Skip to main content

2011 | OriginalPaper | Buchkapitel

7. Quantum Atomistic Simulations of Nanoelectronic Devices Using QuADS

verfasst von : Shaikh Ahmed, Krishnakumari Yalavarthi, Vamsi Gaddipati, Abdussamad Muntahi, Sasi Sundaresan, Shareef Mohammed, Sharnali Islam, Ramya Hindupur, Ky Merrill, Dylan John, Joshua Ogden

Erschienen in: Nano-Electronic Devices

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As semiconductor devices shrink into the nanoscale regime and new classes of nanodevices emerge, device performance is increasingly being dominated by the granularity in the underlying material and the quantum mechanical effects in the electronic states. At nanoscale, modeling and simulation approaches based on a continuum representation of the underlying material typically used by device engineers become invalid. On the other side, various ab initio materials science methods offer intellectual appeal, but can only model very small systems having ∼ 100 atoms. The variety of geometries, materials, and doping configurations in semiconductor devices at the nanoscale suggests that a general nanoelectronic modeling tool is needed. This paper describes our on-going efforts to develop a multiscale Quantum Atomistic Device Simulator (QuADS) to address these needs. QuADS bridges the gap (and crosses the intellectual boundary) between continuum and ab initio modeling paradigms and enable the quantum-corrected atomistic numerical modeling of non-equilibrium charge and phonon transport phenomena in realistically-sized systems containing more than 100 million atoms! QuADS is primarily being built upon extended versions of three modules: (a) Open source LAMMPS molecular dynamics code for geometry construction and modeling structural relaxations. To enhance accuracy, ab initio ABINIT tool is used for parameterization of force and polarization coefficients and model bandstructure calculations; (b) Open source NEMO 3-D tool, which employs a variety of tight-binding models (s, sp3s ∗ , sp3d5s ∗ ), for the calculation of excitonic and phonon spectra and optical transition rates; and (c) A quantum-corrected (benchmarked against the non-equilibrium Green function formalism) 3-D Monte Carlo electron–phonon transport kernel. Using QuADS, nanoelectronic device designers will be able to address many challenging issues including crystal atomicity, defects, interfaces and surfaces, strain relaxation, piezoelectric and pyroelectric polarization, quantum confinement, highly-interacting and dissipative current and phonon paths, and performance in harsh environments – all on an equal footing. With the multi-million atom handling capability, the simulator creates new engineering routes for optimizing the efficiency and reliability of nanoelectronic and optoelectronic devices that were previously infeasible. Successful applications of QuADS are demonstrated by three examples: (1) Effects of internal fields in InN/GaN quantum dots; (2) Importance of second order polarization in InAs/GaAs quantum dots; and (3) Modeling unintentional single charge effects in silicon nanowire FETs. QuADS uses several novel, memory-miserly, parallel and fast algorithms, and incorporates state-of-the-art fault-tolerant software design approaches, which enables the simulator to assess the reliability of available petaflop computing platforms (TeraGrid, NCCS, NICS). A web-based online interactive version for educational purposes will soon be available on http://​www.​nanoHUB.​org

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. M. Sze and G. May, Fundamentals of Semiconductor Fabrication, John Wiley and Sons Inc., 2003. S. M. Sze and G. May, Fundamentals of Semiconductor Fabrication, John Wiley and Sons Inc., 2003.
2.
Zurück zum Zitat G. Moore, “Progress in digital integrated electronics,” IEDM Tech. Digest, pp. 11–13, 1975. G. Moore, “Progress in digital integrated electronics,” IEDM Tech. Digest, pp. 11–13, 1975.
3.
Zurück zum Zitat Semiconductor Industry Association (SIA) International Technology Roadmap for Semiconductors 2009 (\url{http://www.itrs.net/Links/2009ITRS/Home2009.htm}). Semiconductor Industry Association (SIA) International Technology Roadmap for Semiconductors 2009 (\url{http://​www.​itrs.​net/​Links/​2009ITRS/​Home2009.​htm}).
4.
Zurück zum Zitat Y. Wu et al. “Controlled growth and structures of molecular-scale silicon nanowires,” Nano Lett., vol. 4, pp. 433–436, 2004.CrossRef Y. Wu et al. “Controlled growth and structures of molecular-scale silicon nanowires,” Nano Lett., vol. 4, pp. 433–436, 2004.CrossRef
5.
Zurück zum Zitat Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B, vol. 104, 5213, 2000.CrossRef Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B, vol. 104, 5213, 2000.CrossRef
6.
Zurück zum Zitat Y. Cui, Y. Zhong, Z. Wang, D. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett., vol. 3, pp. 149–152, 2003.CrossRef Y. Cui, Y. Zhong, Z. Wang, D. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett., vol. 3, pp. 149–152, 2003.CrossRef
7.
Zurück zum Zitat P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device”, Science, vol. 290, pp. 2282–2285, 2000.CrossRef P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device”, Science, vol. 290, pp. 2282–2285, 2000.CrossRef
8.
Zurück zum Zitat Y. Arakawa, H. Sasaki, “Multidimensional quantum well laser and temperature dependence of its threshold current” Appl. Phys. Lett., vol. 40, pp. 939, 1982. Y. Arakawa, H. Sasaki, “Multidimensional quantum well laser and temperature dependence of its threshold current” Appl. Phys. Lett., vol. 40, pp. 939, 1982.
9.
Zurück zum Zitat E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. Gérard, I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots”, Phys. Rev. Lett., vol. 87, pp. 183601, 2001.CrossRef E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. Gérard, I. Abram, “Quantum Cascade of Photons in Semiconductor Quantum Dots”, Phys. Rev. Lett., vol. 87, pp. 183601, 2001.CrossRef
10.
Zurück zum Zitat M. Maximov, Y. Shernyakov, A. Tsatsul’nikov, A. Lunev, A. Sakharov, V. Ustinov, A. Egorov, A. Zhukov, A. Kovsch, P. Kop’ev, L. Asryan, A. Alferov, N. Ledentsov, D. Bimberg, A. Kosogov, P. Werner, “High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser”, J. Appl. Phys., vol. 83, pp. 5561, 1998. M. Maximov, Y. Shernyakov, A. Tsatsul’nikov, A. Lunev, A. Sakharov, V. Ustinov, A. Egorov, A. Zhukov, A. Kovsch, P. Kop’ev, L. Asryan, A. Alferov, N. Ledentsov, D. Bimberg, A. Kosogov, P. Werner, “High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser”, J. Appl. Phys., vol. 83, pp. 5561, 1998.
11.
Zurück zum Zitat B. Kane, “A Silicon-based Nuclear Spin Quantum Computer”, Nature, vol. 393, pp. 133, 1998.CrossRef B. Kane, “A Silicon-based Nuclear Spin Quantum Computer”, Nature, vol. 393, pp. 133, 1998.CrossRef
12.
Zurück zum Zitat D. Loss, DP. DiVincenzo, “Quantum computation with quantum dots”, Phys. Rev. A, vol. 57, pp. 120, 1998. D. Loss, DP. DiVincenzo, “Quantum computation with quantum dots”, Phys. Rev. A, vol. 57, pp. 120, 1998.
13.
Zurück zum Zitat M. Friesen, P. Rugheimer, D. Savage, M. Lagally, D. van der Weide, R. Joynt, M. Eriksson, “Practical design and simulation of silicon-based quantum-dot qubits”, Phys. Rev. B, vol. 67, 121301, 2003.CrossRef M. Friesen, P. Rugheimer, D. Savage, M. Lagally, D. van der Weide, R. Joynt, M. Eriksson, “Practical design and simulation of silicon-based quantum-dot qubits”, Phys. Rev. B, vol. 67, 121301, 2003.CrossRef
14.
Zurück zum Zitat S. Ahmed, M. Usman, C. Heitzinger, R. Rahman, A. Schliwa, and G. Klimeck, “Atomistic Simulation of Non-Degeneracy and Optical Polarization Anisotropy in Zincblende Quantum Dots,” The 2nd Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS), Jan 2007, Bangkok, Thailand. S. Ahmed, M. Usman, C. Heitzinger, R. Rahman, A. Schliwa, and G. Klimeck, “Atomistic Simulation of Non-Degeneracy and Optical Polarization Anisotropy in Zincblende Quantum Dots,” The 2nd Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS), Jan 2007, Bangkok, Thailand.
15.
Zurück zum Zitat A. J. Williamson, L. W. Wang, and Alex Zunger, “Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B, vol. 62, 12963 – 12977, 2000.CrossRef A. J. Williamson, L. W. Wang, and Alex Zunger, “Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B, vol. 62, 12963 – 12977, 2000.CrossRef
16.
Zurück zum Zitat Olga L. Lazarenkova, Paul von Allmen, Fabiano Oyafuso, Seungwon Lee, and Gerhard Klimeck, “Effect of anharmonicity of the strain energy on band offsets in semiconductor nanostructures”, Appl. Phys. Lett. vol. 85, 4193, 2004.CrossRef Olga L. Lazarenkova, Paul von Allmen, Fabiano Oyafuso, Seungwon Lee, and Gerhard Klimeck, “Effect of anharmonicity of the strain energy on band offsets in semiconductor nanostructures”, Appl. Phys. Lett. vol. 85, 4193, 2004.CrossRef
17.
Zurück zum Zitat Fabio Bernardini and Vincenzo Fiorentinia, “First-principles calculation of the piezoelectric tensor d of III–V nitrides,” Appl Phys. Lett., vol. 80, 22, pp. 4145–47, June 2002. Fabio Bernardini and Vincenzo Fiorentinia, “First-principles calculation of the piezoelectric tensor d of III–V nitrides,” Appl Phys. Lett., vol. 80, 22, pp. 4145–47, June 2002.
18.
Zurück zum Zitat N. Baer, S. Schulz, S. Schumacher, P. Gartner, G. Czycholl, and F. Jahnke, “Optical properties of self-organized wurtzite InN/GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation,” Appl Phys. Lett., vol. 87, 231114, 2005.CrossRef N. Baer, S. Schulz, S. Schumacher, P. Gartner, G. Czycholl, and F. Jahnke, “Optical properties of self-organized wurtzite InN/GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation,” Appl Phys. Lett., vol. 87, 231114, 2005.CrossRef
19.
Zurück zum Zitat T. Saito, Y. Arakawa, “Electronic structure ofpiezoelectric In0:2Ga0:8N quantum dots in GaN calculated using a tight-binding method,” Physica E, vol. 15, 169–181, 2002.CrossRef T. Saito, Y. Arakawa, “Electronic structure ofpiezoelectric In0:2Ga0:8N quantum dots in GaN calculated using a tight-binding method,” Physica E, vol. 15, 169–181, 2002.CrossRef
20.
Zurück zum Zitat Momme Winkelnkemper, Andrei Schliwa, and Dieter Bimberg, “Interrelation of structural and electronic properties in \({\mathrm{In}}_{\mathrm{x}}{\mathrm{Ga}}_{1-\mathrm{x}}\mathrm{N/GaN}\) quantum dots using an eight-band k ∙ p model,” Phys. Rev. B, vol. 74, 155322, 2006. Momme Winkelnkemper, Andrei Schliwa, and Dieter Bimberg, “Interrelation of structural and electronic properties in \({\mathrm{In}}_{\mathrm{x}}{\mathrm{Ga}}_{1-\mathrm{x}}\mathrm{N/GaN}\) quantum dots using an eight-band k ∙ p model,” Phys. Rev. B, vol. 74, 155322, 2006.
21.
Zurück zum Zitat G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Phys. Rev. Lett., 50, 120–126, 1983.CrossRef G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Phys. Rev. Lett., 50, 120–126, 1983.CrossRef
22.
Zurück zum Zitat Karl D Brommer, M Needels, B.E. Larson, and J.D. Joannopoulous., Phys. Rev. Lett., vol. 68, 1355, 1992. Karl D Brommer, M Needels, B.E. Larson, and J.D. Joannopoulous., Phys. Rev. Lett., vol. 68, 1355, 1992.
23.
Zurück zum Zitat I.D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” Journal of Applied Physics, 75, 3, 1656–1666, 1994.CrossRef I.D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” Journal of Applied Physics, 75, 3, 1656–1666, 1994.CrossRef
24.
Zurück zum Zitat Shaikh Ahmed, Neerav Kharche, Rajib Rahman, Muhammad Usman, Sunhee Lee, Hoon Ryu, Hansang Bae, Steve Clark, Benjamin Haley, Maxim Naumov, Faisal Saied, Marek Korkusinski, Rick Kennel, Michael Mclennan, Timothy B. Boykin, and Gerhard Klimeck, “Multimillion Atom Simulations with NEMO 3-D,” In Meyers, Robert (Ed.) Encyclopedia of Complexity and Systems Science, 6, 5745–5783. Springer New York 2009. Shaikh Ahmed, Neerav Kharche, Rajib Rahman, Muhammad Usman, Sunhee Lee, Hoon Ryu, Hansang Bae, Steve Clark, Benjamin Haley, Maxim Naumov, Faisal Saied, Marek Korkusinski, Rick Kennel, Michael Mclennan, Timothy B. Boykin, and Gerhard Klimeck, “Multimillion Atom Simulations with NEMO 3-D,” In Meyers, Robert (Ed.) Encyclopedia of Complexity and Systems Science, 6, 5745–5783. Springer New York 2009.
28.
Zurück zum Zitat Simone Chiaria, Enrico Furno, Michele Goano, and Enrico Bellotti, “Design Criteria for Near-Ultraviolet GaN-Based Light-Emitting Dioded”, special issue of IEEE Transactions on Electron Devices on LEDs, vol. 57, 1, pp. 60–70, January 2010. Simone Chiaria, Enrico Furno, Michele Goano, and Enrico Bellotti, “Design Criteria for Near-Ultraviolet GaN-Based Light-Emitting Dioded”, special issue of IEEE Transactions on Electron Devices on LEDs, vol. 57, 1, pp. 60–70, January 2010.
29.
Zurück zum Zitat C. Pryor, J. Kim, L.W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots”, J. Apl. Phys., vol 83, 2548, 1998.CrossRef C. Pryor, J. Kim, L.W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots”, J. Apl. Phys., vol 83, 2548, 1998.CrossRef
30.
Zurück zum Zitat Gabriel Bester and Alex Zunger, Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects, Phys. Rev. B 71 (2005) 045318.CrossRef Gabriel Bester and Alex Zunger, Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects, Phys. Rev. B 71 (2005) 045318.CrossRef
31.
Zurück zum Zitat J. M. Jancu, F. Bassani, F. Della Sala, R. Scholz, Transferable tight-binding parametrization for the group-III nitrides, Appl. Phys. Lett. 81 (2002) 4838.CrossRef J. M. Jancu, F. Bassani, F. Della Sala, R. Scholz, Transferable tight-binding parametrization for the group-III nitrides, Appl. Phys. Lett. 81 (2002) 4838.CrossRef
32.
Zurück zum Zitat G. Klimeck, S. Ahmed, N. Kharche, H. Bae, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, and T. B. Boykin, Atomistic simulation of realistically-sized nanodevices using NEMO 3-D, IEEE Trans. on Elect. Dev. 54 (2007) 2079–2099.CrossRef G. Klimeck, S. Ahmed, N. Kharche, H. Bae, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, and T. B. Boykin, Atomistic simulation of realistically-sized nanodevices using NEMO 3-D, IEEE Trans. on Elect. Dev. 54 (2007) 2079–2099.CrossRef
33.
Zurück zum Zitat S. Ahmed, S. Islam, and S. Mohammed, Electronic Structure of InN/GaN Quantum Dots: Multimillion Atom Tight-Binding Simulations, IEEE Trans. on Elect. Dev. 57 (2010) 164–173.CrossRef S. Ahmed, S. Islam, and S. Mohammed, Electronic Structure of InN/GaN Quantum Dots: Multimillion Atom Tight-Binding Simulations, IEEE Trans. on Elect. Dev. 57 (2010) 164–173.CrossRef
34.
Zurück zum Zitat S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, 1995. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, 1995.
35.
Zurück zum Zitat D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge University Press, 1997. D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge University Press, 1997.
36.
Zurück zum Zitat S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, 2005. S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.
37.
Zurück zum Zitat E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev., vol. 40, pp. 749–759, 1932.MATHCrossRef E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev., vol. 40, pp. 749–759, 1932.MATHCrossRef
38.
Zurück zum Zitat P. Feynman and H. Kleinert, “Effective classical partition functions,” Phys. Rev. A, vol. 34, pp. 5080–5084, 1986.MathSciNetCrossRef P. Feynman and H. Kleinert, “Effective classical partition functions,” Phys. Rev. A, vol. 34, pp. 5080–5084, 1986.MathSciNetCrossRef
39.
Zurück zum Zitat R. Lake, G. Klimeck, R.C. Bowen, and D. Jovanovic, J. Appl. Phys., vol. 81, 7845, 1997. R. Lake, G. Klimeck, R.C. Bowen, and D. Jovanovic, J. Appl. Phys., vol. 81, 7845, 1997.
40.
Zurück zum Zitat A. Buin, A. Verma, A. Svizhenko and M. P. Anantram, “Enhancement of hole mobility in [110] Silicon Nanowires,” Nano Lett., vol. 8, p. 760—765, 2008.CrossRef A. Buin, A. Verma, A. Svizhenko and M. P. Anantram, “Enhancement of hole mobility in [110] Silicon Nanowires,” Nano Lett., vol. 8, p. 760—765, 2008.CrossRef
41.
Zurück zum Zitat Neophytos Neophytou, Shaikh Ahmed, Gerhard Klimeck, “Influence of vacancies on metallic nanotube transport performance”, Appl. Phys. Lett., vol. 90, 182119, 2007. Neophytos Neophytou, Shaikh Ahmed, Gerhard Klimeck, “Influence of vacancies on metallic nanotube transport performance”, Appl. Phys. Lett., vol. 90, 182119, 2007.
42.
Zurück zum Zitat I. Knezevic, “Decoherence due to contacts in ballistic nanostructures,” Physical Review B, vol. 77, 125301, 2008.CrossRef I. Knezevic, “Decoherence due to contacts in ballistic nanostructures,” Physical Review B, vol. 77, 125301, 2008.CrossRef
43.
Zurück zum Zitat A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel and R. Venugopal, “Two Dimensional Quantum Mechanical Modeling of Nanotransistors,” J. Appl. Phys., vol. 91, p. 2343, 2002.CrossRef A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel and R. Venugopal, “Two Dimensional Quantum Mechanical Modeling of Nanotransistors,” J. Appl. Phys., vol. 91, p. 2343, 2002.CrossRef
44.
Zurück zum Zitat Ming-Shan Jeng, Ronggui Yang, David Song, Gang Chen, “Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation,” Journal of Heat Transfer, vol. 130, 2008. Ming-Shan Jeng, Ronggui Yang, David Song, Gang Chen, “Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation,” Journal of Heat Transfer, vol. 130, 2008.
45.
Zurück zum Zitat D. Donadio, G. Galli, “Atomistic simulations of heat transport in silicon nanowires,” Phys. Rev. Lett. 102, 195901, 13 May 2009. D. Donadio, G. Galli, “Atomistic simulations of heat transport in silicon nanowires,” Phys. Rev. Lett. 102, 195901, 13 May 2009.
46.
Zurück zum Zitat G. Klimeck, F. Oyafuso, T. Boykin, R. Bowen, and P. von Allmen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Computer Modeling in Engineering and Science, 3, pp. 601, 2002.MATH G. Klimeck, F. Oyafuso, T. Boykin, R. Bowen, and P. von Allmen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Computer Modeling in Engineering and Science, 3, pp. 601, 2002.MATH
47.
Zurück zum Zitat P. Keating, “Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure”, Phys. Rev., vol. 145, 1966. P. Keating, “Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure”, Phys. Rev., vol. 145, 1966.
48.
50.
Zurück zum Zitat E. Bellet-Amalric, C. Adelmann, E. Sarigiannidou, J. L. Rouvière, G. Feuillet, E. Monroy, and B. Daudin., “Plastic strain relaxation of nitride heterostructures,” J. Appl. Phys., vol. 95, 1127, 2004. E. Bellet-Amalric, C. Adelmann, E. Sarigiannidou, J. L. Rouvière, G. Feuillet, E. Monroy, and B. Daudin., “Plastic strain relaxation of nitride heterostructures,” J. Appl. Phys., vol. 95, 1127, 2004.
51.
Zurück zum Zitat J. G. Lozano, A. M. Sánchez, R. García, D. González, M. Herrera, N. D. Browning, S. Ruffenach, and O. Briot, “Configuration of the misfit dislocation networks in uncapped and capped InN quantum dots,” Appl. Phys. Lett., vol. 91, 071915, 2007.CrossRef J. G. Lozano, A. M. Sánchez, R. García, D. González, M. Herrera, N. D. Browning, S. Ruffenach, and O. Briot, “Configuration of the misfit dislocation networks in uncapped and capped InN quantum dots,” Appl. Phys. Lett., vol. 91, 071915, 2007.CrossRef
53.
Zurück zum Zitat S. Ahmed, C. Ringhofer, D. Vasileska, “Parameter-Free Effective Potential Method for Use in Particle-Based Device Simulations,” IEEE Trans. Nanotech., vol. 4, pp. 465–471, July 2005.CrossRef S. Ahmed, C. Ringhofer, D. Vasileska, “Parameter-Free Effective Potential Method for Use in Particle-Based Device Simulations,” IEEE Trans. Nanotech., vol. 4, pp. 465–471, July 2005.CrossRef
54.
Zurück zum Zitat D. Vasileska and S. Ahmed, “Narrow-Width SOI Devices: The Role of Quantum Mechanical Size Quantization Effect and the Unintentional Doping on the Device Operation,” IEEE Trans. Elect. Dev., vol. 52, pp. 227–236, 2005.CrossRef D. Vasileska and S. Ahmed, “Narrow-Width SOI Devices: The Role of Quantum Mechanical Size Quantization Effect and the Unintentional Doping on the Device Operation,” IEEE Trans. Elect. Dev., vol. 52, pp. 227–236, 2005.CrossRef
55.
Zurück zum Zitat M. Nedjalkov, S. Ahmed, and D. Vasileska, “A self-consistent event biasing scheme for statistical enhancement,” J. Comp. Elect., vol. 3, pp. 305–309, 2004.CrossRef M. Nedjalkov, S. Ahmed, and D. Vasileska, “A self-consistent event biasing scheme for statistical enhancement,” J. Comp. Elect., vol. 3, pp. 305–309, 2004.CrossRef
56.
Zurück zum Zitat P. Lugli, P. Bordone, L. Reggiani, M. Rieger, P. Kocevar, and S. M. Goodnick, “Monte Carlo Studies of Nonequilibrium Phonon Effects in Polar Semiconductors and Quantum Wells,” Phys. Rev. B, vol. 39, pp. 7852—7875, 1989.CrossRef P. Lugli, P. Bordone, L. Reggiani, M. Rieger, P. Kocevar, and S. M. Goodnick, “Monte Carlo Studies of Nonequilibrium Phonon Effects in Polar Semiconductors and Quantum Wells,” Phys. Rev. B, vol. 39, pp. 7852—7875, 1989.CrossRef
57.
Zurück zum Zitat C. Jacoboni and L. Reggiani, ‘The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials,” Rev. Modern Phys., vol. 55, pp. 645–705, 1983.CrossRef C. Jacoboni and L. Reggiani, ‘The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials,” Rev. Modern Phys., vol. 55, pp. 645–705, 1983.CrossRef
58.
Zurück zum Zitat M. Fischetti, and S. Laux, “Monte Carlo study of electron transport in silicon inversion layers,” Phys. Rev. B, vol. 48, pp. 2244–2274, 1993.CrossRef M. Fischetti, and S. Laux, “Monte Carlo study of electron transport in silicon inversion layers,” Phys. Rev. B, vol. 48, pp. 2244–2274, 1993.CrossRef
59.
Zurück zum Zitat M. Lundstrom, Fundamentals of Carrier Transport, Cambridge University Press, 2000. M. Lundstrom, Fundamentals of Carrier Transport, Cambridge University Press, 2000.
60.
Zurück zum Zitat K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices, Artech House, Boston, 1993. K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices, Artech House, Boston, 1993.
61.
Zurück zum Zitat J. Bude, “Scattering mechanisms for semiconductor transport calculations,” Monte Carlo Device Simulation: Full Band and Beyond, Kluwer Academic Publishers, pp. 27–66, 1991. J. Bude, “Scattering mechanisms for semiconductor transport calculations,” Monte Carlo Device Simulation: Full Band and Beyond, Kluwer Academic Publishers, pp. 27–66, 1991.
64.
Zurück zum Zitat FA Ponce and DP Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, 386, 351–359, 1997. FA Ponce and DP Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, 386, 351–359, 1997.
65.
Zurück zum Zitat H. Morkoç, and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science, vol. 267, pp. 51–55, 1995.CrossRef H. Morkoç, and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science, vol. 267, pp. 51–55, 1995.CrossRef
66.
Zurück zum Zitat S. Ruffenach, B. Maleyre, O. Briot, B. Gil, “Growth of InN quantum dots by MOVPE,” physica status solidi (c), vol. 2, 826–832, 2005. S. Ruffenach, B. Maleyre, O. Briot, B. Gil, “Growth of InN quantum dots by MOVPE,” physica status solidi (c), vol. 2, 826–832, 2005.
67.
Zurück zum Zitat W. Ke, C. Fu, C. Chen, L. Lee, C. Ku, W. Chou, W.-H Chang, M. Lee, W. Chen, and W. Lin, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett., vol. 88, 191913, 2006. W. Ke, C. Fu, C. Chen, L. Lee, C. Ku, W. Chou, W.-H Chang, M. Lee, W. Chen, and W. Lin, “Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett., vol. 88, 191913, 2006.
68.
Zurück zum Zitat J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology, vol. 21, 015204, 2010.CrossRef J. Kalden, C. Tessarek, K. Sebald, S. Figge, C. Kruse, D. Hommel, and J. Gutowski, “Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K,” Nanotechnology, vol. 21, 015204, 2010.CrossRef
69.
Zurück zum Zitat H. Wang, D. Jiang, J. Zhu, D. Zhao, Z. Liu, Y. Wang, S. Zhang, and Yang, H, “Kinetically controlled InN nucleation on GaN templates by metalorganic chemical vapour deposition,” J. Phys. D, vol. 42, 145410, 2009.CrossRef H. Wang, D. Jiang, J. Zhu, D. Zhao, Z. Liu, Y. Wang, S. Zhang, and Yang, H, “Kinetically controlled InN nucleation on GaN templates by metalorganic chemical vapour deposition,” J. Phys. D, vol. 42, 145410, 2009.CrossRef
70.
Zurück zum Zitat X. A. Cao and S. D. Arthur, “High-power and reliable operation of vertical light-emitting diodes on bulk GaN,” Appl. Phys. Lett., vol. 85, 3971, 2004.CrossRef X. A. Cao and S. D. Arthur, “High-power and reliable operation of vertical light-emitting diodes on bulk GaN,” Appl. Phys. Lett., vol. 85, 3971, 2004.CrossRef
71.
Zurück zum Zitat R. Stevenson, “The world’s best gallium nitride,” IEEE Spectrum, vol. 47, 40–45, 2010.CrossRef R. Stevenson, “The world’s best gallium nitride,” IEEE Spectrum, vol. 47, 40–45, 2010.CrossRef
72.
Zurück zum Zitat J. Bhattacharyya, S. Ghosh, M. R. Gokhale, B. M. Arora, H. Lu, and W. J. Schaff, “Polarized photoluminescence and absorption in A-plane InN films,” Appl. Phys. Lett., vol. 89, 151910, 2006.CrossRef J. Bhattacharyya, S. Ghosh, M. R. Gokhale, B. M. Arora, H. Lu, and W. J. Schaff, “Polarized photoluminescence and absorption in A-plane InN films,” Appl. Phys. Lett., vol. 89, 151910, 2006.CrossRef
73.
Zurück zum Zitat P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, vol. 406, pp. 865–868, 2000.CrossRef P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, vol. 406, pp. 865–868, 2000.CrossRef
74.
Zurück zum Zitat A. Jarjour, R. Taylor, R. Oliver, M. Kappers, C. Humphreys, and A. Tahraoui, “Electrically driven single InGaN/GaN quantum dot emission,” Appl. Phys. Lett., vol. 93, 233103, 2008.CrossRef A. Jarjour, R. Taylor, R. Oliver, M. Kappers, C. Humphreys, and A. Tahraoui, “Electrically driven single InGaN/GaN quantum dot emission,” Appl. Phys. Lett., vol. 93, 233103, 2008.CrossRef
75.
Zurück zum Zitat M. Senes, K. Smith, T. Smeeton, S. Hooper, and J. Heffernan, “Strong carrier confinement in InGaN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B, vol. 75, 045314, 2007.CrossRef M. Senes, K. Smith, T. Smeeton, S. Hooper, and J. Heffernan, “Strong carrier confinement in InGaN/GaN quantum dots grown by molecular beam epitaxy,” Phys. Rev. B, vol. 75, 045314, 2007.CrossRef
76.
Zurück zum Zitat Gabriel Bester, Xifan Wu, David Vanderbilt, and Alex Zunger, “Importance of second-order piezoelectric effects in zincblende semiconductors,” Phys. Rev. Lett., vol. 96, 187602, 2006. Gabriel Bester, Xifan Wu, David Vanderbilt, and Alex Zunger, “Importance of second-order piezoelectric effects in zincblende semiconductors,” Phys. Rev. Lett., vol. 96, 187602, 2006.
77.
Zurück zum Zitat Gabriel Bester, Alex Zunger, Xifan Wu, and David Vanderbilt, “Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots,” Phys. Rev. B, vol. 74, 081305, 2006. Gabriel Bester, Alex Zunger, Xifan Wu, and David Vanderbilt, “Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots,” Phys. Rev. B, vol. 74, 081305, 2006.
78.
Zurück zum Zitat C. Wei, Y. Jiang, Y. Z. Xiong, X. Zhou, N. Singh, S. C. Rustagi, G. Q. Lo, and D. Lee Kwong, “Impact of Gate Electrodes on 1/f Noise of Gate-All-Around Silicon Nanowire Transistors,” IEEE Elect. Dev. Lett., vol. 30, No. 10, October 2009. C. Wei, Y. Jiang, Y. Z. Xiong, X. Zhou, N. Singh, S. C. Rustagi, G. Q. Lo, and D. Lee Kwong, “Impact of Gate Electrodes on 1/f Noise of Gate-All-Around Silicon Nanowire Transistors,” IEEE Elect. Dev. Lett., vol. 30, No. 10, October 2009.
79.
Zurück zum Zitat Z. Jing, R. Wang, R. Huang, Y. Tian, L. Zhang, D. W. Kim, D. Park, and Y. Wang, “Investigation of low-frequency noise in silicon nanowire MOSFETs,” IEEE Elect. Dev. Lett., vol. 30, no. 1, pp. 57–60, Jan. 2009.CrossRef Z. Jing, R. Wang, R. Huang, Y. Tian, L. Zhang, D. W. Kim, D. Park, and Y. Wang, “Investigation of low-frequency noise in silicon nanowire MOSFETs,” IEEE Elect. Dev. Lett., vol. 30, no. 1, pp. 57–60, Jan. 2009.CrossRef
Metadaten
Titel
Quantum Atomistic Simulations of Nanoelectronic Devices Using QuADS
verfasst von
Shaikh Ahmed
Krishnakumari Yalavarthi
Vamsi Gaddipati
Abdussamad Muntahi
Sasi Sundaresan
Shareef Mohammed
Sharnali Islam
Ramya Hindupur
Ky Merrill
Dylan John
Joshua Ogden
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-8840-9_7

Neuer Inhalt