Skip to main content

2009 | OriginalPaper | Buchkapitel

9. Optical Receiver Design

verfasst von : Mohammad Azadeh

Erschienen in: Fiber Optics Engineering

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we consider issues related to the design of optical receivers. As signals travel in a fiber, they are attenuated and distorted, and it is the function of the receiver circuit at the other side of the fiber to generate a clean electrical signal from this weak, distorted optical signal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat L. L. Wang, “Ultra-wide dynamic range receiver for noise loaded WDM transmission systems,” Optics Express, Vol. 16, pp. 20382–20387, 2008CrossRef L. L. Wang, “Ultra-wide dynamic range receiver for noise loaded WDM transmission systems,” Optics Express, Vol. 16, pp. 20382–20387, 2008CrossRef
[2]
Zurück zum Zitat R. Vetury et al., “High sensitivity and wide-dynamic-range optical receiver for 40 Gbit/s optical communication networks,” Electronics Letters, Vol. 39, pp. 91–92, 2003CrossRef R. Vetury et al., “High sensitivity and wide-dynamic-range optical receiver for 40 Gbit/s optical communication networks,” Electronics Letters, Vol. 39, pp. 91–92, 2003CrossRef
[3]
Zurück zum Zitat H. Matsuda et al., “High-sensitivity and wide-dynamic-range 10Gbit/s APD/preamplifier optical receiver module,” Electronics Letters, Vol. 38, pp. 650–651, 2002CrossRef H. Matsuda et al., “High-sensitivity and wide-dynamic-range 10Gbit/s APD/preamplifier optical receiver module,” Electronics Letters, Vol. 38, pp. 650–651, 2002CrossRef
[4]
Zurück zum Zitat M. S. Park, C. H. Lee, and C. S. Shim, “Optical receiver design with high sensitivity and high dynamic range using feedback and lossy noise-matching network,” Optical and Quantum Electronics, Vol. 27, pp. 527–534, 1995CrossRef M. S. Park, C. H. Lee, and C. S. Shim, “Optical receiver design with high sensitivity and high dynamic range using feedback and lossy noise-matching network,” Optical and Quantum Electronics, Vol. 27, pp. 527–534, 1995CrossRef
[5]
Zurück zum Zitat J. M. Khoury, “On the design of constant settling time AGC circuits,” IEEE Transactions on Circuits and Systems-II, Analog and Digital Signal Processing, Vol. 45, pp. 283–294, 1998CrossRef J. M. Khoury, “On the design of constant settling time AGC circuits,” IEEE Transactions on Circuits and Systems-II, Analog and Digital Signal Processing, Vol. 45, pp. 283–294, 1998CrossRef
[6]
Zurück zum Zitat T. Kurosaki et al., “Low-cost 10-Gb/s optical receiver module using a novel plastic package and a passive alignment technique,” IEEE Journal of Lightwave Technology, Vol. 23, pp. 4257–4264, 2005CrossRef T. Kurosaki et al., “Low-cost 10-Gb/s optical receiver module using a novel plastic package and a passive alignment technique,” IEEE Journal of Lightwave Technology, Vol. 23, pp. 4257–4264, 2005CrossRef
[7]
Zurück zum Zitat HFAN-3.2.0, “Improving noise rejection of a PIN-TIA ROSA,” Application note from Maxim Integrated Products, 2008. Available from www.maxim-ic.com. HFAN-3.2.0, “Improving noise rejection of a PIN-TIA ROSA,” Application note from Maxim Integrated Products, 2008. Available from www.​maxim-ic.​com.
[8]
Zurück zum Zitat J. M. Baek et al., “High sensitive 10-Gb/s APD optical receivers in low-cost TO-can-type packages,” IEEE Photonics Technology Letters, Vol. 17, pp. 181–183, 2005CrossRef J. M. Baek et al., “High sensitive 10-Gb/s APD optical receivers in low-cost TO-can-type packages,” IEEE Photonics Technology Letters, Vol. 17, pp. 181–183, 2005CrossRef
[9]
Zurück zum Zitat M. Stephen, L. Luo, J. Wilson, and P. Franzon, “Buried bump and AC coupled interconnection technology,” IEEE Transactions on Advanced Packaging, Vol. 27, pp. 121–125, 2004CrossRef M. Stephen, L. Luo, J. Wilson, and P. Franzon, “Buried bump and AC coupled interconnection technology,” IEEE Transactions on Advanced Packaging, Vol. 27, pp. 121–125, 2004CrossRef
[10]
Zurück zum Zitat HFAN-1.1, “Choosing AC-Coupling capacitors,” Application Note from Maxim Integrated Products, 2008. Available from www.maxim-ic.com HFAN-1.1, “Choosing AC-Coupling capacitors,” Application Note from Maxim Integrated Products, 2008. Available from www.​maxim-ic.​com
[11]
Zurück zum Zitat T. Kok-Siang et al., “Design of high-speed clock and data recovery circuits,” Analog Integrated Circuits and Signal Processing, Vol. 52, pp. 15–23, 2007CrossRef T. Kok-Siang et al., “Design of high-speed clock and data recovery circuits,” Analog Integrated Circuits and Signal Processing, Vol. 52, pp. 15–23, 2007CrossRef
[12]
Zurück zum Zitat F. Centurelli and G. Scotti, “A high-speed low-voltage phase detector for clock recovery from NRZ data,” IEEE Transactions on Circuits and Systems I, Regular Papers, Vol. 54, pp. 1626–1635, 2007CrossRef F. Centurelli and G. Scotti, “A high-speed low-voltage phase detector for clock recovery from NRZ data,” IEEE Transactions on Circuits and Systems I, Regular Papers, Vol. 54, pp. 1626–1635, 2007CrossRef
[13]
Zurück zum Zitat G. T. Kanellos et al., “Clock and data recovery circuit for 10-Gb/s asynchronous optical packets,” IEEE Photonics Technology Letters, Vol. 15, pp. 1666–1668, 2003CrossRef G. T. Kanellos et al., “Clock and data recovery circuit for 10-Gb/s asynchronous optical packets,” IEEE Photonics Technology Letters, Vol. 15, pp. 1666–1668, 2003CrossRef
[14]
Zurück zum Zitat M. Ahmed and M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” Journal of Applied Physics, Vol. 104, Article Number 013104, 2008 M. Ahmed and M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” Journal of Applied Physics, Vol. 104, Article Number 013104, 2008
[15]
Zurück zum Zitat K.C. Jong, H.W. Tsao, and S.L. Lee, “Q-factor monitoring of optical signal-to-noise ratio degradation in optical DPSK transmission,” Electronics Letters, Vol. 44, pp. 761–762, 2008CrossRef K.C. Jong, H.W. Tsao, and S.L. Lee, “Q-factor monitoring of optical signal-to-noise ratio degradation in optical DPSK transmission,” Electronics Letters, Vol. 44, pp. 761–762, 2008CrossRef
[16]
Zurück zum Zitat J. D. Downie, “Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise,” Journal of Lightwave Technology, Vol. 23, pp. 2031–2038, 2005CrossRef J. D. Downie, “Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise,” Journal of Lightwave Technology, Vol. 23, pp. 2031–2038, 2005CrossRef
[17]
Zurück zum Zitat E. W. Laedke et al., “Improvement of optical fiber systems performance by optimization of receiver filter bandwidth and use of numerical methods to evaluate Q-factor,” Electronics Letters, Vol. 35, pp. 2131–2133, 1999CrossRef E. W. Laedke et al., “Improvement of optical fiber systems performance by optimization of receiver filter bandwidth and use of numerical methods to evaluate Q-factor,” Electronics Letters, Vol. 35, pp. 2131–2133, 1999CrossRef
[18]
Zurück zum Zitat D. R. Smith and I. Garrett, “Simplified approach to digital optical receiver design,” Optical and Quantum Electronics, Vol. 10, pp. 211–221, 1978CrossRef D. R. Smith and I. Garrett, “Simplified approach to digital optical receiver design,” Optical and Quantum Electronics, Vol. 10, pp. 211–221, 1978CrossRef
[19]
Zurück zum Zitat HFAN-3.0.0, “Accurately estimating optical receiver sensitivity” Application Note from Maxim Integrated Products, available from www.maxim-ic.com HFAN-3.0.0, “Accurately estimating optical receiver sensitivity” Application Note from Maxim Integrated Products, available from www.​maxim-ic.​com
[20]
Zurück zum Zitat HFAN-9.0.2, “Optical signal-to-noise ratio and the Q-factor in fiber-optic communication systems,” Application note from Maxim Integrated Products, available from www.maxim-ic.com HFAN-9.0.2, “Optical signal-to-noise ratio and the Q-factor in fiber-optic communication systems,” Application note from Maxim Integrated Products, available from www.​maxim-ic.​com
[21]
Zurück zum Zitat N. S. Bergano, F. W. Kerfoot, and C. R. Davidsion, “Margin measurements in optical amplifier system,” IEEE Photonics Technology Letters, Vol. 5, pp. 304–306, 1993CrossRef N. S. Bergano, F. W. Kerfoot, and C. R. Davidsion, “Margin measurements in optical amplifier system,” IEEE Photonics Technology Letters, Vol. 5, pp. 304–306, 1993CrossRef
[22]
Zurück zum Zitat M. R. Spiegel, Mathematical Handbook , Schaum’s Outline Series, McGraw-Hill, New York, 1992 M. R. Spiegel, Mathematical Handbook , Schaum’s Outline Series, McGraw-Hill, New York, 1992
[23]
Zurück zum Zitat Y. D. Choi, D. K. Jeong, and W. C. Kim, “Jitter transfer analysis of tracked oversampling techniques for multigigabit clock and data recovery,” IEEE Transactions on Circuits and Systems II-Analog and Digital Signal Processing, Vol. 50, pp. 775–783, 2003CrossRef Y. D. Choi, D. K. Jeong, and W. C. Kim, “Jitter transfer analysis of tracked oversampling techniques for multigigabit clock and data recovery,” IEEE Transactions on Circuits and Systems II-Analog and Digital Signal Processing, Vol. 50, pp. 775–783, 2003CrossRef
[24]
Zurück zum Zitat M. J. E. Lee et al., “Jitter transfer characteristics of delay-locked loops – theories and design techniques,” IEEE Journal of Solid State Electronics, Vol. 38, pp. 614–621, 2003CrossRef M. J. E. Lee et al., “Jitter transfer characteristics of delay-locked loops – theories and design techniques,” IEEE Journal of Solid State Electronics, Vol. 38, pp. 614–621, 2003CrossRef
[25]
Zurück zum Zitat G.783, Transmission Systems and Media, Digital Systems and Networks, ITU-T, 2006 G.783, Transmission Systems and Media, Digital Systems and Networks, ITU-T, 2006
[26]
Zurück zum Zitat C. F. Liang, S. C. Hwu, and S. L. Liu, “A Jitter-tolerance-enhanced CDR using a GDCO-based phase detector,” IEEE Journal of Solid State Circuits, Vol. 43, pp. 1217–1226, 2008CrossRef C. F. Liang, S. C. Hwu, and S. L. Liu, “A Jitter-tolerance-enhanced CDR using a GDCO-based phase detector,” IEEE Journal of Solid State Circuits, Vol. 43, pp. 1217–1226, 2008CrossRef
[27]
Zurück zum Zitat M. Hayashi et al., “Analysis on jitter tolerance of optical 3R regenerator,” IEEE Photonics Technology Letters, Vol. 15, pp. 1609–1611, 2003CrossRef M. Hayashi et al., “Analysis on jitter tolerance of optical 3R regenerator,” IEEE Photonics Technology Letters, Vol. 15, pp. 1609–1611, 2003CrossRef
[28]
Zurück zum Zitat S. Y. Sun, “An analog PLL-based clock and data recovery circuit with high input jitter tolerance,” IEEE Journal of Solid-State Circuits, Vol. 24, pp. 325–330, 1989CrossRef S. Y. Sun, “An analog PLL-based clock and data recovery circuit with high input jitter tolerance,” IEEE Journal of Solid-State Circuits, Vol. 24, pp. 325–330, 1989CrossRef
[29]
Zurück zum Zitat K. Hara, et al., “1.25/10.3 Gbit/s dual-rate burst-mode receiver,” Electronics Letters, Vol. 44, pp. 869–870, 2008CrossRef K. Hara, et al., “1.25/10.3 Gbit/s dual-rate burst-mode receiver,” Electronics Letters, Vol. 44, pp. 869–870, 2008CrossRef
[30]
Zurück zum Zitat E. Hugues-Salas et al., “Fast edge-detection burst-mode 2.5 Gbit/s receiver for gigabit passive optical networks,” Journal of Optical Networking, Vol. 6, pp. 482–489, 2007CrossRef E. Hugues-Salas et al., “Fast edge-detection burst-mode 2.5 Gbit/s receiver for gigabit passive optical networks,” Journal of Optical Networking, Vol. 6, pp. 482–489, 2007CrossRef
[31]
Zurück zum Zitat X. Z. Qiu et al., “Development of GPON upstream physical-media-dependent prototypes,” Journal of Lightwave Technology, Vol. 22, No. 11, pp. 2498–2508, Nov. 2004CrossRef X. Z. Qiu et al., “Development of GPON upstream physical-media-dependent prototypes,” Journal of Lightwave Technology, Vol. 22, No. 11, pp. 2498–2508, Nov. 2004CrossRef
[32]
Zurück zum Zitat J. M. Baek et al, “Low-cost and high-performance APD burst-mode receiver employing commercial TIA for 1.25-Gb/s EPON,” IEEE Photonics Technology Letters, Vol. 17, No. 10, pp. 2170–2172, Oct. 2005CrossRef J. M. Baek et al, “Low-cost and high-performance APD burst-mode receiver employing commercial TIA for 1.25-Gb/s EPON,” IEEE Photonics Technology Letters, Vol. 17, No. 10, pp. 2170–2172, Oct. 2005CrossRef
[33]
Zurück zum Zitat Q. Le et al., “A burst-mode receiver for 1.25-Gb/s Ethernet PON with AGC and internally created reset signal,” IEEE Journal of Solid State Circuits, Vol. 39, No. 12, pp. 2379–2388, Dec 2004 Q. Le et al., “A burst-mode receiver for 1.25-Gb/s Ethernet PON with AGC and internally created reset signal,” IEEE Journal of Solid State Circuits, Vol. 39, No. 12, pp. 2379–2388, Dec 2004
[34]
Zurück zum Zitat H. Wang and R. Lin, “The parameter optimization of EPON physical layer and the performance analysis for burst mode receiver,” Proceedings of SPIE, Vol. 4908, pp. 105–114, 2002 H. Wang and R. Lin, “The parameter optimization of EPON physical layer and the performance analysis for burst mode receiver,” Proceedings of SPIE, Vol. 4908, pp. 105–114, 2002
[35]
Zurück zum Zitat A. J. Phillips, “Power penalty for burst mode reception in the presence of interchannel crosstalk,” IET optoelectronics, Vol. 1, pp. 127–134, 2007CrossRef A. J. Phillips, “Power penalty for burst mode reception in the presence of interchannel crosstalk,” IET optoelectronics, Vol. 1, pp. 127–134, 2007CrossRef
[36]
Zurück zum Zitat P. Ossieur et al., “Sensitivity penalty calculation for burst-mode receivers using avalanche photodiodes,” Journal of Lightwave Technology, Vol. 21, No. 11, pp. 2565–2575, Nov. 2003CrossRef P. Ossieur et al., “Sensitivity penalty calculation for burst-mode receivers using avalanche photodiodes,” Journal of Lightwave Technology, Vol. 21, No. 11, pp. 2565–2575, Nov. 2003CrossRef
[37]
Zurück zum Zitat Peter Ossieur et al., “Influence of random DC offsets on burst-mode receiver sensitivity,” Journal of Lightwave Technology, Vol. 24, No. 3, pp. 1543–1550 March 2006CrossRef Peter Ossieur et al., “Influence of random DC offsets on burst-mode receiver sensitivity,” Journal of Lightwave Technology, Vol. 24, No. 3, pp. 1543–1550 March 2006CrossRef
[38]
Zurück zum Zitat S. Nishihara et al., “10.3 Gbit/s burst-mode PIN-TIA module with high sensitivity, wide dynamic range and quick response,” Electronics Letters, Vol. 44, pp. 222–223, 2008CrossRef S. Nishihara et al., “10.3 Gbit/s burst-mode PIN-TIA module with high sensitivity, wide dynamic range and quick response,” Electronics Letters, Vol. 44, pp. 222–223, 2008CrossRef
Metadaten
Titel
Optical Receiver Design
verfasst von
Mohammad Azadeh
Copyright-Jahr
2009
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0304-4_9

Neuer Inhalt