Skip to main content

2009 | OriginalPaper | Buchkapitel

3. Signal Characterization and Representation

verfasst von : Mohammad Azadeh

Erschienen in: Fiber Optics Engineering

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fiber optic systems utilize the wide bandwidth of the fiber to transfer very high data rates over long distances. As noted in Chapter 1, in order to represent information, a physical quantity must be modulated. A “signal” is the representation of information, and a physical signal is realized when a voltage, a current, or an electromagnetic wave is modulated. In fiber optics, we deal with electrical and optical signals. At the level of physical layer, a fiber optic link converts an electrical signal to an optical signal, transmits it over the fiber, and converts it back to an electrical signal at the other side.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Notice that the overall bandwidth requirement is twice that of the sum of each signal’s bandwidth, as each baseband signal yields two sidebands after frequency shifting. Single side band modulation can improve bandwidth efficiency by transmitting only one sideband for each signal.
 
2
This assertion holds for almost all practical fiber optic systems. Although it is possible to use the phase or frequency of light to encode information, almost all practical fiber optic systems modulate the amplitude of light and therefore can be considered AM modulation schemes.
 
3
A relationship commonly given in literature is BW=0.35/τ. This equation is derived based on the 3 dB bandwidth of a single pole RC-type network. Also, τ is defined based on 10–90% levels. However, in optical signal 20 and 80% levels are more commonly used, and the waveforms are more triangular like than exponential.
 
Literatur
[1]
Zurück zum Zitat J. F. James, A Student's Guide to Fourier Transforms, 2nd Ed., Cambridge University Press, Cambridge, 2002 J. F. James, A Student's Guide to Fourier Transforms, 2nd Ed., Cambridge University Press, Cambridge, 2002
[2]
Zurück zum Zitat S. Shinde and V. M. Gadre, “An uncertainty principle for real signals in the fractional Fourier transform Domain,” IEEE Transactions on Signal Processing, Vol. 49, pp. 2545–2548, 2001CrossRefMathSciNet S. Shinde and V. M. Gadre, “An uncertainty principle for real signals in the fractional Fourier transform Domain,” IEEE Transactions on Signal Processing, Vol. 49, pp. 2545–2548, 2001CrossRefMathSciNet
[3]
Zurück zum Zitat Y. T. Dai and J. P. Yao, “Arbitrary pulse shaping based on intensity-only modulation in the frequency domain,” Optics Letters, Vol. 33, pp. 390–392, 2008CrossRef Y. T. Dai and J. P. Yao, “Arbitrary pulse shaping based on intensity-only modulation in the frequency domain,” Optics Letters, Vol. 33, pp. 390–392, 2008CrossRef
[4]
Zurück zum Zitat E. M. Kosik et al., “Complete characterization of attosecond pulses,” Journal of Modern Optics, Vol. 52, pp. 361–378, 2005CrossRef E. M. Kosik et al., “Complete characterization of attosecond pulses,” Journal of Modern Optics, Vol. 52, pp. 361–378, 2005CrossRef
[5]
Zurück zum Zitat Y. S. Shmaliy, Continuous Time Signals, Springer, Dordrecht, 2006 Y. S. Shmaliy, Continuous Time Signals, Springer, Dordrecht, 2006
[6]
Zurück zum Zitat C. C. Chien and I. Lyubomirsky, “Comparison of RZ versus NRZ pulse shapes for optical duobinary transmission,” Journal of Lightwave Technology, Vol. 25, pp. 2953–2958, 2007CrossRef C. C. Chien and I. Lyubomirsky, “Comparison of RZ versus NRZ pulse shapes for optical duobinary transmission,” Journal of Lightwave Technology, Vol. 25, pp. 2953–2958, 2007CrossRef
[7]
Zurück zum Zitat P. J. Winzer et al., “Optimum filter bandwidths for optically preamplified (N)RZ receivers,” Journal of Lightwave Technology, Vol. 19, pp. 1263–1273, 2001CrossRef P. J. Winzer et al., “Optimum filter bandwidths for optically preamplified (N)RZ receivers,” Journal of Lightwave Technology, Vol. 19, pp. 1263–1273, 2001CrossRef
[8]
Zurück zum Zitat M. I. Hayee and A. E.Wilner, “NRZ versus RZ in 10–40 Gb/s dispersion managed WDM transmission systems,” IEEE Photonics Technology Letters, Vol. 11, pp. 991–993, 1999CrossRef M. I. Hayee and A. E.Wilner, “NRZ versus RZ in 10–40 Gb/s dispersion managed WDM transmission systems,” IEEE Photonics Technology Letters, Vol. 11, pp. 991–993, 1999CrossRef
[9]
Zurück zum Zitat H. Knapp et al., “100-Gb/s 27-1 and 54-Gb/s 211-1 PRBS generators in SiGe bipolar technology,” IEEE Journal of Solid-State Circuits, Vol. 40, pp. 2118–2125, 2005CrossRef H. Knapp et al., “100-Gb/s 27-1 and 54-Gb/s 211-1 PRBS generators in SiGe bipolar technology,” IEEE Journal of Solid-State Circuits, Vol. 40, pp. 2118–2125, 2005CrossRef
[10]
Zurück zum Zitat F. Schumann and J. Bock, “Silicon bipolar IC for PRBS testing generates adjustable bit rates up to 25 Gbit/s,” Electronics Letters, Vol. 33, pp. 2022–2023, 1997CrossRef F. Schumann and J. Bock, “Silicon bipolar IC for PRBS testing generates adjustable bit rates up to 25 Gbit/s,” Electronics Letters, Vol. 33, pp. 2022–2023, 1997CrossRef
[11]
Zurück zum Zitat O. Kromat, U. Langmann, G. Hanke, and W. J. Hillery, “A 10-Gb/s silicon bipolar IC for PRBS testing,” IEEE Journal of Solid-State Circuits, Vol. 33, pp. 76–85, 1998CrossRef O. Kromat, U. Langmann, G. Hanke, and W. J. Hillery, “A 10-Gb/s silicon bipolar IC for PRBS testing,” IEEE Journal of Solid-State Circuits, Vol. 33, pp. 76–85, 1998CrossRef
[12]
Zurück zum Zitat L. Cohen, “Generalization of the Wiener–Khinchin Theorem,” IEEE Signal Processing Letters, Vol. 5, pp. 292–294, 1998CrossRef L. Cohen, “Generalization of the Wiener–Khinchin Theorem,” IEEE Signal Processing Letters, Vol. 5, pp. 292–294, 1998CrossRef
[13]
Zurück zum Zitat J. Redd and C. Lyon, “Spectral Contents of NRZ test patterns,” EDN, pp. 67–72, 2004 J. Redd and C. Lyon, “Spectral Contents of NRZ test patterns,” EDN, pp. 67–72, 2004
[14]
Zurück zum Zitat L. W. Couch, Digital and Analog Communication Systems, 6th Ed., Prentice Hall, Englewood Cliffs, 2001 L. W. Couch, Digital and Analog Communication Systems, 6th Ed., Prentice Hall, Englewood Cliffs, 2001
[15]
Zurück zum Zitat T. H. Lee, Planar Microwave Engineering, Cambridge University Press, Cambridge, NJ, 2004 T. H. Lee, Planar Microwave Engineering, Cambridge University Press, Cambridge, NJ, 2004
[16]
Zurück zum Zitat L. Zhu and K. Wu, “Comparative investigation on numerical de-embedding techniques for equivalent circuit modeling of lumped and distributed microstrip circuits,” IEEE Microwave and Wireless Components Letters, Vol. 12, pp. 51–53, 2002CrossRef L. Zhu and K. Wu, “Comparative investigation on numerical de-embedding techniques for equivalent circuit modeling of lumped and distributed microstrip circuits,” IEEE Microwave and Wireless Components Letters, Vol. 12, pp. 51–53, 2002CrossRef
[17]
Zurück zum Zitat M. Feliziani and F. Maradei, “Modeling of electromagnetic fields and electrical circuits with lumped and distributed elements by the WETD method,” IEEE Transactions on Magnetics, Vol. 35, pp. 1666–1669, 1999CrossRef M. Feliziani and F. Maradei, “Modeling of electromagnetic fields and electrical circuits with lumped and distributed elements by the WETD method,” IEEE Transactions on Magnetics, Vol. 35, pp. 1666–1669, 1999CrossRef
[18]
Zurück zum Zitat S. E. Schwarz, Electromagnetics for Engineers, Saunders College Publishing, Berkeley, CA 1990 S. E. Schwarz, Electromagnetics for Engineers, Saunders College Publishing, Berkeley, CA 1990
[19]
Zurück zum Zitat G. Vandenbosch, F. J. Demuynck, and A. R. Vandecapelle, “The transmission line models- Past, present, and future,” International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, Vol. 3, pp. 319–325, 1993CrossRef G. Vandenbosch, F. J. Demuynck, and A. R. Vandecapelle, “The transmission line models- Past, present, and future,” International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, Vol. 3, pp. 319–325, 1993CrossRef
[20]
Zurück zum Zitat E. Bogatin, Signal Integrity Simplified, Prentice Hall, Englewood Cliffs, NJ, 2004 E. Bogatin, Signal Integrity Simplified, Prentice Hall, Englewood Cliffs, NJ, 2004
[21]
Zurück zum Zitat M. Khalaj-Amirhosseini, “Wideband or multiband complex impedance matching using microstrip nonuniform transmission lines,” Progress in Electromagnetics Research-PIER, Vol. 66, pp. 15–25, 2006CrossRef M. Khalaj-Amirhosseini, “Wideband or multiband complex impedance matching using microstrip nonuniform transmission lines,” Progress in Electromagnetics Research-PIER, Vol. 66, pp. 15–25, 2006CrossRef
[22]
Zurück zum Zitat G. B. Xiao and K. Yashiro, “Impedance matching for complex loads through nonuniform transmission lines,” IEEE Transactions on Microwave Theory and Techniques, Vol. 50, pp. 1520–1525, 2002CrossRefMathSciNet G. B. Xiao and K. Yashiro, “Impedance matching for complex loads through nonuniform transmission lines,” IEEE Transactions on Microwave Theory and Techniques, Vol. 50, pp. 1520–1525, 2002CrossRefMathSciNet
[23]
Zurück zum Zitat S. Kim, H. Jwa, and H. Chang, “Design of impedance-matching circuits with tapered transmission lines,” Microwave and Optical Technology Letters, Vol. 20, pp. 403 – 407, 1999CrossRef S. Kim, H. Jwa, and H. Chang, “Design of impedance-matching circuits with tapered transmission lines,” Microwave and Optical Technology Letters, Vol. 20, pp. 403 – 407, 1999CrossRef
[24]
Zurück zum Zitat T. Chiu and Y. S. Shen, “A broadband transition between microstrip and coplanar stripline,” IEEE Microwave and Wireless Components Letters, Vol. 13, pp. 66–68, 2003CrossRef T. Chiu and Y. S. Shen, “A broadband transition between microstrip and coplanar stripline,” IEEE Microwave and Wireless Components Letters, Vol. 13, pp. 66–68, 2003CrossRef
[25]
Zurück zum Zitat A. J. Rainal, “Impedance and crosstalk of stripline and microstrip transmission lines,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Advanced Packaging, Vol. 20, pp. 217–224, 1997CrossRef A. J. Rainal, “Impedance and crosstalk of stripline and microstrip transmission lines,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Advanced Packaging, Vol. 20, pp. 217–224, 1997CrossRef
[26]
Zurück zum Zitat D. Nghiem, J. T. Williams, and D. R. Jackson, “A general analysis of propagation along multiple-layer superconducting stripline and microstrip transmission lines,” IEEE Transactions on Microwave Theory and Techniques, Vol. 39, pp. 1553–1565, 1991CrossRef D. Nghiem, J. T. Williams, and D. R. Jackson, “A general analysis of propagation along multiple-layer superconducting stripline and microstrip transmission lines,” IEEE Transactions on Microwave Theory and Techniques, Vol. 39, pp. 1553–1565, 1991CrossRef
[27]
Zurück zum Zitat Y. K. Kim, “Viscoelastic Effect of FR-4 Material on Packaging Stress Development,” IEEE Transactions on Advanced Packaging, Vol. 30, pp. 411–420, 2007CrossRef Y. K. Kim, “Viscoelastic Effect of FR-4 Material on Packaging Stress Development,” IEEE Transactions on Advanced Packaging, Vol. 30, pp. 411–420, 2007CrossRef
[28]
Zurück zum Zitat P. Hutapea and J. L. Grenestedt, “Effect of temperature on elastic properties of woven-glass epoxy composites for printed circuit board applications,” Journal of Electronic Materials, Vol. 32, pp.221–227, 2003CrossRef P. Hutapea and J. L. Grenestedt, “Effect of temperature on elastic properties of woven-glass epoxy composites for printed circuit board applications,” Journal of Electronic Materials, Vol. 32, pp.221–227, 2003CrossRef
[29]
Zurück zum Zitat T. M. Wang and I. M. Daniel, “Thermoviscoelastic analysis of residual stresses and warpage in composite laminates,” Journal of Composite Materials, Vol. 26, pp. 883–899, 1992CrossRef T. M. Wang and I. M. Daniel, “Thermoviscoelastic analysis of residual stresses and warpage in composite laminates,” Journal of Composite Materials, Vol. 26, pp. 883–899, 1992CrossRef
[30]
Zurück zum Zitat IPC-2141, Controlled Impedance Circuit Boards and High-Speed Logic Design, Association Connecting Electronics Industries (IPC), 1996 IPC-2141, Controlled Impedance Circuit Boards and High-Speed Logic Design, Association Connecting Electronics Industries (IPC), 1996
[31]
Zurück zum Zitat IPC-D-317A and IPC-2251, Design Guide for the Packaging of High Speed Electronic Circuits, IPC- Association Connecting Electronics Industries (IPC), 2003 IPC-D-317A and IPC-2251, Design Guide for the Packaging of High Speed Electronic Circuits, IPC- Association Connecting Electronics Industries (IPC), 2003
[32]
Zurück zum Zitat B. Young, Digital Signal Integrity, Prentice Hall, Englewood Cliffs, NJ, 2001 B. Young, Digital Signal Integrity, Prentice Hall, Englewood Cliffs, NJ, 2001
[33]
Zurück zum Zitat J. Alnis et al., “Sub-hertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities,” Physical Review A, Vol. 77, Article Number 053809, 2008 J. Alnis et al., “Sub-hertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities,” Physical Review A, Vol. 77, Article Number 053809, 2008
[34]
Zurück zum Zitat A. D. Ludlow et al., “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Optics Letters, Vol. 32, pp. 641–643, 2007CrossRef A. D. Ludlow et al., “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Optics Letters, Vol. 32, pp. 641–643, 2007CrossRef
[35]
Zurück zum Zitat I. Velchev and J. Toulouse, “Fourier analysis of the spectral properties of multi-mode laser radiation,” American Journal of Physics, Vol. 71, pp. 269–272, 2003CrossRef I. Velchev and J. Toulouse, “Fourier analysis of the spectral properties of multi-mode laser radiation,” American Journal of Physics, Vol. 71, pp. 269–272, 2003CrossRef
Metadaten
Titel
Signal Characterization and Representation
verfasst von
Mohammad Azadeh
Copyright-Jahr
2009
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0304-4_3

Neuer Inhalt