CrossRef
54.
Zurück zum Zitat Lee JH, Kwon M, Ji JH, Kang CS, Ahn KH, Han JH et al (2011) Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol 23:226–236CrossRef Lee JH, Kwon M, Ji JH, Kang CS, Ahn KH, Han JH et al (2011) Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol 23:226–236CrossRef
55.
Zurück zum Zitat Hang J, Luo Z, Sandberg M, Gong J (2013) Natural ventilation assessment in typical open and semi-open urban environments under various wind directions. Build Environ 70:318–333CrossRef Hang J, Luo Z, Sandberg M, Gong J (2013) Natural ventilation assessment in typical open and semi-open urban environments under various wind directions. Build Environ 70:318–333CrossRef
56.
Zurück zum Zitat Kiwan A, Berg W, Fiedler M, Ammon C, Gläser M, Müller H-J et al (2013) Air exchange rate measurements in naturally ventilated dairy buildings using the tracer gas decay method with 85Kr, compared to CO2 mass balance and discharge coefficient methods. Biosyst Eng 116:286–296CrossRef Kiwan A, Berg W, Fiedler M, Ammon C, Gläser M, Müller H-J et al (2013) Air exchange rate measurements in naturally ventilated dairy buildings using the tracer gas decay method with 85Kr, compared to CO2 mass balance and discharge coefficient methods. Biosyst Eng 116:286–296CrossRef
57.
Zurück zum Zitat You Y, Niu C, Zhou J, Liu Y, Bai Z, Zhang J et al (2012) Measurement of air exchange rates in different indoor environments using continuous CO2 sensors. J Environ Sci 24:657–664CrossRef You Y, Niu C, Zhou J, Liu Y, Bai Z, Zhang J et al (2012) Measurement of air exchange rates in different indoor environments using continuous CO2 sensors. J Environ Sci 24:657–664CrossRef
58.
Zurück zum Zitat Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8:7208–7219CrossRef Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8:7208–7219CrossRef
59.
Zurück zum Zitat Gottschalk F, Nowack B (2012) Modeling environmental release and exposure of engineered nanomaterials. In: Jerzy L, Tomasz P (eds) Towards efficient designing of safe nanomaterials. RSC, Cambridge Gottschalk F, Nowack B (2012) Modeling environmental release and exposure of engineered nanomaterials. In: Jerzy L, Tomasz P (eds) Towards efficient designing of safe nanomaterials. RSC, Cambridge
60.
Zurück zum Zitat Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453CrossRef Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453CrossRef
61.
Zurück zum Zitat Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRef Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRef
62.
Zurück zum Zitat ECHA (2010) Guidance on information requirements and chemical safety assessment Chapter R.16: Environmental Exposure Estimation, European Chemicals Agency ECHA (2010) Guidance on information requirements and chemical safety assessment Chapter R.16: Environmental Exposure Estimation, European Chemicals Agency
63.
Zurück zum Zitat Bosch A, Maier M, Morfeld P (2012) Nanosilica? Clarifications are necessary! Nanotoxicology 6:611–613CrossRef Bosch A, Maier M, Morfeld P (2012) Nanosilica? Clarifications are necessary! Nanotoxicology 6:611–613CrossRef
64.
Zurück zum Zitat Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Softw 25:320–332CrossRef Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Softw 25:320–332CrossRef
65.
Zurück zum Zitat Gottschalk F, Ort C, Scholz RW, Nowack B (2011) Engineered nanomaterials in rivers – exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159:3439–3445CrossRef Gottschalk F, Ort C, Scholz RW, Nowack B (2011) Engineered nanomaterials in rivers – exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159:3439–3445CrossRef
66.
Zurück zum Zitat Praetorius A, Scheringer M, Hungerbuhler K (2012) Development of environmental fate models for engineered nanoparticles – a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol 46:6705–6713CrossRef Praetorius A, Scheringer M, Hungerbuhler K (2012) Development of environmental fate models for engineered nanoparticles – a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol 46:6705–6713CrossRef
Metadaten
Titel
The Flows of Engineered Nanomaterials from Production, Use, and Disposal to the Environment
verfasst von
Bernd Nowack
Nikolaus Bornhöft
Yaobo Ding
Michael Riediker
Araceli Sánchez Jiménez
Tianyin Sun
Martie van Tongeren
Wendel Wohlleben
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/698_2015_402