Skip to main content

2013 | OriginalPaper | Buchkapitel

2. Brain–Computer Interfaces

verfasst von : Bin He, Shangkai Gao, Han Yuan, Jonathan R. Wolpaw

Erschienen in: Neural Engineering

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Brain–computer interfaces are a new technology that could help to restore useful function to people severely disabled by a wide variety of devastating neuromuscular disorders and to enhance functions in healthy individuals. The first demonstrations of brain–computer interface (BCI) technology occurred in the 1960s when Grey Walter used the scalp-recorded electroencephalogram (EEG) to control a slide projector in 1964 [1] and when Eberhard Fetz taught monkeys to control a meter needle (and thereby earn food rewards) by changing the firing rate of a single cortical neuron [2, 3]. In the 1970s, Jacques Vidal developed a system that used the scalp-recorded visual evoked potential (VEP) over the visual cortex to determine the eye-gaze direction (i.e., the visual fixation point) in humans, and thus to determine the direction in which a person wanted to move a computer cursor [4, 5]. At that time, Vidal coined the term “brain–computer interface.” Since then and into the early 1990s, BCI research studies continued to appear only every few years. In 1980, Elbert et al. showed that people could learn to control slow cortical potentials (SCPs) in scalp-recorded EEG activity and could use that control to adjust the vertical position of a rocket image moving across a TV screen [6]. In 1988, Farwell and Donchin [7] reported that people could use scalp-recorded P300 event-related potentials (ERPs) to spell words on a computer screen. Wolpaw and his colleagues trained people to control the amplitude of mu and beta rhythms (i.e., sensorimotor rhythms) in the EEG recorded over the sensorimotor cortex and showed that the subjects could use this control to move a computer cursor rapidly and accurately in one or two dimensions [8, 9].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Graimann B, Allison B, Pfurtscheller G (2010) Brain-computer interfaces: a gentle introduction. In: Graimann B, Allison B, Pfurtscheller G (eds) Brain-computer interfaces. Springer, Berlin, pp 1–27CrossRef Graimann B, Allison B, Pfurtscheller G (2010) Brain-computer interfaces: a gentle introduction. In: Graimann B, Allison B, Pfurtscheller G (eds) Brain-computer interfaces. Springer, Berlin, pp 1–27CrossRef
2.
Zurück zum Zitat Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163:955–958CrossRef Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163:955–958CrossRef
3.
Zurück zum Zitat Fetz EE, Finocchio DV (1971) Operant conditioning of specific patterns of neural and muscular activity. Science 174:431–435CrossRef Fetz EE, Finocchio DV (1971) Operant conditioning of specific patterns of neural and muscular activity. Science 174:431–435CrossRef
4.
Zurück zum Zitat Vidal JJ (1973) Towards direct brain–computer communication. Annu Rev Biophys Bioeng 2:157–180CrossRef Vidal JJ (1973) Towards direct brain–computer communication. Annu Rev Biophys Bioeng 2:157–180CrossRef
5.
Zurück zum Zitat Vidal JJ (1977) Real-time detection of brain events in EEG. IEEE Proc 65:633–664CrossRef Vidal JJ (1977) Real-time detection of brain events in EEG. IEEE Proc 65:633–664CrossRef
6.
Zurück zum Zitat Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (1980) Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol 48:293–301CrossRef Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (1980) Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol 48:293–301CrossRef
7.
Zurück zum Zitat Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523CrossRef Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523CrossRef
8.
Zurück zum Zitat Wolpaw JR, McFarland DJ, Neat GW, Forneris CA (1991) An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol 78:252–259CrossRef Wolpaw JR, McFarland DJ, Neat GW, Forneris CA (1991) An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol 78:252–259CrossRef
9.
Zurück zum Zitat Wolpaw JR, McFarland DJ (1994) Multichannel EEG-based brain-computer communication. Electroencephalogr Clin Neurophysiol 90:444–449CrossRef Wolpaw JR, McFarland DJ (1994) Multichannel EEG-based brain-computer communication. Electroencephalogr Clin Neurophysiol 90:444–449CrossRef
10.
Zurück zum Zitat Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791CrossRef Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791CrossRef
11.
Zurück zum Zitat Vallabhaneni A, Wang T, He B (2005) Brain computer interface. In: He B (ed) Neural engineering. Kluwer Academic, Plenum, New York, pp 85–122 Vallabhaneni A, Wang T, He B (2005) Brain computer interface. In: He B (ed) Neural engineering. Kluwer Academic, Plenum, New York, pp 85–122
12.
Zurück zum Zitat Wolpaw JR, Wolpaw EW (eds) (2012) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford Wolpaw JR, Wolpaw EW (eds) (2012) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford
13.
Zurück zum Zitat Wolpaw JR, Wolpaw EW (2012) Brain-computer interfaces: something new under the sun. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford, pp 3–12CrossRef Wolpaw JR, Wolpaw EW (2012) Brain-computer interfaces: something new under the sun. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford, pp 3–12CrossRef
14.
Zurück zum Zitat Sutter EE (1992) The brain response interface: communication through visually-induced electrical brain responses. J Microcomput Appl 15:31–45CrossRef Sutter EE (1992) The brain response interface: communication through visually-induced electrical brain responses. J Microcomput Appl 15:31–45CrossRef
15.
Zurück zum Zitat Graimann B, Allison B, Pfurtscheller G (eds) (2010b) Brain-computer interfaces. Springer, Berlin, p 21 et passim Graimann B, Allison B, Pfurtscheller G (eds) (2010b) Brain-computer interfaces. Springer, Berlin, p 21 et passim
16.
Zurück zum Zitat McCrea DA, Ryback IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146CrossRef McCrea DA, Ryback IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146CrossRef
17.
Zurück zum Zitat Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21:642–653CrossRef Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21:642–653CrossRef
18.
Zurück zum Zitat Guertin PA, Steuer I (2009) Key central pattern generators of the spinal cord. J Neurosci Res 87:2399–2405CrossRef Guertin PA, Steuer I (2009) Key central pattern generators of the spinal cord. J Neurosci Res 87:2399–2405CrossRef
19.
Zurück zum Zitat Carroll RC, Zukin RS (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25(11):571–577CrossRef Carroll RC, Zukin RS (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25(11):571–577CrossRef
20.
Zurück zum Zitat Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABA-ergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25(11):564–570CrossRef Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABA-ergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25(11):564–570CrossRef
21.
Zurück zum Zitat Vaynman S, Gomez-Pinilla F (2005) License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair 19(4):283–295CrossRef Vaynman S, Gomez-Pinilla F (2005) License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair 19(4):283–295CrossRef
22.
Zurück zum Zitat Saneyoshi T, Fortin DA, Soderling TR (2010) Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 20(1):108–115CrossRef Saneyoshi T, Fortin DA, Soderling TR (2010) Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 20(1):108–115CrossRef
23.
Zurück zum Zitat Wolpaw JR (2010) What can the spinal cord teach us about learning and memory? Neuroscientist 16(5):532–549CrossRef Wolpaw JR (2010) What can the spinal cord teach us about learning and memory? Neuroscientist 16(5):532–549CrossRef
24.
Zurück zum Zitat Yuan H, Liu T, Szarkowski R, Rios C, Ashe J, He B (2010) Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements. Neuroimage 49:2596–2606CrossRef Yuan H, Liu T, Szarkowski R, Rios C, Ashe J, He B (2010) Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements. Neuroimage 49:2596–2606CrossRef
25.
Zurück zum Zitat Yuan H, Perdoni C, He B (2010) Relationship between speed and EEG activity during imagined and executed hand movements. J Neural Eng 7:26001CrossRef Yuan H, Perdoni C, He B (2010) Relationship between speed and EEG activity during imagined and executed hand movements. J Neural Eng 7:26001CrossRef
26.
Zurück zum Zitat Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586CrossRef Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586CrossRef
27.
Zurück zum Zitat Kipke DR, Shain W, Buzsáki G, Fetz E, Henderson JM, Hetke JF, Schalk G (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–8CrossRef Kipke DR, Shain W, Buzsáki G, Fetz E, Henderson JM, Hetke JF, Schalk G (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–8CrossRef
28.
Zurück zum Zitat Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419CrossRef Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419CrossRef
29.
Zurück zum Zitat Kennedy PR (1989) The cone electrode: a long-term electrode that records from neurites grown onto its recording surface. J Neurosci Methods 29:181–193CrossRef Kennedy PR (1989) The cone electrode: a long-term electrode that records from neurites grown onto its recording surface. J Neurosci Methods 29:181–193CrossRef
30.
Zurück zum Zitat Donoghue JP, Sanes JN (1994) Motor areas of the cerebral cortex. J Clin Neurophysiol 11:382–396 Donoghue JP, Sanes JN (1994) Motor areas of the cerebral cortex. J Clin Neurophysiol 11:382–396
31.
Zurück zum Zitat Taylor D, Tillery S, Schwartz A (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832CrossRef Taylor D, Tillery S, Schwartz A (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832CrossRef
32.
Zurück zum Zitat Nicolelis MA, Chapin JK (2002) Controlling robots with the mind. Sci Am 287:46–53CrossRef Nicolelis MA, Chapin JK (2002) Controlling robots with the mind. Sci Am 287:46–53CrossRef
33.
Zurück zum Zitat Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101CrossRef Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101CrossRef
34.
Zurück zum Zitat Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171CrossRef Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171CrossRef
35.
Zurück zum Zitat Truccolo W, Friehs GM, Donoghue JP, Hochberg LR (2008) Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J Neurosci 28:1163–1178CrossRef Truccolo W, Friehs GM, Donoghue JP, Hochberg LR (2008) Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J Neurosci 28:1163–1178CrossRef
36.
Zurück zum Zitat Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–20CrossRef Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–20CrossRef
37.
Zurück zum Zitat Reina GA, Moran DW, Schwartz AB (2001) On the relationship between joint angular velocity and motor cortical discharge during reaching. J Neurophysiol 85(6):2576–89 Reina GA, Moran DW, Schwartz AB (2001) On the relationship between joint angular velocity and motor cortical discharge during reaching. J Neurophysiol 85(6):2576–89
38.
Zurück zum Zitat Wang W, Chan SS, Heldman DA, Moran DW (2010) Motor cortical representation of hand translation and rotation during reaching. J Neurosci 30:958–962CrossRef Wang W, Chan SS, Heldman DA, Moran DW (2010) Motor cortical representation of hand translation and rotation during reaching. J Neurosci 30:958–962CrossRef
39.
Zurück zum Zitat Shin HC, Aggawal V, Acharya S, Schieber MH, Thakor NV (2010) Neural decoding of finger movements using Skellam based maximum likelihood decoding. IEEE Trans Biomed Eng 57:754–760CrossRef Shin HC, Aggawal V, Acharya S, Schieber MH, Thakor NV (2010) Neural decoding of finger movements using Skellam based maximum likelihood decoding. IEEE Trans Biomed Eng 57:754–760CrossRef
40.
Zurück zum Zitat Jarosiewicz B, Chase SM, Fraser GW, Velliste M, Kass RE, Schwartz AB (2008) Functional network reorganization during learning in a brain-computer interface paradigm. Proc Natl Acad Sci USA 105(49):19486–91CrossRef Jarosiewicz B, Chase SM, Fraser GW, Velliste M, Kass RE, Schwartz AB (2008) Functional network reorganization during learning in a brain-computer interface paradigm. Proc Natl Acad Sci USA 105(49):19486–91CrossRef
41.
Zurück zum Zitat Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR (2011) Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng 8(2):025027CrossRef Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR (2011) Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng 8(2):025027CrossRef
42.
Zurück zum Zitat He B, Yang L, Wilke C, Yuan H (2011) Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans Biomed Eng 58(7):1918–31CrossRef He B, Yang L, Wilke C, Yuan H (2011) Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans Biomed Eng 58(7):1918–31CrossRef
43.
Zurück zum Zitat Manning JR, Jacobs J, Fried I, Kahana MJ (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29(43):13613–20CrossRef Manning JR, Jacobs J, Fried I, Kahana MJ (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29(43):13613–20CrossRef
44.
Zurück zum Zitat Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain–computer interface using electrocorticographic signals in humans. J Neural Eng 1:63–71CrossRef Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain–computer interface using electrocorticographic signals in humans. J Neural Eng 1:63–71CrossRef
45.
Zurück zum Zitat Schalk G et al (2007) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4:264–275CrossRef Schalk G et al (2007) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4:264–275CrossRef
46.
Zurück zum Zitat Schalk G et al (2008) Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng 5:75–84CrossRef Schalk G et al (2008) Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng 5:75–84CrossRef
47.
Zurück zum Zitat Leuthardt EC, Gaona C, Sharma M, Szrama N, Roland J, Freudenberg Z, Solis J, Breshears J, Schalk G (2011) Using the electrocorticographic speech network to control a brain-computer interface in humans. J Neural Eng 8(3):036004CrossRef Leuthardt EC, Gaona C, Sharma M, Szrama N, Roland J, Freudenberg Z, Solis J, Breshears J, Schalk G (2011) Using the electrocorticographic speech network to control a brain-computer interface in humans. J Neural Eng 8(3):036004CrossRef
48.
Zurück zum Zitat Zhang P, Jamison K, Engel S, He B, He S (2011) Binocular rivalry requires visual attention. Neuron 71:362–369CrossRef Zhang P, Jamison K, Engel S, He B, He S (2011) Binocular rivalry requires visual attention. Neuron 71:362–369CrossRef
49.
Zurück zum Zitat Michel C, He B (2011) EEG mapping and source imaging. In: Schomer D, Lopes da Silva F (eds) Niedermeyer’s electroencephalography, Chap 55, 6th edn. Wolters Kluwer & Lippincott Williams & Wilkins, Philadelphia, pp 1179–1202 Michel C, He B (2011) EEG mapping and source imaging. In: Schomer D, Lopes da Silva F (eds) Niedermeyer’s electroencephalography, Chap 55, 6th edn. Wolters Kluwer & Lippincott Williams & Wilkins, Philadelphia, pp 1179–1202
50.
Zurück zum Zitat Malmivuo J, Plonsey R (1995) Bioelectromagnetism - principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New YorkCrossRef Malmivuo J, Plonsey R (1995) Bioelectromagnetism - principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New YorkCrossRef
51.
Zurück zum Zitat Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA 101:17849–17854CrossRef Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA 101:17849–17854CrossRef
53.
Zurück zum Zitat McFarland DJ, Sarnacki WA, Wolpaw JR (2010) Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng 7:036007CrossRef McFarland DJ, Sarnacki WA, Wolpaw JR (2010) Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng 7:036007CrossRef
54.
Zurück zum Zitat Royer AS, Doud AJ, Rose ML, He B (2010) EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies. IEEE Trans Neural Syst Rehabil Eng 18(6):581–9CrossRef Royer AS, Doud AJ, Rose ML, He B (2010) EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies. IEEE Trans Neural Syst Rehabil Eng 18(6):581–9CrossRef
55.
Zurück zum Zitat He B (ed) (2004) Modeling and imaging of bioelectrical activity: principle and applications. Kluwer Academic, Plenum, New York He B (ed) (2004) Modeling and imaging of bioelectrical activity: principle and applications. Kluwer Academic, Plenum, New York
56.
Zurück zum Zitat Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, OxfordCrossRef Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, OxfordCrossRef
57.
Zurück zum Zitat Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2010) Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J Neurosci 30(9):3432–7CrossRef Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2010) Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J Neurosci 30(9):3432–7CrossRef
58.
Zurück zum Zitat Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2011) Fast attainment of computer cursor control with noninvasively acquired brain signals. J Neural Eng 8(3):036010CrossRef Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2011) Fast attainment of computer cursor control with noninvasively acquired brain signals. J Neural Eng 8(3):036010CrossRef
59.
Zurück zum Zitat Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A, Mehring C (2008) Hand movement direction decoded from MEG and EEG. J Neurosci 28:1000–1008CrossRef Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A, Mehring C (2008) Hand movement direction decoded from MEG and EEG. J Neurosci 28:1000–1008CrossRef
60.
Zurück zum Zitat Moran DW, Schwartz AB (1999) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82:2676–2692 Moran DW, Schwartz AB (1999) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82:2676–2692
61.
Zurück zum Zitat Qin L, Ding L, He B (2004) Motor imagery classification by means of source analysis for brain-computer interface applications. J Neural Eng 1:135–141CrossRef Qin L, Ding L, He B (2004) Motor imagery classification by means of source analysis for brain-computer interface applications. J Neural Eng 1:135–141CrossRef
62.
Zurück zum Zitat Kamousi B, Liu Z, He B (2005) Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Trans Neural Syst Rehabil Eng 13:166–171CrossRef Kamousi B, Liu Z, He B (2005) Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Trans Neural Syst Rehabil Eng 13:166–171CrossRef
63.
Zurück zum Zitat Kamousi B, Amini AN, He B (2007) Classification of motor imagery by means of cortical current density estimation and von neumann entropy. J Neural Eng 4:17–25CrossRef Kamousi B, Amini AN, He B (2007) Classification of motor imagery by means of cortical current density estimation and von neumann entropy. J Neural Eng 4:17–25CrossRef
64.
Zurück zum Zitat Cincotti F, Mattia D, Aloise F, Bufalari S, Astolfi L, Vico Fallani F, Tocci A, Bianchi L, Marciani MG, Gao S, Millan J, Babiloni F (2008) High-resolution EEG techniques for brain–computer interface applications. J Neurosci Methods 167:31–42CrossRef Cincotti F, Mattia D, Aloise F, Bufalari S, Astolfi L, Vico Fallani F, Tocci A, Bianchi L, Marciani MG, Gao S, Millan J, Babiloni F (2008) High-resolution EEG techniques for brain–computer interface applications. J Neurosci Methods 167:31–42CrossRef
65.
Zurück zum Zitat Noirhomme Q, Kitney RI, Macq B (2008) Single-trial EEG source reconstruction for brain–computer interface. IEEE Trans Biomed Eng 55:1592–1601CrossRef Noirhomme Q, Kitney RI, Macq B (2008) Single-trial EEG source reconstruction for brain–computer interface. IEEE Trans Biomed Eng 55:1592–1601CrossRef
66.
Zurück zum Zitat Yuan H, Doud A, Gururajan A, He B (2008) Cortical imaging of event-related (de)synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain. IEEE Trans Neural Syst Rehabil Eng 16:425–431CrossRef Yuan H, Doud A, Gururajan A, He B (2008) Cortical imaging of event-related (de)synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain. IEEE Trans Neural Syst Rehabil Eng 16:425–431CrossRef
67.
Zurück zum Zitat Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kübler A (2007) An MEG-based brain-computer interface (BCI). Neuroimage 36(3):581–93CrossRef Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kübler A (2007) An MEG-based brain-computer interface (BCI). Neuroimage 36(3):581–93CrossRef
68.
Zurück zum Zitat Van Der Werf J, Jensen O, Fries P, Medendorp WP (2010) Neuronal synchronization in human posterior parietal cortex during reach planning. J Neurosci 30(4):1402–12CrossRef Van Der Werf J, Jensen O, Fries P, Medendorp WP (2010) Neuronal synchronization in human posterior parietal cortex during reach planning. J Neurosci 30(4):1402–12CrossRef
69.
Zurück zum Zitat Darvas F, Scherer R, Ojemann JG, Rao RP, Miller KJ, Sorensen LB (2010) High gamma mapping using EEG. Neuroimage 49(1):930–8CrossRef Darvas F, Scherer R, Ojemann JG, Rao RP, Miller KJ, Sorensen LB (2010) High gamma mapping using EEG. Neuroimage 49(1):930–8CrossRef
70.
Zurück zum Zitat Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography – theory, instrumetation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497CrossRef Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography – theory, instrumetation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497CrossRef
71.
Zurück zum Zitat Battapady H, Lin P, Holroyd T, Hallett M, Chen X, Fei DY, Bai O (2009) Spatial detection of multiple movement intentions from SAM-filtered single-trial MEG signals. Clin Neurophysiol 120(11):1978–87CrossRef Battapady H, Lin P, Holroyd T, Hallett M, Chen X, Fei DY, Bai O (2009) Spatial detection of multiple movement intentions from SAM-filtered single-trial MEG signals. Clin Neurophysiol 120(11):1978–87CrossRef
72.
Zurück zum Zitat Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5CrossRef Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5CrossRef
73.
Zurück zum Zitat Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(12):5675–9CrossRef Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(12):5675–9CrossRef
74.
Zurück zum Zitat Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–7CrossRef Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–7CrossRef
75.
Zurück zum Zitat Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–72CrossRef Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–72CrossRef
76.
Zurück zum Zitat Yuan H, Perdoni C, Yang L, He B (2011) Differential electrophysiological coupling for positive and negative BOLD responses during unilateral hand movements. J Neurosci 31(26):9585–93CrossRef Yuan H, Perdoni C, Yang L, He B (2011) Differential electrophysiological coupling for positive and negative BOLD responses during unilateral hand movements. J Neurosci 31(26):9585–93CrossRef
77.
Zurück zum Zitat Cox RW, Jesmanowicz A, Hyde JS (1995) Real-time functional magnetic resonance imaging. Magn Reson Med 33(2):230–6CrossRef Cox RW, Jesmanowicz A, Hyde JS (1995) Real-time functional magnetic resonance imaging. Magn Reson Med 33(2):230–6CrossRef
78.
Zurück zum Zitat Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1847CrossRef Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1847CrossRef
79.
Zurück zum Zitat Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134CrossRef Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134CrossRef
80.
Zurück zum Zitat Pfurtscheller G, Neuper C, Flotzinger D (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103(6):642–651CrossRef Pfurtscheller G, Neuper C, Flotzinger D (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103(6):642–651CrossRef
81.
Zurück zum Zitat McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR (2000) Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12:177–186CrossRef McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR (2000) Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12:177–186CrossRef
82.
Zurück zum Zitat Wang T, Deng J, He B (2004) Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clin Neurophysiol 115:2744–2753CrossRef Wang T, Deng J, He B (2004) Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clin Neurophysiol 115:2744–2753CrossRef
83.
Zurück zum Zitat Wang T, He B (2004) An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in brain computer interface, J Neural Eng 1(1):1–7CrossRef Wang T, He B (2004) An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in brain computer interface, J Neural Eng 1(1):1–7CrossRef
84.
Zurück zum Zitat Yamawaki N, Wilke C, Liu Z, He B (2006) An enhanced time-frequency approach for motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 14(2):250–254CrossRef Yamawaki N, Wilke C, Liu Z, He B (2006) An enhanced time-frequency approach for motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 14(2):250–254CrossRef
85.
Zurück zum Zitat Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RP (2010) Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci USA 107:4430–4435CrossRef Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RP (2010) Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci USA 107:4430–4435CrossRef
86.
Zurück zum Zitat Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398(6725):297–298CrossRef Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398(6725):297–298CrossRef
87.
Zurück zum Zitat Birbaumer N, Kübler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, Iversen I, Kotchoubey B, Neumann N, Flor H (2000) The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng 8(2):190–193CrossRef Birbaumer N, Kübler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, Iversen I, Kotchoubey B, Neumann N, Flor H (2000) The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng 8(2):190–193CrossRef
88.
Zurück zum Zitat Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:355–425 Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:355–425
89.
Zurück zum Zitat Kubler A, Kotchoubey B, Kaiser J, Wolpaw J, Birbaumer N (2001) Brain-computer communication: unlocking the locked in. Psychol Bull 127(3):358–375CrossRef Kubler A, Kotchoubey B, Kaiser J, Wolpaw J, Birbaumer N (2001) Brain-computer communication: unlocking the locked in. Psychol Bull 127(3):358–375CrossRef
90.
Zurück zum Zitat Spencer KM, Dien J, Donchin E (2001) Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology 38(2):343–358CrossRef Spencer KM, Dien J, Donchin E (2001) Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology 38(2):343–358CrossRef
91.
Zurück zum Zitat Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11(5):449–455CrossRef Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11(5):449–455CrossRef
92.
Zurück zum Zitat Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain-computer interfaces based on steady-state visual evoked response. IEEE Trans Rehabil Eng 8(2):211–214CrossRef Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain-computer interfaces based on steady-state visual evoked response. IEEE Trans Rehabil Eng 8(2):211–214CrossRef
93.
Zurück zum Zitat Ortner R, Allison B, Korisek G, Gaggl H, Pfurtscheller G (2011) An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 19(1):1–5CrossRef Ortner R, Allison B, Korisek G, Gaggl H, Pfurtscheller G (2011) An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 19(1):1–5CrossRef
94.
Zurück zum Zitat Pan J, Gao X, Duan F, Yan Z, Gao S (2011) Enhancing the classification accuracy of steady-state visual evoked potential-based brain–computer interfaces using phase constrained canonical correlation analysis. J Neural Eng 8:036027CrossRef Pan J, Gao X, Duan F, Yan Z, Gao S (2011) Enhancing the classification accuracy of steady-state visual evoked potential-based brain–computer interfaces using phase constrained canonical correlation analysis. J Neural Eng 8:036027CrossRef
95.
Zurück zum Zitat Kennedy PR, Bakay RA (1998) Restoration of neural output from a paralyzed patient by a direct brain connection. NeuroReport 9:1707–1711CrossRef Kennedy PR, Bakay RA (1998) Restoration of neural output from a paralyzed patient by a direct brain connection. NeuroReport 9:1707–1711CrossRef
96.
Zurück zum Zitat Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR (2003) EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol 114:1580–1593CrossRef Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR (2003) EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol 114:1580–1593CrossRef
97.
Zurück zum Zitat McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103:386–394CrossRef McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103:386–394CrossRef
98.
Zurück zum Zitat Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39(5):526–530CrossRef Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39(5):526–530CrossRef
99.
Zurück zum Zitat Perrin F, Bertrand O, Pernier J (1987) Scalp current density mapping: value and estimation from potential data. IEEE Trans Biomed Eng 34:283–288CrossRef Perrin F, Bertrand O, Pernier J (1987) Scalp current density mapping: value and estimation from potential data. IEEE Trans Biomed Eng 34:283–288CrossRef
100.
Zurück zum Zitat He B, Cohen R (1992) Body surface Laplacian ECG mapping. IEEE Trans Biomed Eng 39(11):1179–1191CrossRef He B, Cohen R (1992) Body surface Laplacian ECG mapping. IEEE Trans Biomed Eng 39(11):1179–1191CrossRef
101.
Zurück zum Zitat Le J, Menon V, Gevins A (1992) Local estimate of surface Laplacian derivation on a realistically shaped scalp surface and its performance on noisy data. Electroencephalogr Clin Neurophysiol 92:433–441 Le J, Menon V, Gevins A (1992) Local estimate of surface Laplacian derivation on a realistically shaped scalp surface and its performance on noisy data. Electroencephalogr Clin Neurophysiol 92:433–441
102.
Zurück zum Zitat Nunez P, Silberstein R, Cadusch P, Wijesinghe R, Westdorp A, Srinivasan R (1994) A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroencephalogr Clin Neurophysiol 90(1):40–57CrossRef Nunez P, Silberstein R, Cadusch P, Wijesinghe R, Westdorp A, Srinivasan R (1994) A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroencephalogr Clin Neurophysiol 90(1):40–57CrossRef
103.
Zurück zum Zitat Babiloni F, Babiloni C, Carducci F, Fattorini L, Onorati P, Urbano A (1996) Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model. Electroencephalogr Clin Neurophysiol 98(4):363–73CrossRef Babiloni F, Babiloni C, Carducci F, Fattorini L, Onorati P, Urbano A (1996) Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model. Electroencephalogr Clin Neurophysiol 98(4):363–73CrossRef
104.
Zurück zum Zitat He B (1999) Brain electric source imaging: scalp Laplacian mapping and cortical imaging. Crit Rev Biomed Eng 27:149–188 He B (1999) Brain electric source imaging: scalp Laplacian mapping and cortical imaging. Crit Rev Biomed Eng 27:149–188
105.
Zurück zum Zitat He B, Lain J, Li G (2001) High-resolution EEG: a new realistic geometry spline Laplacian estimation technique. Clin Neurophysiol 112(5):845–852CrossRef He B, Lain J, Li G (2001) High-resolution EEG: a new realistic geometry spline Laplacian estimation technique. Clin Neurophysiol 112(5):845–852CrossRef
106.
Zurück zum Zitat Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537 Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537
107.
Zurück zum Zitat Kettner RE, Schwartz AB, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. positional gradients and population coding of movement direction from various movement origins. J Neurosci 8:2938–2947 Kettner RE, Schwartz AB, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. positional gradients and population coding of movement direction from various movement origins. J Neurosci 8:2938–2947
108.
Zurück zum Zitat Fu QG, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. J Neurophysiol 73:836–854 Fu QG, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. J Neurophysiol 73:836–854
109.
Zurück zum Zitat Schwartz AB (1994) Direct cortical representation of drawing. Science 265:540–542CrossRef Schwartz AB (1994) Direct cortical representation of drawing. Science 265:540–542CrossRef
110.
Zurück zum Zitat Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91:515–532CrossRef Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91:515–532CrossRef
111.
Zurück zum Zitat Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159CrossRef Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159CrossRef
112.
Zurück zum Zitat Blum AL, Langely P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97:245–271MATHCrossRef Blum AL, Langely P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97:245–271MATHCrossRef
113.
Zurück zum Zitat Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446CrossRef Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446CrossRef
114.
Zurück zum Zitat Babiloni F, Cincotti F, Bianchi L, Pirri G, Millan J, Mourino J, Salinari S, Marciani MG (2001) Recognition of imagined hand movements with low resolution surface Laplacian and linear classifiers. Med Eng Phys 23:323–328CrossRef Babiloni F, Cincotti F, Bianchi L, Pirri G, Millan J, Mourino J, Salinari S, Marciani MG (2001) Recognition of imagined hand movements with low resolution surface Laplacian and linear classifiers. Med Eng Phys 23:323–328CrossRef
115.
Zurück zum Zitat Blankertz B, Curio G, Müller K (2002) Classifying single trial EEG: towards brain computer interfacing. Adv Neural Inf Proc Syst 14:157–164 Blankertz B, Curio G, Müller K (2002) Classifying single trial EEG: towards brain computer interfacing. Adv Neural Inf Proc Syst 14:157–164
116.
Zurück zum Zitat Cincotti F, Mattia D, Babiloni C, Carducci F, Bianchi L, Millan J, Mourino J, Salinari S, Marciani M, Babiloni F (2002) Classification of EEG mental patterns by using two scalp electrodes and Mahalanobis distance based classifiers. Method Inform Med 41:337–341 Cincotti F, Mattia D, Babiloni C, Carducci F, Bianchi L, Millan J, Mourino J, Salinari S, Marciani M, Babiloni F (2002) Classification of EEG mental patterns by using two scalp electrodes and Mahalanobis distance based classifiers. Method Inform Med 41:337–341
117.
Zurück zum Zitat Peters BO, Pfurtscheller G, Flyvbjerg H (1998) Mining multi-channel EEG for its information content: an ANN-based method for a brain-computer interface. Neural Netw 11:1429–1433CrossRef Peters BO, Pfurtscheller G, Flyvbjerg H (1998) Mining multi-channel EEG for its information content: an ANN-based method for a brain-computer interface. Neural Netw 11:1429–1433CrossRef
118.
Zurück zum Zitat Robert C, Gaudy J, Limoge A (2002) Electroencephalogram processing using neural networks. Clin Neurophysiol 113:694–701CrossRef Robert C, Gaudy J, Limoge A (2002) Electroencephalogram processing using neural networks. Clin Neurophysiol 113:694–701CrossRef
119.
Zurück zum Zitat Deng J, He B (2003) Classification of imaginary tasks from three channels of EEG by using an artificial neural network. In: Proceedings of 25th international conference on IEEE EMBS, CD-ROM Deng J, He B (2003) Classification of imaginary tasks from three channels of EEG by using an artificial neural network. In: Proceedings of 25th international conference on IEEE EMBS, CD-ROM
120.
Zurück zum Zitat Vallabhaneni A, He B (2004) Motor imagery task classification for brain computer interface applications using spatio-temporal principle component analysis. Neurol Res 26(3):282–287CrossRef Vallabhaneni A, He B (2004) Motor imagery task classification for brain computer interface applications using spatio-temporal principle component analysis. Neurol Res 26(3):282–287CrossRef
121.
Zurück zum Zitat Obermaier B, Guger C, Neuper C, Pfurthscheller G (2001) Hidden Markov models for online classification of single trial EEG data. Pattern Recogn Lett 22:1299–1309MATHCrossRef Obermaier B, Guger C, Neuper C, Pfurthscheller G (2001) Hidden Markov models for online classification of single trial EEG data. Pattern Recogn Lett 22:1299–1309MATHCrossRef
122.
Zurück zum Zitat Curran E, Sykacek P, Stokes M, Roberts SJ, Penny W, Johnsrude I, Owen AM (2004) Cognitive tasks for driving a brain–computer interfacing system: a pilot study. IEEE Trans Neural Syst Rehabil Eng 12:48–54CrossRef Curran E, Sykacek P, Stokes M, Roberts SJ, Penny W, Johnsrude I, Owen AM (2004) Cognitive tasks for driving a brain–computer interfacing system: a pilot study. IEEE Trans Neural Syst Rehabil Eng 12:48–54CrossRef
123.
Zurück zum Zitat Lemm S, Schafer C, Curio G (2004) BCI competition 2003–data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements. IEEE Trans Biomed Eng 51:1077–80CrossRef Lemm S, Schafer C, Curio G (2004) BCI competition 2003–data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements. IEEE Trans Biomed Eng 51:1077–80CrossRef
124.
Zurück zum Zitat Bashashati A, Fatourechi M, Wardand RK, Birch GE (2007) A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals (Topical review). J Neural Eng 4:R32–R57. doi:10.1088/1741-2560/4/2/R03 CrossRef Bashashati A, Fatourechi M, Wardand RK, Birch GE (2007) A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals (Topical review). J Neural Eng 4:R32–R57. doi:10.​1088/​1741-2560/​4/​2/​R03 CrossRef
125.
126.
Zurück zum Zitat Krusienski DJ, McFarland DJ, Principe JC (2012) BCI signal processing: feature extraction. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford, pp 123–146 Krusienski DJ, McFarland DJ, Principe JC (2012) BCI signal processing: feature extraction. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford, pp 123–146
127.
Zurück zum Zitat McFarland DJ, Krusienski DJ (2012) BCI signal processing: feature translation. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford, pp 147–164 McFarland DJ, Krusienski DJ (2012) BCI signal processing: feature translation. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford, pp 147–164
128.
Zurück zum Zitat Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–642CrossRef Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–642CrossRef
129.
Zurück zum Zitat Tam W, Tong K, Meng F, Gao S (2011) A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: a multi-session study. IEEE Trans Neural Syst Rehabil Eng 19(6):617–627CrossRef Tam W, Tong K, Meng F, Gao S (2011) A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: a multi-session study. IEEE Trans Neural Syst Rehabil Eng 19(6):617–627CrossRef
130.
Zurück zum Zitat Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N (2008) Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3):910–7CrossRef Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N (2008) Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3):910–7CrossRef
131.
Zurück zum Zitat Dimyan MA, Cohen LG (2011) Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol 7(2):76–85CrossRef Dimyan MA, Cohen LG (2011) Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol 7(2):76–85CrossRef
132.
Zurück zum Zitat Alon G, Sunnerhagen KS, Geurts AC, Ohry A (2003) A home-based, selfadministered stimulation program to improve selected hand functions of chronic stroke. NeuroRehabilitation 18:215–25 Alon G, Sunnerhagen KS, Geurts AC, Ohry A (2003) A home-based, selfadministered stimulation program to improve selected hand functions of chronic stroke. NeuroRehabilitation 18:215–25
133.
Zurück zum Zitat Ring H, Rosenthal N (2005) Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J Rehabil Med 37:32–36CrossRef Ring H, Rosenthal N (2005) Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J Rehabil Med 37:32–36CrossRef
134.
Zurück zum Zitat Daly JJ, Hogan N, Perepezko EM et al (2005) Response to upper-limb robotics and functional neuromuscular stimulation following stroke. J Rehabil Res Dev 42:723–36CrossRef Daly JJ, Hogan N, Perepezko EM et al (2005) Response to upper-limb robotics and functional neuromuscular stimulation following stroke. J Rehabil Res Dev 42:723–36CrossRef
135.
Zurück zum Zitat Royer A, Rose M, He B (2011) Goal selection vs. process control while learning to use a brain-computer interface. J Neural Eng 8(3):036012CrossRef Royer A, Rose M, He B (2011) Goal selection vs. process control while learning to use a brain-computer interface. J Neural Eng 8(3):036012CrossRef
136.
Zurück zum Zitat Pfurtscheller G, Leeb R, Keinrath C, Friedman D, Neuper C, Guger C, Slater M (2006) Walking from thought. Brain Res 1071:145–152CrossRef Pfurtscheller G, Leeb R, Keinrath C, Friedman D, Neuper C, Guger C, Slater M (2006) Walking from thought. Brain Res 1071:145–152CrossRef
137.
Zurück zum Zitat Schalk G, McFarland D, Hinterberger T, Birbaumer N, Wolpaw J (2004) BCI2000: a general purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51:1034–1043CrossRef Schalk G, McFarland D, Hinterberger T, Birbaumer N, Wolpaw J (2004) BCI2000: a general purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51:1034–1043CrossRef
138.
Zurück zum Zitat Schalk G, Mellinger J (2010) A practical guide to brain-computer interfacing with BCI 2000. Springer, BerlinCrossRef Schalk G, Mellinger J (2010) A practical guide to brain-computer interfacing with BCI 2000. Springer, BerlinCrossRef
139.
Zurück zum Zitat Wolpaw JR (2010) Brain-computer interface research comes of age: traditional assumptions meet emerging realities. J Motor Behav 42:351–353CrossRef Wolpaw JR (2010) Brain-computer interface research comes of age: traditional assumptions meet emerging realities. J Motor Behav 42:351–353CrossRef
140.
Zurück zum Zitat Pfurtscheller G, Flotzinger D, Kallcher J (1993) Brain-computer interface: a new communication device for handicapped persons. J Microcomput Appl 16:293–299CrossRef Pfurtscheller G, Flotzinger D, Kallcher J (1993) Brain-computer interface: a new communication device for handicapped persons. J Microcomput Appl 16:293–299CrossRef
141.
Zurück zum Zitat Donchin E (1981) Presidential address, 1980. Surprise! … Surprise? Psychophysiology 18:493–513CrossRef Donchin E (1981) Presidential address, 1980. Surprise! … Surprise? Psychophysiology 18:493–513CrossRef
142.
Zurück zum Zitat Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain–computer interface. IEEE Trans Rehabil Eng 8(2):174–179CrossRef Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain–computer interface. IEEE Trans Rehabil Eng 8(2):174–179CrossRef
143.
Zurück zum Zitat Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan TM, Wolpaw JR, Seller EW (2010) A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121:1109–1120CrossRef Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan TM, Wolpaw JR, Seller EW (2010) A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121:1109–1120CrossRef
144.
Zurück zum Zitat Martens SMM, Hill NJ, Farquhar J, Schölkopf B (2009) Overlap and refractory effects in a brain–computer interface speller based on the visual P300 event-related potential. J Neural Eng 6:026003CrossRef Martens SMM, Hill NJ, Farquhar J, Schölkopf B (2009) Overlap and refractory effects in a brain–computer interface speller based on the visual P300 event-related potential. J Neural Eng 6:026003CrossRef
146.
Zurück zum Zitat Treder MS, Blankertz B (2010) Covert attention and visual speller design in an ERP-based brain–computer interface. Behav Brain Funct 6(1):28CrossRef Treder MS, Blankertz B (2010) Covert attention and visual speller design in an ERP-based brain–computer interface. Behav Brain Funct 6(1):28CrossRef
147.
Zurück zum Zitat Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, Schalk G (2010) Does the ‘P300’ speller depend on eye gaze? J Neural Eng 7(5):056013CrossRef Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, Schalk G (2010) Does the ‘P300’ speller depend on eye gaze? J Neural Eng 7(5):056013CrossRef
148.
Zurück zum Zitat Liu Y, Zhou Z, Hu D (2011) Gaze independent brain–computer speller with covert visual search tasks. Clin Neurophysiol 122:1127–1136CrossRef Liu Y, Zhou Z, Hu D (2011) Gaze independent brain–computer speller with covert visual search tasks. Clin Neurophysiol 122:1127–1136CrossRef
149.
Zurück zum Zitat Hong B, Guo F, Liu T, Gao X, Gao S (2009) N200-speller using motion-onset visual response. ClinNeurophysiol 120(9):1658–66 Hong B, Guo F, Liu T, Gao X, Gao S (2009) N200-speller using motion-onset visual response. ClinNeurophysiol 120(9):1658–66
150.
Zurück zum Zitat Wang Y, Wang R, Gao X, Hong B, Gao S (2006) A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14(2):234–239CrossRef Wang Y, Wang R, Gao X, Hong B, Gao S (2006) A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14(2):234–239CrossRef
151.
Zurück zum Zitat Bin G, Gao X, Wang Y, Hong B, Gao S (2009a) VEP-based brain-computer interfaces: time, frequency, and code modulations. IEEE Comput Intell Mag 22–26 Bin G, Gao X, Wang Y, Hong B, Gao S (2009a) VEP-based brain-computer interfaces: time, frequency, and code modulations. IEEE Comput Intell Mag 22–26
152.
Zurück zum Zitat Cheng M, Gao X, Gao S, Xu D (2002) Design and Implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 49(10):1181–1186CrossRef Cheng M, Gao X, Gao S, Xu D (2002) Design and Implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 49(10):1181–1186CrossRef
153.
Zurück zum Zitat Gao X, Xu D, Cheng M, Gao S (2003) A BCI-based environmental controller for the motiondisabled. IEEE Trans Neural Syst Rehabil Eng 11(2):137–140CrossRef Gao X, Xu D, Cheng M, Gao S (2003) A BCI-based environmental controller for the motiondisabled. IEEE Trans Neural Syst Rehabil Eng 11(2):137–140CrossRef
155.
Zurück zum Zitat Guo F, Hong B, Gao X, Gao S (2008) A brain computer interface using motion-onset visual evoked potential. J Neural Eng 5(4):477–485CrossRef Guo F, Hong B, Gao X, Gao S (2008) A brain computer interface using motion-onset visual evoked potential. J Neural Eng 5(4):477–485CrossRef
156.
Zurück zum Zitat Lee PL, Hsieh JC, Wu CH, Shyu KK, Chen SS, Yeh TC, Wu YT (2006) The brain computer interface using flash visual evoked potential and independent component analysis. Ann Biomed Eng 34(10):1641–1654CrossRef Lee PL, Hsieh JC, Wu CH, Shyu KK, Chen SS, Yeh TC, Wu YT (2006) The brain computer interface using flash visual evoked potential and independent component analysis. Ann Biomed Eng 34(10):1641–1654CrossRef
157.
Zurück zum Zitat Lee PL, Hsieh JC, Wu CH, Shyu KK, Wu YT (2008) Brain computer interface using flash onset and offset visual evoked potentials. Clin Neurophysiol 119(3):605–616CrossRef Lee PL, Hsieh JC, Wu CH, Shyu KK, Wu YT (2008) Brain computer interface using flash onset and offset visual evoked potentials. Clin Neurophysiol 119(3):605–616CrossRef
158.
Zurück zum Zitat Sutter EE (1984) The visual evoked response as a communication channel. IEEE Trans Biomed Eng 31(8):583 Sutter EE (1984) The visual evoked response as a communication channel. IEEE Trans Biomed Eng 31(8):583
159.
Zurück zum Zitat Hanagata J, Momose K (2002) A method for detecting gazed target using visual evoked potentials elicited by pseudorandom stimuli. In: Proceedings of 5th Asia Pacific conference on medical and biological engineering and 11th international conference on biomedical engineering (ICBME) Hanagata J, Momose K (2002) A method for detecting gazed target using visual evoked potentials elicited by pseudorandom stimuli. In: Proceedings of 5th Asia Pacific conference on medical and biological engineering and 11th international conference on biomedical engineering (ICBME)
160.
Zurück zum Zitat Momose K (2007) Evaluation of an eye gaze point detection method using VEP elicited by multi-pseudorandom stimulation for brain computer interface. In: Proceedings of 29th annual international conference of IEEE EMBS Momose K (2007) Evaluation of an eye gaze point detection method using VEP elicited by multi-pseudorandom stimulation for brain computer interface. In: Proceedings of 29th annual international conference of IEEE EMBS
162.
Zurück zum Zitat Kluge T, Hartmann M (2007) Phase coherent detection of steady-stateevoked potentials: Experimental results and application to brain–computer interfaces. In: Proceedings of 3rd International IEEE EMBS neural engineering conference, pp 425–429 Kluge T, Hartmann M (2007) Phase coherent detection of steady-stateevoked potentials: Experimental results and application to brain–computer interfaces. In: Proceedings of 3rd International IEEE EMBS neural engineering conference, pp 425–429
163.
Zurück zum Zitat Wilson JJ, Palaniappan R (2009) Augmenting a SSVEP BCI through single cycle analysis and phase weighting. In: Proceedings of 4th international IEEE EMBS conference on neural engineering, Antalya, Turkey, pp 371–374 Wilson JJ, Palaniappan R (2009) Augmenting a SSVEP BCI through single cycle analysis and phase weighting. In: Proceedings of 4th international IEEE EMBS conference on neural engineering, Antalya, Turkey, pp 371–374
164.
Zurück zum Zitat Jia C, Gao X, Hong B, Gao S (2011) Frequency and phase mixed coding in SSVEP-based brain–computer interface. IEEE Trans Biomed Eng 58(1):200–206CrossRef Jia C, Gao X, Hong B, Gao S (2011) Frequency and phase mixed coding in SSVEP-based brain–computer interface. IEEE Trans Biomed Eng 58(1):200–206CrossRef
165.
Zurück zum Zitat Wang Y, Gao X, Hong B, Jia C, Gao S (2008) Brain-computer interfaces based on visual evoked potentials: feasibility of practical system designs. IEEE EMBS Mag 27(5):64–71 Wang Y, Gao X, Hong B, Jia C, Gao S (2008) Brain-computer interfaces based on visual evoked potentials: feasibility of practical system designs. IEEE EMBS Mag 27(5):64–71
166.
Zurück zum Zitat Wang Y, Gao X, Hong B, Jia C, Gao S (2008) Brain-computer interfaces based on visual evoked potentials. IEEE Eng Med Biol Mag 27(5):64–71CrossRef Wang Y, Gao X, Hong B, Jia C, Gao S (2008) Brain-computer interfaces based on visual evoked potentials. IEEE Eng Med Biol Mag 27(5):64–71CrossRef
167.
Zurück zum Zitat Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kubler A (2008) An auditory brain-computer interface. J Neurosci Methods 167:43–50CrossRef Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kubler A (2008) An auditory brain-computer interface. J Neurosci Methods 167:43–50CrossRef
168.
Zurück zum Zitat Hinterberger T, Hill J, Birbaumer N (2004) An auditory brain-computercommunication device. In: Paper presented at the IEEE International Workshop on Biomedical Circuits Systems, Singapore Hinterberger T, Hill J, Birbaumer N (2004) An auditory brain-computercommunication device. In: Paper presented at the IEEE International Workshop on Biomedical Circuits Systems, Singapore
169.
Zurück zum Zitat Pham M, Hinterberger T, Neumann N, Kubler A, Hofmayer N, Grether A, Wilhelm B, Vatine JJ, Birbaumer N (2005) An auditory brain-computer interface based on the self-regulation of slow cortical potentials. Neurorehabil Neural Repair 19:206–218CrossRef Pham M, Hinterberger T, Neumann N, Kubler A, Hofmayer N, Grether A, Wilhelm B, Vatine JJ, Birbaumer N (2005) An auditory brain-computer interface based on the self-regulation of slow cortical potentials. Neurorehabil Neural Repair 19:206–218CrossRef
170.
Zurück zum Zitat Hill NJ, Lal TN, Bierig K, Birbaumer N, Scholkopf B (2004) Attentional modulation of auditory event-related potentials in a brain-computer interface. In: IEEE international workshop on biomedical circuits systems, Singapore Hill NJ, Lal TN, Bierig K, Birbaumer N, Scholkopf B (2004) Attentional modulation of auditory event-related potentials in a brain-computer interface. In: IEEE international workshop on biomedical circuits systems, Singapore
171.
Zurück zum Zitat Sellers EW, Donchin E (2006) A P300-based brain-computer-interface: initial tests by ALS patients. Clin Neurophysiol 117:538–548CrossRef Sellers EW, Donchin E (2006) A P300-based brain-computer-interface: initial tests by ALS patients. Clin Neurophysiol 117:538–548CrossRef
172.
Zurück zum Zitat Furdea A, Halder S, Krusienski DJ (2009) An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 46:617–625CrossRef Furdea A, Halder S, Krusienski DJ (2009) An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 46:617–625CrossRef
173.
Zurück zum Zitat Guo J, Gao S, Hong B (2010) An auditory brain–computer interface using active mental response. IEEE Trans Neural Syst Rehabil Eng 18(3):230–235CrossRef Guo J, Gao S, Hong B (2010) An auditory brain–computer interface using active mental response. IEEE Trans Neural Syst Rehabil Eng 18(3):230–235CrossRef
174.
Zurück zum Zitat Kubler A, Furdea A, Halder S, Hammer EM, Nijboer F, Kotchoubey B (2009) A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Disord Conscious 1157:90–100 Kubler A, Furdea A, Halder S, Hammer EM, Nijboer F, Kotchoubey B (2009) A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Disord Conscious 1157:90–100
175.
Zurück zum Zitat Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42CrossRef Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42CrossRef
176.
Zurück zum Zitat Posner MI, Dehane S (1994) Attentional networks. Trends Neurosci 17:75–9CrossRef Posner MI, Dehane S (1994) Attentional networks. Trends Neurosci 17:75–9CrossRef
177.
Zurück zum Zitat Desimone R, Duncan J (1995) Neural mechanisms of selective visual-attention. Annu Rev Neurosci 18:193–222CrossRef Desimone R, Duncan J (1995) Neural mechanisms of selective visual-attention. Annu Rev Neurosci 18:193–222CrossRef
178.
Zurück zum Zitat Kelly SP, Lalor EC, Finucane C, McDarby G, Reilly RB (2005) Visual spatial attention control in an independentbrain–computer interface. IEEE Trans Biomed Eng 52:1588–96CrossRef Kelly SP, Lalor EC, Finucane C, McDarby G, Reilly RB (2005) Visual spatial attention control in an independentbrain–computer interface. IEEE Trans Biomed Eng 52:1588–96CrossRef
179.
Zurück zum Zitat Kelly SP, Lalor EC, Reilly RB, FoxeJ J (2005) Visual spatial attention tracking using high-density SSVEP data for independent brain–computer communication. IEEE Trans Neural Syst Rehabil Eng 13:172–8CrossRef Kelly SP, Lalor EC, Reilly RB, FoxeJ J (2005) Visual spatial attention tracking using high-density SSVEP data for independent brain–computer communication. IEEE Trans Neural Syst Rehabil Eng 13:172–8CrossRef
180.
Zurück zum Zitat Zhang D, Maye A, Gao X, Hong B, Engel AK, Gao S (2010) An independent brain–computer interface using covert non-spatial visual selective attention. J Neural Eng 7:016010CrossRef Zhang D, Maye A, Gao X, Hong B, Engel AK, Gao S (2010) An independent brain–computer interface using covert non-spatial visual selective attention. J Neural Eng 7:016010CrossRef
181.
Zurück zum Zitat Wolpaw JR, Ramoser H, McFarland DJ, Pfurtscheller G (1998) EEG-based communication: improved accuracy by response verification. IEEE Trans Rehabil Eng 6(3):326–333CrossRef Wolpaw JR, Ramoser H, McFarland DJ, Pfurtscheller G (1998) EEG-based communication: improved accuracy by response verification. IEEE Trans Rehabil Eng 6(3):326–333CrossRef
182.
Zurück zum Zitat Pierce JR (1980) An introduction to information theory. Dover, New York, NYMATH Pierce JR (1980) An introduction to information theory. Dover, New York, NYMATH
183.
Zurück zum Zitat Shannon CE, Weaver W (1964) The mathematical theory of communication. University of Illinois Press, Urbana, IL Shannon CE, Weaver W (1964) The mathematical theory of communication. University of Illinois Press, Urbana, IL
184.
Zurück zum Zitat Curran EA, Stokes MJ (2003) Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn 51:326–336CrossRef Curran EA, Stokes MJ (2003) Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn 51:326–336CrossRef
185.
Zurück zum Zitat Babiloni F, Cincotti F, Lazzarini L, Millán J, Mouriño J, Varsta M, Heikkonen J, Bianchi L, Marciani MG (2000) Linear classification of low-resolution EEG patterns produced by imagined hand movements. IEEE Trans Rehabil Eng 8(2):186–188CrossRef Babiloni F, Cincotti F, Lazzarini L, Millán J, Mouriño J, Varsta M, Heikkonen J, Bianchi L, Marciani MG (2000) Linear classification of low-resolution EEG patterns produced by imagined hand movements. IEEE Trans Rehabil Eng 8(2):186–188CrossRef
186.
Zurück zum Zitat Penny WD, Roberts SJ, Curran EA, Stokes MJ (2000) EEG-based communication: a pattern recognition approach. IEEE Trans Rehabil Eng 8(2):214–215CrossRef Penny WD, Roberts SJ, Curran EA, Stokes MJ (2000) EEG-based communication: a pattern recognition approach. IEEE Trans Rehabil Eng 8(2):214–215CrossRef
187.
Zurück zum Zitat Penny WD, Roberts SJ (1999) EEG-based communication via dynamic neural network models. In: Proceedings of international joint conference on neural networks, CDROM Penny WD, Roberts SJ (1999) EEG-based communication via dynamic neural network models. In: Proceedings of international joint conference on neural networks, CDROM
188.
Zurück zum Zitat Royer AS, He B (2009) Goal selection vs. process control in a brain-computer interface based on sensorimotor rhythms. J Neural Eng 6(1):016005CrossRef Royer AS, He B (2009) Goal selection vs. process control in a brain-computer interface based on sensorimotor rhythms. J Neural Eng 6(1):016005CrossRef
189.
Zurück zum Zitat Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7:e1000153CrossRef Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7:e1000153CrossRef
190.
Zurück zum Zitat Qin L, He B (2005) A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications. J Neural Eng 2(4):65–72CrossRef Qin L, He B (2005) A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications. J Neural Eng 2(4):65–72CrossRef
191.
Zurück zum Zitat Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R. 'Thought'–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett. 2003 Nov 6 351(1):33–36 Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R. 'Thought'–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett. 2003 Nov 6 351(1):33–36
192.
Zurück zum Zitat Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A, Mehring C. Hand movement direction decoded from MEG and EEG. J Neurosci. 2008 Jan 23, 28(4):1000–1008CrossRef Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A, Mehring C. Hand movement direction decoded from MEG and EEG. J Neurosci. 2008 Jan 23, 28(4):1000–1008CrossRef
Metadaten
Titel
Brain–Computer Interfaces
verfasst von
Bin He
Shangkai Gao
Han Yuan
Jonathan R. Wolpaw
Copyright-Jahr
2013
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-5227-0_2

Neuer Inhalt