Skip to main content
Erschienen in:
Buchtitelbild

2013 | OriginalPaper | Buchkapitel

1. Mechanics of Fluid Flow Through a Porous Medium

verfasst von : Donald A. Nield, Adrian Bejan

Erschienen in: Convection in Porous Media

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By a porous medium, we mean a material consisting of a solid matrix with an interconnected void. We suppose that the solid matrix is either rigid (the usual situation) or it undergoes small deformation. The interconnectedness of the void (the pores) allows the flow of one or more fluids through the material. In the simplest situation (“single-phase flow”), the void is saturated by a single fluid. In “two-phase flow,” a liquid and a gas share the void space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Achenbach, E. 1995 Heat and flow characteristics of packed beds. Expt. Thermal Fluid Science 10, 17-27. [1.5.2] Achenbach, E. 1995 Heat and flow characteristics of packed beds. Expt. Thermal Fluid Science 10, 17-27. [1.5.2]
Zurück zum Zitat Alazmi, B. and Vafai, K. 2001 Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transfer 44, 1735-1749. [1.6] Alazmi, B. and Vafai, K. 2001 Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transfer 44, 1735-1749. [1.6]
Zurück zum Zitat Allan, F. M. and Hamdan, M. H. 2002 Fluid mechanics of the interface region between two porous layers. Appl. Math. Comput. 128, 37-43. [1.6] Allan, F. M. and Hamdan, M. H. 2002 Fluid mechanics of the interface region between two porous layers. Appl. Math. Comput. 128, 37-43. [1.6]
Zurück zum Zitat Altevogt, A. S., Rolston, D. E. and Whitaker, S. 2003 New equations for binary gas transport in porous media; part 1: equation development. Adv. Water Res. 26, 695-715. [1.4.1] Altevogt, A. S., Rolston, D. E. and Whitaker, S. 2003 New equations for binary gas transport in porous media; part 1: equation development. Adv. Water Res. 26, 695-715. [1.4.1]
Zurück zum Zitat Alvarez, G., Bournet, P. E. and Flick, D. 2003 Two-dimensional simulation of turbulent flow and transfer through stacked spheres. Int. J. Heat Mass Transfer 46, 2459-2469. [1.8] Alvarez, G., Bournet, P. E. and Flick, D. 2003 Two-dimensional simulation of turbulent flow and transfer through stacked spheres. Int. J. Heat Mass Transfer 46, 2459-2469. [1.8]
Zurück zum Zitat Antohe, B. V. and Lage, J. L. 1997b A general two-equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transfer 40, 3013-3024. [1.8] Antohe, B. V. and Lage, J. L. 1997b A general two-equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transfer 40, 3013-3024. [1.8]
Zurück zum Zitat Assato, M., Pedras, M. H. J. and de Lemos, M. J. S. 2005 Numerical solution of turbulent channel flow past a backward-facing step with a porous insert using linear and nonlinear k - ε models. J. Porous Media 8, 13-29. [1.8] Assato, M., Pedras, M. H. J. and de Lemos, M. J. S. 2005 Numerical solution of turbulent channel flow past a backward-facing step with a porous insert using linear and nonlinear k - ε models. J. Porous Media 8, 13-29. [1.8]
Zurück zum Zitat Auriault, J. L. 2009 On the domain of validity of Brinkman’s equation. Transp. Porous Media 79, 215-223. [1.5.3] Auriault, J. L. 2009 On the domain of validity of Brinkman’s equation. Transp. Porous Media 79, 215-223. [1.5.3]
Zurück zum Zitat Auriault, J. L. 2010a About the Beavers and Joseph boundary condition. Transp. Porous Media 83, 257-266. [1.6] Auriault, J. L. 2010a About the Beavers and Joseph boundary condition. Transp. Porous Media 83, 257-266. [1.6]
Zurück zum Zitat Auriault, J. L. 2010b Reply to the coments on “About the Beavers and Joseph boundary condition”. Transp. Porous Media 83, 269-270. [1.6] Auriault, J. L. 2010b Reply to the coments on “About the Beavers and Joseph boundary condition”. Transp. Porous Media 83, 269-270. [1.6]
Zurück zum Zitat Auriault, J. L., Geindreau, C. and Orgeas, L. 2007 Upscaling Forchheimer law.. Transp. Porous Media 70, 213-229. [1.5.2] Auriault, J. L., Geindreau, C. and Orgeas, L. 2007 Upscaling Forchheimer law.. Transp. Porous Media 70, 213-229. [1.5.2]
Zurück zum Zitat Auriault, J. L., Royer, P. and Geindreau, C. 2002b Filtration law for power-law fluids in anisotropic porous media. Int. J. Engng. Sci. 40, 1151-1163. [1.5.4] Auriault, J. L., Royer, P. and Geindreau, C. 2002b Filtration law for power-law fluids in anisotropic porous media. Int. J. Engng. Sci. 40, 1151-1163. [1.5.4]
Zurück zum Zitat Bai, H. X., Yu, P., Winoto, S. H. and Low, H. T. 2009 Lattice Boltzmann method for flows in porous and homogenesous fluid domains coupled at the interface by stress jump. Int, J. Numer. Meth. Fluids 60, 691-708. [1.6] Bai, H. X., Yu, P., Winoto, S. H. and Low, H. T. 2009 Lattice Boltzmann method for flows in porous and homogenesous fluid domains coupled at the interface by stress jump. Int, J. Numer. Meth. Fluids 60, 691-708. [1.6]
Zurück zum Zitat Bai, M. and Roegiers, J. C. 1994 Fluid flow and heat flow in deformable fractured media. Int. J. Engng. Sci. 32, 1615-1663. [1.9] Bai, M. and Roegiers, J. C. 1994 Fluid flow and heat flow in deformable fractured media. Int. J. Engng. Sci. 32, 1615-1663. [1.9]
Zurück zum Zitat Bai, M., Ma, Q. and Roegiers, J. C. 1994a Dual porosity behaviour of naturally fractured reservoirs. Int. J. Num. Anal. Mech. Geomech. 18, 359-376. [1.9] Bai, M., Ma, Q. and Roegiers, J. C. 1994a Dual porosity behaviour of naturally fractured reservoirs. Int. J. Num. Anal. Mech. Geomech. 18, 359-376. [1.9]
Zurück zum Zitat Bai, M., Ma, Q. and Roegiers, J. C. 1994b Nonlinear dual-porosity model. Appl. Math. Model. 18, 602-610. [1.9] Bai, M., Ma, Q. and Roegiers, J. C. 1994b Nonlinear dual-porosity model. Appl. Math. Model. 18, 602-610. [1.9]
Zurück zum Zitat Bai, M., Roegiers, J. C. and Inyang, H. F. 1996 Contaminant transport in nonisothermal fractured porous media. J. Env. Engng, 122, 416-423. [1.9] Bai, M., Roegiers, J. C. and Inyang, H. F. 1996 Contaminant transport in nonisothermal fractured porous media. J. Env. Engng, 122, 416-423. [1.9]
Zurück zum Zitat Barak, A. Z. 1987 Comments on “High velocity flow in porous media” by Hassanizadeh and Gray. Transport in Porous Media 2, 533-535. [1.5.2] Barak, A. Z. 1987 Comments on “High velocity flow in porous media” by Hassanizadeh and Gray. Transport in Porous Media 2, 533-535. [1.5.2]
Zurück zum Zitat Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M. 1990 Theory of Fluid Flowthrough Natural Rocks, Kluwer Academic Publishers, Dordrecht. [1.9] Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M. 1990 Theory of Fluid Flowthrough Natural Rocks, Kluwer Academic Publishers, Dordrecht. [1.9]
Zurück zum Zitat Bars, M. L. and Worster, M. G. 2006 Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification. J. Fluid Mech. 550, 149-173. [1.6] Bars, M. L. and Worster, M. G. 2006 Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification. J. Fluid Mech. 550, 149-173. [1.6]
Zurück zum Zitat Batchelor, G. K. 1967 An Introduction to FluidDynamics, Cambridge University Press. [1.5.1] Batchelor, G. K. 1967 An Introduction to FluidDynamics, Cambridge University Press. [1.5.1]
Zurück zum Zitat Bear, J. and Bachmat, Y. 1990 Introduction to Modeling ofTransport Phenomena in Porous Media, Kluwer Academic, Dordrecht. [1.1, 1.5.3] Bear, J. and Bachmat, Y. 1990 Introduction to Modeling ofTransport Phenomena in Porous Media, Kluwer Academic, Dordrecht. [1.1, 1.5.3]
Zurück zum Zitat Beavers, G. S. and Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197-207. [1.6] Beavers, G. S. and Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197-207. [1.6]
Zurück zum Zitat Beavers, G. S., Sparrow, E. M. and Magnuson, R. A. 1970 Experiments on coupled parallel flows in a channel and a bounding medium. ASME J. Basic Engng. 92, 843-848. [1.6] Beavers, G. S., Sparrow, E. M. and Magnuson, R. A. 1970 Experiments on coupled parallel flows in a channel and a bounding medium. ASME J. Basic Engng. 92, 843-848. [1.6]
Zurück zum Zitat Beavers, G. S., Sparrow, E. M. and Masha, B. A. 1974 Boundary conditions at a porous surface which bounds a fluid flow. AIChE J. 20, 596-597. [1.6] Beavers, G. S., Sparrow, E. M. and Masha, B. A. 1974 Boundary conditions at a porous surface which bounds a fluid flow. AIChE J. 20, 596-597. [1.6]
Zurück zum Zitat Beavers, G. S., Sparrow, E. M. and Rodenz, D. E. 1973 Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres. J. Appl. Mech. 40, 655-660. [1.5.2] Beavers, G. S., Sparrow, E. M. and Rodenz, D. E. 1973 Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres. J. Appl. Mech. 40, 655-660. [1.5.2]
Zurück zum Zitat Beck, J. L. 1972 Convection in a box of porous material saturated with fluid. Phys. Fluids 15, 1377-1383. [1.5.1, 6.15.1] Beck, J. L. 1972 Convection in a box of porous material saturated with fluid. Phys. Fluids 15, 1377-1383. [1.5.1, 6.15.1]
Zurück zum Zitat Bejan, A. 1984 Convection Heat Transfer, Wiley, New York. [1.1, 4.1, 4.2, 4.5, 4.17, 5.1.4, 5.11.1, 6.9.2, 7.1.1, 7.1.2, 7.3.3, 7.4.2, 9.2.1, 10.1.2] Bejan, A. 1984 Convection Heat Transfer, Wiley, New York. [1.1, 4.1, 4.2, 4.5, 4.17, 5.1.4, 5.11.1, 6.9.2, 7.1.1, 7.1.2, 7.3.3, 7.4.2, 9.2.1, 10.1.2]
Zurück zum Zitat Bejan, A. 2000 Shape and Structure, fromEngineering to Nature, Cambridge University Press, Cambridge, UK. [1.5.2, 4.18, 6.2, 6.26, 11.10] Bejan, A. 2000 Shape and Structure, fromEngineering to Nature, Cambridge University Press, Cambridge, UK. [1.5.2, 4.18, 6.2, 6.26, 11.10]
Zurück zum Zitat Bejan, A. 2004a Convection Heat Transfer, 3rd ed., Wiley, New York. [1.5.2, 2.1, 4.17, 4.18, 4.20] Bejan, A. 2004a Convection Heat Transfer, 3rd ed., Wiley, New York. [1.5.2, 2.1, 4.17, 4.18, 4.20]
Zurück zum Zitat Bejan, A. 2004b Designed porous media: maximal heat transfer density at decreasing length scales. Int. J. Heat Mass Transfer 47, 3073-3083. [4.15] Bejan, A. 2004b Designed porous media: maximal heat transfer density at decreasing length scales. Int. J. Heat Mass Transfer 47, 3073-3083. [4.15]
Zurück zum Zitat Bejan, A. and Lage, J. L. 1991 Heat transfer from a surface covered with hair. Convective Heat and MassTransfer in Porous Media (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 823-845. [1.2, 4.14] Bejan, A. and Lage, J. L. 1991 Heat transfer from a surface covered with hair. Convective Heat and MassTransfer in Porous Media (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 823-845. [1.2, 4.14]
Zurück zum Zitat Bejan, A., Dincer, I., Lorente, S., Miguel, A. F. and Reis, A. H. 2004 Porous and Complex FlowStructures in Modern Technologies. Springer, New York. [1.5.2, 2.1, 3.3, 3.7, 4.18, 4.19, 6.26, 10.1.7] Bejan, A., Dincer, I., Lorente, S., Miguel, A. F. and Reis, A. H. 2004 Porous and Complex FlowStructures in Modern Technologies. Springer, New York. [1.5.2, 2.1, 3.3, 3.7, 4.18, 4.19, 6.26, 10.1.7]
Zurück zum Zitat Bennethum, L. S. and Giorgi, T. 1997 Generalized Forchheimer equation for two-phase flow based on hybrid mixture theory. Transport Porous Media 26, 261-275. [1.5.2] Bennethum, L. S. and Giorgi, T. 1997 Generalized Forchheimer equation for two-phase flow based on hybrid mixture theory. Transport Porous Media 26, 261-275. [1.5.2]
Zurück zum Zitat Braga, E. J. and de Lemos, M. J. S. 2006 Simulation of turbulent natural convection in a porous cylindrical annulus using a macroscopic two-equation model. Int. J. Heat Mass Transfer 49, 4340-4351. [1.8] Braga, E. J. and de Lemos, M. J. S. 2006 Simulation of turbulent natural convection in a porous cylindrical annulus using a macroscopic two-equation model. Int. J. Heat Mass Transfer 49, 4340-4351. [1.8]
Zurück zum Zitat Braga, E. J. and de Lemos, M. J. S. 2008 Computation of turbulent free convection in left and right tilted porous enclosuresusing a macroscopic k-epsilon model. Int. J. Heat Mass Transfer 51, 5279-5287. [1.8] Braga, E. J. and de Lemos, M. J. S. 2008 Computation of turbulent free convection in left and right tilted porous enclosuresusing a macroscopic k-epsilon model. Int. J. Heat Mass Transfer 51, 5279-5287. [1.8]
Zurück zum Zitat Braga, E. J. and de Lemos, M. J. S. 2009 Laminar and turbulent free convection in a composite enclosure. Int. J. Heat Mass Transfer 52, 588-596. [1.8] Braga, E. J. and de Lemos, M. J. S. 2009 Laminar and turbulent free convection in a composite enclosure. Int. J. Heat Mass Transfer 52, 588-596. [1.8]
Zurück zum Zitat Brinkman, H. C. 1947a A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27-34. [1.5.3] Brinkman, H. C. 1947a A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27-34. [1.5.3]
Zurück zum Zitat Brinkman, H. C. 1947b On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A 1, 81-86. [1.5.3] Brinkman, H. C. 1947b On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A 1, 81-86. [1.5.3]
Zurück zum Zitat Bussiere, W., Rochette, D., Latchimy, T, Velleaud, G. and Andre, P. 2006 Measurement of Darcy and Forchheimer coefficients for silica sand beds. High Temp. Mat. Process. 10, 55-78. [1.5.2] Bussiere, W., Rochette, D., Latchimy, T, Velleaud, G. and Andre, P. 2006 Measurement of Darcy and Forchheimer coefficients for silica sand beds. High Temp. Mat. Process. 10, 55-78. [1.5.2]
Zurück zum Zitat Catton, I. and Travkin, V. S. 1996 Turbulent flow and heat transfer in high permeability porous media. Proceedings of the InternationalConference on Porous Media and their Applications inScience, Engineering and Industry, Kona, Hawaii, June 1996, (K.Vafai, editor), Engineering Foundation, New York, pp. 333-368. [1.8] Catton, I. and Travkin, V. S. 1996 Turbulent flow and heat transfer in high permeability porous media. Proceedings of the InternationalConference on Porous Media and their Applications inScience, Engineering and Industry, Kona, Hawaii, June 1996, (K.Vafai, editor), Engineering Foundation, New York, pp. 333-368. [1.8]
Zurück zum Zitat Chandesris, M. and Jamet, D. 2006 Boundary conditions at a planar fluid-porous interface for a Poiseille flow. Int. J. Heat Mass Transfer 49, 2137-2150. [1.6] Chandesris, M. and Jamet, D. 2006 Boundary conditions at a planar fluid-porous interface for a Poiseille flow. Int. J. Heat Mass Transfer 49, 2137-2150. [1.6]
Zurück zum Zitat Chandesris, M. and Jamet, D. 2007 Boundary conditions at a fluid-porous interface: An a priori estimation of the stress jump boundary conditions. Int. J. Heat Mass Transfer 50, 3422-3436. [1.6] Chandesris, M. and Jamet, D. 2007 Boundary conditions at a fluid-porous interface: An a priori estimation of the stress jump boundary conditions. Int. J. Heat Mass Transfer 50, 3422-3436. [1.6]
Zurück zum Zitat Chandesris, M. and Jamet, D. 2009a Derivation of jump conditions for the turbulence k-ε model at a fluid/porous interface. Int. J. Heat Mass Transfer 50, 3422-3436. [1.6] Chandesris, M. and Jamet, D. 2009a Derivation of jump conditions for the turbulence k-ε model at a fluid/porous interface. Int. J. Heat Mass Transfer 50, 3422-3436. [1.6]
Zurück zum Zitat Chandesris, M. and Jamet, D. 2009b Jump conditions and surface-excess quantities at a fluid/porous interface: A multiple scale approach. Transp. Porous Media 78, 419-428. [1.6] Chandesris, M. and Jamet, D. 2009b Jump conditions and surface-excess quantities at a fluid/porous interface: A multiple scale approach. Transp. Porous Media 78, 419-428. [1.6]
Zurück zum Zitat Chandesris, M. and Jamet, D. 2009c Derivation of jump conditions for the turbulence k -ε model at a fluid/porous interface. Int. J. Heat Fluid Flow 30, 306-318. [1.6] Chandesris, M. and Jamet, D. 2009c Derivation of jump conditions for the turbulence k -ε model at a fluid/porous interface. Int. J. Heat Fluid Flow 30, 306-318. [1.6]
Zurück zum Zitat Chandesris, M., Serre, G. and Sagaut, T. 2006 A macroscopic turbulence model for flow in porous media suited for channel, pipe and rod bundle flows. Int. J. Heat Mass Transfer 49, 2739-2750. [1.8] Chandesris, M., Serre, G. and Sagaut, T. 2006 A macroscopic turbulence model for flow in porous media suited for channel, pipe and rod bundle flows. Int. J. Heat Mass Transfer 49, 2739-2750. [1.8]
Zurück zum Zitat Chen, F. and Chen, C. F. 1992 Convection in superposed fluid and porous layers. J. Fluid Mech. 234, 97-119. [1.6, 6.19.1.2] Chen, F. and Chen, C. F. 1992 Convection in superposed fluid and porous layers. J. Fluid Mech. 234, 97-119. [1.6, 6.19.1.2]
Zurück zum Zitat Chen, G. M. and Tsao, C. P. 2012 A thermal resistance analysis on forced convection with viscous dissipation in a porous medium using entransy dissipation concept. Int. J. Heat Mass Transfer 55, 3744-3754. [4.10] Chen, G. M. and Tsao, C. P. 2012 A thermal resistance analysis on forced convection with viscous dissipation in a porous medium using entransy dissipation concept. Int. J. Heat Mass Transfer 55, 3744-3754. [4.10]
Zurück zum Zitat Chen, H., Besant, R. W. and Tao, Y. X. 1998 Numerical modeling of heat transfer and water vapor transfer and frosting within a fiberglass filled cavity during air infiltration. Heat Transfer 1998, Proc. 11th IHTC, 4, 381-386. [3.6] Chen, H., Besant, R. W. and Tao, Y. X. 1998 Numerical modeling of heat transfer and water vapor transfer and frosting within a fiberglass filled cavity during air infiltration. Heat Transfer 1998, Proc. 11th IHTC, 4, 381-386. [3.6]
Zurück zum Zitat Chen, L., Li, Y. and Thorpe, G. 1998 High Rayleigh-number natural convection in an enclosure containing a porous layer. Heat Transfer 1998, Proc. 11th IHTC, 4, 423-428. [1.8, 7.7] Chen, L., Li, Y. and Thorpe, G. 1998 High Rayleigh-number natural convection in an enclosure containing a porous layer. Heat Transfer 1998, Proc. 11th IHTC, 4, 423-428. [1.8, 7.7]
Zurück zum Zitat Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008a A numerical method for forced convection in porous and heterogeneous fluid domains coupled at interface by stress jump. Int. J. Numer. Meth. Fluid Flow 18, 635-655. [1.6] Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008a A numerical method for forced convection in porous and heterogeneous fluid domains coupled at interface by stress jump. Int. J. Numer. Meth. Fluid Flow 18, 635-655. [1.6]
Zurück zum Zitat Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008c Free convection in a porous wavy cavity based on the Darcy-Brinkman-Forchheimer extended model. Numer. Heat Transfer A 52, 377-397. [7.3.7] Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008c Free convection in a porous wavy cavity based on the Darcy-Brinkman-Forchheimer extended model. Numer. Heat Transfer A 52, 377-397. [7.3.7]
Zurück zum Zitat Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008d Numerical analysis for the flow past a porous square cylinder based on the stress-jump interfacial conditions. Int. J. Numer. Meth. Fluids 56, 1705-1729. [4.11] Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008d Numerical analysis for the flow past a porous square cylinder based on the stress-jump interfacial conditions. Int. J. Numer. Meth. Fluids 56, 1705-1729. [4.11]
Zurück zum Zitat Chen, Z., Lyons, S. L. and Qin, G. 2001 Derivation of the Forchheimer equation via homogenization. Transport Porous Media 44, 325-335. [1.5.2] Chen, Z., Lyons, S. L. and Qin, G. 2001 Derivation of the Forchheimer equation via homogenization. Transport Porous Media 44, 325-335. [1.5.2]
Zurück zum Zitat Cheng, P., Chowdhury, A. and Hsu, C. T. 1991 Forced convection in packed tubes and channels with variable porosity and thermal dispersion effects. Convective Heat and MassTransfer in Porous Media, (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 625-653. [1.7, 4.9] Cheng, P., Chowdhury, A. and Hsu, C. T. 1991 Forced convection in packed tubes and channels with variable porosity and thermal dispersion effects. Convective Heat and MassTransfer in Porous Media, (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 625-653. [1.7, 4.9]
Zurück zum Zitat Chung, K., Lee, K. S. and Kim, W. S. 2003 Modified macroscopic turbulence modeling for the tube with channel geometry in porous media. Numer. Heat Transfer A 43, 659-668. [1.8] Chung, K., Lee, K. S. and Kim, W. S. 2003 Modified macroscopic turbulence modeling for the tube with channel geometry in porous media. Numer. Heat Transfer A 43, 659-668. [1.8]
Zurück zum Zitat Cieszko, M. and Kubik, J. 1999 Derivation of matching conditions at the contact surface between fluid-saturated porous solid and bulk fluid. Transp. Por. Media 34, 319-336. [1.6] Cieszko, M. and Kubik, J. 1999 Derivation of matching conditions at the contact surface between fluid-saturated porous solid and bulk fluid. Transp. Por. Media 34, 319-336. [1.6]
Zurück zum Zitat Collins, R. E. 1961 Flow of Fluids throughPorous Materials, Reinhold, New York. [1.1] Collins, R. E. 1961 Flow of Fluids throughPorous Materials, Reinhold, New York. [1.1]
Zurück zum Zitat Costa, V. A. F. , Oliveira, L. A. and Sousa, A. C. M. 2004b Simulation of coupled flows in adjacent porous and open domains using a control volume finite-element method. Energy Conversion and Management 45, 2795-2811. [1.6] Costa, V. A. F. , Oliveira, L. A. and Sousa, A. C. M. 2004b Simulation of coupled flows in adjacent porous and open domains using a control volume finite-element method. Energy Conversion and Management 45, 2795-2811. [1.6]
Zurück zum Zitat Costa, V. A. F. , Oliveira, L. A., Baliga, B. R. and Sousa, A. C. M. 2004a Simulation of coupled flows in adjacent porous and open domains using a control volume finite-element method. Numer. Heat Transfer A 45, 675-697. [1.6] Costa, V. A. F. , Oliveira, L. A., Baliga, B. R. and Sousa, A. C. M. 2004a Simulation of coupled flows in adjacent porous and open domains using a control volume finite-element method. Numer. Heat Transfer A 45, 675-697. [1.6]
Zurück zum Zitat Costa, V. A. F., Oliveira, L. A. and Baliga, B. R. 2008 Implementation of the stress jump condition in a control-volume finite-element method for the simulation of laminar coupled flows in adjacent open and porous domains. Numer. Heat Transfer B 53, 383-411. [1.6] Costa, V. A. F., Oliveira, L. A. and Baliga, B. R. 2008 Implementation of the stress jump condition in a control-volume finite-element method for the simulation of laminar coupled flows in adjacent open and porous domains. Numer. Heat Transfer B 53, 383-411. [1.6]
Zurück zum Zitat Coulaud, O., Morel, P. and Caltagirone, J. P. 1988 Numerical modelling of nonlinear effects in laminar flow through a porous medium. J. Fluid Mech. 190, 393-407. [1.5.2] Coulaud, O., Morel, P. and Caltagirone, J. P. 1988 Numerical modelling of nonlinear effects in laminar flow through a porous medium. J. Fluid Mech. 190, 393-407. [1.5.2]
Zurück zum Zitat Darcy, H. P. G. 1856 Les Fontaines Publiques dela Ville de Dijon. Victor Dalmont, Paris. [1.4.1] Darcy, H. P. G. 1856 Les Fontaines Publiques dela Ville de Dijon. Victor Dalmont, Paris. [1.4.1]
Zurück zum Zitat Das, D. B. and Lewis, M. 2007 Dynamics of fluid circulation in coupled free and heterogeneous porous domains. Chem. Engng. Sci. 62, 3549-3573. [1.6] Das, D. B. and Lewis, M. 2007 Dynamics of fluid circulation in coupled free and heterogeneous porous domains. Chem. Engng. Sci. 62, 3549-3573. [1.6]
Zurück zum Zitat Das, D. B., Hanspal, N. S. and Nassehi, V. 2005 Analysis of hydrodynamic conditions in adjacent free and heterogeneous porous flow domains. Hydrological Processes 19, 2775-2799. [1.6] Das, D. B., Hanspal, N. S. and Nassehi, V. 2005 Analysis of hydrodynamic conditions in adjacent free and heterogeneous porous flow domains. Hydrological Processes 19, 2775-2799. [1.6]
Zurück zum Zitat Davis, A.M.J. and James, D.F. 1996 Slow flow through a model porous medium. Int. J. Multiphase Flow 22, 969-989. [1.4.2] Davis, A.M.J. and James, D.F. 1996 Slow flow through a model porous medium. Int. J. Multiphase Flow 22, 969-989. [1.4.2]
Zurück zum Zitat de Lemos, M. J. S. 2004 Turbulent heat and mass transfer in porous media. In Technologies and Techniques inPorous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 157-168. [1.8]. de Lemos, M. J. S. 2004 Turbulent heat and mass transfer in porous media. In Technologies and Techniques inPorous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 157-168. [1.8].
Zurück zum Zitat de Lemos, M. J. S. 2005b Mathematical modeling and applications of turbulent heat and mass transfer in porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, New York, pp. 409-454. [1.8] de Lemos, M. J. S. 2005b Mathematical modeling and applications of turbulent heat and mass transfer in porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, New York, pp. 409-454. [1.8]
Zurück zum Zitat de Lemos, M. J. S. 2005c The double-decomposition concept for turbulent transport in porous media. In Transport Phenomena in PorousMedia III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 1-33. [1.8] de Lemos, M. J. S. 2005c The double-decomposition concept for turbulent transport in porous media. In Transport Phenomena in PorousMedia III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 1-33. [1.8]
Zurück zum Zitat de Lemos, M. J. S. 2008 Analysis of turbulent flows in fixed and moving permeable media. Acta Geophys. 56, 562-583. [1.8] de Lemos, M. J. S. 2008 Analysis of turbulent flows in fixed and moving permeable media. Acta Geophys. 56, 562-583. [1.8]
Zurück zum Zitat de Lemos, M. J. S. 2009 Turbulent flow and fluid-porous interfaces computed with a diffusion-jump model for k and ε transport equations. Transp. Porous Media 78, 331-346.CrossRef de Lemos, M. J. S. 2009 Turbulent flow and fluid-porous interfaces computed with a diffusion-jump model for k and ε transport equations. Transp. Porous Media 78, 331-346.CrossRef
Zurück zum Zitat De Lemos, M. J. S. 2012a Turbulent Impinging Jets into Porous Media. Springer, New York.. [1.8] De Lemos, M. J. S. 2012a Turbulent Impinging Jets into Porous Media. Springer, New York.. [1.8]
Zurück zum Zitat De Lemos, M. J. S. 2012b Turbulence in Porous Media: Modeling and Applications, 2nd ed., Elsevier, Oxford. [1.8] De Lemos, M. J. S. 2012b Turbulence in Porous Media: Modeling and Applications, 2nd ed., Elsevier, Oxford. [1.8]
Zurück zum Zitat de Lemos, M. J. S. and Braga, E. J. 2003 Modeling of turbulent natural convection in porous media. Int. Comm. Heat Mass Transfer 30, 615-624. [1.8] de Lemos, M. J. S. and Braga, E. J. 2003 Modeling of turbulent natural convection in porous media. Int. Comm. Heat Mass Transfer 30, 615-624. [1.8]
Zurück zum Zitat De Lemos, M. J. S. and Dorea, F. T. 2011 Simulation of a turbulent impinging jet into a layer of porous material using a two-energy equation model. Numer. Heat Transfer A 59, 769-798. [1.8] De Lemos, M. J. S. and Dorea, F. T. 2011 Simulation of a turbulent impinging jet into a layer of porous material using a two-energy equation model. Numer. Heat Transfer A 59, 769-798. [1.8]
Zurück zum Zitat de Lemos, M. J. S. and Fischer, C. 2008 Thermal analysis of an impinging jet on a plate with and without a porous layer. Numer. Heat Transfer A 54, 1022-1041. [1.8] de Lemos, M. J. S. and Fischer, C. 2008 Thermal analysis of an impinging jet on a plate with and without a porous layer. Numer. Heat Transfer A 54, 1022-1041. [1.8]
Zurück zum Zitat de Lemos, M. J. S. and Mesquita, M. S. 2003 Modeling of turbulent natural convection in porous media. Int. Comm. Heat Mass Transfer 30, 105-113. [1.8] de Lemos, M. J. S. and Mesquita, M. S. 2003 Modeling of turbulent natural convection in porous media. Int. Comm. Heat Mass Transfer 30, 105-113. [1.8]
Zurück zum Zitat de Lemos, M. J. S. and Pedras, M. H. J. 2000 On the definitions of turbulent kinetic energy for flow in porous media. Int. Comm. Heat Mass Transfer 27, 211-220. [1.8] de Lemos, M. J. S. and Pedras, M. H. J. 2000 On the definitions of turbulent kinetic energy for flow in porous media. Int. Comm. Heat Mass Transfer 27, 211-220. [1.8]
Zurück zum Zitat de Lemos, M. J. S. and Pedras, M. H. J. 2001 Recent mathematical models for turbulent flow in saturated rigid porous media. ASME J. Fluids Engng. 123, 935-940. [1.8] de Lemos, M. J. S. and Pedras, M. H. J. 2001 Recent mathematical models for turbulent flow in saturated rigid porous media. ASME J. Fluids Engng. 123, 935-940. [1.8]
Zurück zum Zitat de Lemos, M. J. S. and Rocamora, F. D. 2002 Turbulent transport modeling for heat flow in rigid porous media. Heat Transfer 2002, Proc. 12th Int. Heat Transfer Conf., Elsevier, Vol. 2, pp. 791-796. [1.8] de Lemos, M. J. S. and Rocamora, F. D. 2002 Turbulent transport modeling for heat flow in rigid porous media. Heat Transfer 2002, Proc. 12th Int. Heat Transfer Conf., Elsevier, Vol. 2, pp. 791-796. [1.8]
Zurück zum Zitat de Lemos, M. J. S. and Saito, M. B. 2008 Computation of turbulent heat transfer in a moving porous bed using a macroscopic two-energy equation model. Int. Comm. Heat Mass Transfer 35, 1262-1266. [1.8] de Lemos, M. J. S. and Saito, M. B. 2008 Computation of turbulent heat transfer in a moving porous bed using a macroscopic two-energy equation model. Int. Comm. Heat Mass Transfer 35, 1262-1266. [1.8]
Zurück zum Zitat de Lemos, M. J. S. and Silva, R. A. 2006 Turbulent flow over a highly permeable medium simulated with a diffusion-jump model of the interface. Int. J. Heat Mass Transfer 49, 546-556. [1.8] de Lemos, M. J. S. and Silva, R. A. 2006 Turbulent flow over a highly permeable medium simulated with a diffusion-jump model of the interface. Int. J. Heat Mass Transfer 49, 546-556. [1.8]
Zurück zum Zitat de Lemos, M. J. S. and Tofaneli, L. A. 2004 Modelling of double-diffusive turbulent natural convection in porous media. Int. J. Heat Mass Transfer 47, 4233-4241. [1.8] de Lemos, M. J. S. and Tofaneli, L. A. 2004 Modelling of double-diffusive turbulent natural convection in porous media. Int. J. Heat Mass Transfer 47, 4233-4241. [1.8]
Zurück zum Zitat Discacciati, M., Miglio, E. and Quarteroni, A. 2002 Mathematical and numerical methods for coupling surface and groundwater flows. Appl. Numer. Anal. 43, 57-74. [1.6] Discacciati, M., Miglio, E. and Quarteroni, A. 2002 Mathematical and numerical methods for coupling surface and groundwater flows. Appl. Numer. Anal. 43, 57-74. [1.6]
Zurück zum Zitat Dorea, F. T. and de Lemos, M. J. S. 2010 Simulation of laminar impinging jet on a porous medium with thermal non-equilibrium model. Int. J. Heat Mass Transfer 53, 5089-5101. [1.8] Dorea, F. T. and de Lemos, M. J. S. 2010 Simulation of laminar impinging jet on a porous medium with thermal non-equilibrium model. Int. J. Heat Mass Transfer 53, 5089-5101. [1.8]
Zurück zum Zitat du Plessis, J. P. 1994 Analytical quantification of coefficients in the Ergun equation for fluid friction in a packed bed. Transport in Porous Media 16, 189-207. [1.5.2] du Plessis, J. P. 1994 Analytical quantification of coefficients in the Ergun equation for fluid friction in a packed bed. Transport in Porous Media 16, 189-207. [1.5.2]
Zurück zum Zitat Dullien, F. A. L. 1992 Porous Media: Fluid Transportand Pore Structure, Academic, New York, 2nd Edit. [1.4.2] Dullien, F. A. L. 1992 Porous Media: Fluid Transportand Pore Structure, Academic, New York, 2nd Edit. [1.4.2]
Zurück zum Zitat Dupuit, A. J. E. J. 1863 Études Théoriques et Pratiquessur le Mouvement des aux dans les CanauxDécouverts et a Travers les Terrains Perméables. Victor Dalmont, Paris. [1.5.2] Dupuit, A. J. E. J. 1863 Études Théoriques et Pratiquessur le Mouvement des aux dans les CanauxDécouverts et a Travers les Terrains Perméables. Victor Dalmont, Paris. [1.5.2]
Zurück zum Zitat Durlofsky, L. and Brady, J. F. 1987 Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30, 3329-3341. [1.5.3] Durlofsky, L. and Brady, J. F. 1987 Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30, 3329-3341. [1.5.3]
Zurück zum Zitat Ene, H. I. 2004 Modeling the flow through porous media. In Emerging Technologies and Techniquesin Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 25-41. [1.4.3] Ene, H. I. 2004 Modeling the flow through porous media. In Emerging Technologies and Techniquesin Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 25-41. [1.4.3]
Zurück zum Zitat Ene, H. I. and Polievski, D. 1987 Thermal Flow in PorousMedia, Reidel, Dordrecht. [1.4.3, 5.6.2, 5.11.2] Ene, H. I. and Polievski, D. 1987 Thermal Flow in PorousMedia, Reidel, Dordrecht. [1.4.3, 5.6.2, 5.11.2]
Zurück zum Zitat Firdaouss, M., Gurmond, J. L. and Le Quéré, P. 1997 Nonlinear corrections to Darcy’s law at low Reynolds Number. J. Fluid Mech. 343, 331-350. [1.5.2] Firdaouss, M., Gurmond, J. L. and Le Quéré, P. 1997 Nonlinear corrections to Darcy’s law at low Reynolds Number. J. Fluid Mech. 343, 331-350. [1.5.2]
Zurück zum Zitat Flick, D., Leslous, A. and Alvarez, G. 2003 Semi-empirical modeling of turbulent fluid flow and heat transfer in porous media. Int. J. Refrig. 26, 349-359. [1.8] Flick, D., Leslous, A. and Alvarez, G. 2003 Semi-empirical modeling of turbulent fluid flow and heat transfer in porous media. Int. J. Refrig. 26, 349-359. [1.8]
Zurück zum Zitat Forchheimer, P. 1901 Wasserbewegung durch Boden. Zeitschrift des Vereines DeutscherIngenieure 45, 1736-1741 and 1781-1788. [1.5.2] Forchheimer, P. 1901 Wasserbewegung durch Boden. Zeitschrift des Vereines DeutscherIngenieure 45, 1736-1741 and 1781-1788. [1.5.2]
Zurück zum Zitat Fourar, M., Lenormand, R., Karimi-Fard, M. and Horne, R. 2005 Inertia effects in high-rate flow through heterogeneous porous media. Transport Porous Media 60, 353-370. [1.5.2] Fourar, M., Lenormand, R., Karimi-Fard, M. and Horne, R. 2005 Inertia effects in high-rate flow through heterogeneous porous media. Transport Porous Media 60, 353-370. [1.5.2]
Zurück zum Zitat Fowler, A. J. and Bejan, A. 1995 Forced convection from a surface covered with flexible fibers. Int. J. Heat Mass Transfer 38, 767–777. [1.9, 4.14] Fowler, A. J. and Bejan, A. 1995 Forced convection from a surface covered with flexible fibers. Int. J. Heat Mass Transfer 38, 767–777. [1.9, 4.14]
Zurück zum Zitat Fu, W. S. and Huang, H. C. 1999 Effects of random porosity model on heat transfer performance of porous media. Int. J. Heat Mass Transfer 42, 13-25. [1.7] Fu, W. S. and Huang, H. C. 1999 Effects of random porosity model on heat transfer performance of porous media. Int. J. Heat Mass Transfer 42, 13-25. [1.7]
Zurück zum Zitat Gartling, D. K., Hickox, C. E. and Givler, R. C. 1996 Simulation of coupled viscous and porous flow problems. Comp. Fluid Dyn. 7, 23-48. [1.6] Gartling, D. K., Hickox, C. E. and Givler, R. C. 1996 Simulation of coupled viscous and porous flow problems. Comp. Fluid Dyn. 7, 23-48. [1.6]
Zurück zum Zitat Georgiadis, J. G. 1991 Effect of randomness on heat and mass transfer in porous media. Convective Heat and MassTransfer in Porous Media (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 499-524. [1.1] Georgiadis, J. G. 1991 Effect of randomness on heat and mass transfer in porous media. Convective Heat and MassTransfer in Porous Media (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 499-524. [1.1]
Zurück zum Zitat Georgiadis, J. G. and Catton, I. 1987 Stochastic modeling of unidirectional fluid transport in uniform and random packed beds. Phys. Fluids 30, 1017-1022. [1.1, 1.7] Georgiadis, J. G. and Catton, I. 1987 Stochastic modeling of unidirectional fluid transport in uniform and random packed beds. Phys. Fluids 30, 1017-1022. [1.1, 1.7]
Zurück zum Zitat Georgiadis, J. G. and Catton, I. 1988 Dispersion in cellular thermal convection in porous media. Int. J. Heat Mass Transfer 31, 1081-1091. [1.1, 6.6] Georgiadis, J. G. and Catton, I. 1988 Dispersion in cellular thermal convection in porous media. Int. J. Heat Mass Transfer 31, 1081-1091. [1.1, 6.6]
Zurück zum Zitat Gerritsen, M. G., Chen, T. and Chen, Q. 2005 Stanford University, private communication. Gerritsen, M. G., Chen, T. and Chen, Q. 2005 Stanford University, private communication.
Zurück zum Zitat Getachew, D., Minkowycz, W. J. and Lage, J. L. 2000 A modified form of the κ - ε model for turbulent flows of an incompressible fluid in porous media. Int. J. Heat Mass Transfer 43, 2909-2915. [1.8] Getachew, D., Minkowycz, W. J. and Lage, J. L. 2000 A modified form of the κ - ε model for turbulent flows of an incompressible fluid in porous media. Int. J. Heat Mass Transfer 43, 2909-2915. [1.8]
Zurück zum Zitat Ghorayeb, K. and Firoozabadi, A. 2000a Numerical study of natural convection and diffusion in fractured porous media. SPE Journal 5, 12-20. [1.9] Ghorayeb, K. and Firoozabadi, A. 2000a Numerical study of natural convection and diffusion in fractured porous media. SPE Journal 5, 12-20. [1.9]
Zurück zum Zitat Ghorayeb, K. and Firoozabadi, A. 2000b Modeling multicomponent diffusion and convection in porous media. SPE Journal 5, 158-171. [1.9] Ghorayeb, K. and Firoozabadi, A. 2000b Modeling multicomponent diffusion and convection in porous media. SPE Journal 5, 158-171. [1.9]
Zurück zum Zitat Ghorayeb, K. and Firoozabadi, A. 2001 Features of convection and diffusion in porous media for binary systems. J. Canad. Petrol. Tech. 40, 21-28. [1.9] Ghorayeb, K. and Firoozabadi, A. 2001 Features of convection and diffusion in porous media for binary systems. J. Canad. Petrol. Tech. 40, 21-28. [1.9]
Zurück zum Zitat Ghosh, S., Das, T., Chakraborty, S. and Das, S. K. 2011 Predicting DNA-mediated drug delivery in interior carcinoma using electromagnetically excited nanoparticles. Comput. Biol. Med. 41, 771-779.[1.9] Ghosh, S., Das, T., Chakraborty, S. and Das, S. K. 2011 Predicting DNA-mediated drug delivery in interior carcinoma using electromagnetically excited nanoparticles. Comput. Biol. Med. 41, 771-779.[1.9]
Zurück zum Zitat Giorgi, T. 1997 Derivation of the Forchheimer law via matched asymptotic expansions. Transport Porous Media 29, 191-206. [1.5.2] Giorgi, T. 1997 Derivation of the Forchheimer law via matched asymptotic expansions. Transport Porous Media 29, 191-206. [1.5.2]
Zurück zum Zitat Givler, R. C. and Altobelli, S. A. 1994 A determination of the effective viscosity for the Brinkman-Forchheimer flow model. J. Fluid Mech. 258, 355-370. [1.5.3] Givler, R. C. and Altobelli, S. A. 1994 A determination of the effective viscosity for the Brinkman-Forchheimer flow model. J. Fluid Mech. 258, 355-370. [1.5.3]
Zurück zum Zitat Gobin, D., Goyeau, B. 2012 Thermosolutal natural convection in partially porous domains. ASME J. Heat Transfer 134, #031013. [1.6, 9.4] Gobin, D., Goyeau, B. 2012 Thermosolutal natural convection in partially porous domains. ASME J. Heat Transfer 134, #031013. [1.6, 9.4]
Zurück zum Zitat Goharzadeh, A., Khalili, A. and Jørgensen, B. B. 2005 Transition layer thickness at a fluid-porous interface. Phys. Fluids 17, 057102. [1.6] Goharzadeh, A., Khalili, A. and Jørgensen, B. B. 2005 Transition layer thickness at a fluid-porous interface. Phys. Fluids 17, 057102. [1.6]
Zurück zum Zitat Goyeau, B., Lhuillier, D., Gobin, D. and Velarde, M. G. 2003 Momentum transport at a fluid-porous interface. Int. J. Heat Mass Transfer 46, 4071-4081. [1.6] Goyeau, B., Lhuillier, D., Gobin, D. and Velarde, M. G. 2003 Momentum transport at a fluid-porous interface. Int. J. Heat Mass Transfer 46, 4071-4081. [1.6]
Zurück zum Zitat Gratton, L. J., Travkin, V. S. and Catton, I. 1996 Influence of morphology upon two-temperature statements for convective transport in porous media. J. Enhanced Heat Transfer 3, 129-145. [1.8] Gratton, L. J., Travkin, V. S. and Catton, I. 1996 Influence of morphology upon two-temperature statements for convective transport in porous media. J. Enhanced Heat Transfer 3, 129-145. [1.8]
Zurück zum Zitat Haber, S. and Mauri, R. 1983 Boundary conditions for Darcy’s flow through porous media. Int. J. Multiphase Flow 9, 561-574. [1.6] Haber, S. and Mauri, R. 1983 Boundary conditions for Darcy’s flow through porous media. Int. J. Multiphase Flow 9, 561-574. [1.6]
Zurück zum Zitat Hanspal, N. S., Waghode A. N., Nassehi, V. and Wakeman, R. J. 2006 Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transport Porous Media 64, 73-101.[1.6] Hanspal, N. S., Waghode A. N., Nassehi, V. and Wakeman, R. J. 2006 Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transport Porous Media 64, 73-101.[1.6]
Zurück zum Zitat Hassanizadeh, S. M. and Gray, W. G. 1988 Reply to comments by Barak on “High velocity flow in porous media” by Hassanizadeh and Gray. Transport in Porous Media 3, 319-321. [1.5.2] Hassanizadeh, S. M. and Gray, W. G. 1988 Reply to comments by Barak on “High velocity flow in porous media” by Hassanizadeh and Gray. Transport in Porous Media 3, 319-321. [1.5.2]
Zurück zum Zitat Hayes, R. E., Afacan, A., Boulanger, B. and Shenoy, A. V. 1996 Modelling the flow of power law fluids in a packed bed using a volume-averaged equation of motion. Transport in Porous Media 23, 175-196. [1.5.4] Hayes, R. E., Afacan, A., Boulanger, B. and Shenoy, A. V. 1996 Modelling the flow of power law fluids in a packed bed using a volume-averaged equation of motion. Transport in Porous Media 23, 175-196. [1.5.4]
Zurück zum Zitat Hoffman, M. R. and van der Meer, F. M. 2002 A simple space-time averaged porous media model for flow in densely vegetated channels. In Computational Methods in WaterResources (eds. S. M. Hassanizadeh, R. J. Schotting, W, G, Gray and G. F. Pinder.) Vol. 2., Elsevier, Amsterdam. [1.8] Hoffman, M. R. and van der Meer, F. M. 2002 A simple space-time averaged porous media model for flow in densely vegetated channels. In Computational Methods in WaterResources (eds. S. M. Hassanizadeh, R. J. Schotting, W, G, Gray and G. F. Pinder.) Vol. 2., Elsevier, Amsterdam. [1.8]
Zurück zum Zitat Howells, I. D. 1998 Drag on fixed beds of fibres in slow flow. J. Fluid Mech. 355, 163-192. [1.5.3] Howells, I. D. 1998 Drag on fixed beds of fibres in slow flow. J. Fluid Mech. 355, 163-192. [1.5.3]
Zurück zum Zitat Hsu, C. T. and Cheng, P. 1990 Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer 33, 1587-1597. [1.5.2, 1.5.3, 2.2.4, 4.9] Hsu, C. T. and Cheng, P. 1990 Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer 33, 1587-1597. [1.5.2, 1.5.3, 2.2.4, 4.9]
Zurück zum Zitat Hsu, C. T., Fu, H. L. and Cheng, P. 1999 On pressure-velocity correlation of steady and oscillating flows in generators made of wire screens. ASME. Fluids Engng. 121, 52-56. [1.5.2] Hsu, C. T., Fu, H. L. and Cheng, P. 1999 On pressure-velocity correlation of steady and oscillating flows in generators made of wire screens. ASME. Fluids Engng. 121, 52-56. [1.5.2]
Zurück zum Zitat Huang, H. and Ayoub, J. 2008 Applicability of the Forchheimer equation for non-Darcy flow in porous media. SPE Journal 13, 112-122. [1.5.2] Huang, H. and Ayoub, J. 2008 Applicability of the Forchheimer equation for non-Darcy flow in porous media. SPE Journal 13, 112-122. [1.5.2]
Zurück zum Zitat Inoue, M. and Nakayama, A. 1998 Numerical modeling of non-Newtonian fluid flow in a porous medium using a three-dimensional periodic array. ASME J. Fluids Engng. 120, 131-135. [1.5.4] Inoue, M. and Nakayama, A. 1998 Numerical modeling of non-Newtonian fluid flow in a porous medium using a three-dimensional periodic array. ASME J. Fluids Engng. 120, 131-135. [1.5.4]
Zurück zum Zitat Irmay, S. 1958 On the theoretical derivation of Darcy and Forchheimer formulas. Eos, Trans. AGU 39, 702-707. [1.5.2] Irmay, S. 1958 On the theoretical derivation of Darcy and Forchheimer formulas. Eos, Trans. AGU 39, 702-707. [1.5.2]
Zurück zum Zitat Jäger, W. and Mikelič, A. 2000 On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111-1127. [1.6] Jäger, W. and Mikelič, A. 2000 On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111-1127. [1.6]
Zurück zum Zitat Jäger, W. and Mikelič, A. 2009 Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp. Porous Media. 78, 489-508. [1.6] Jäger, W. and Mikelič, A. 2009 Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp. Porous Media. 78, 489-508. [1.6]
Zurück zum Zitat Jäger, W. and Mikelič, A. 2010 Letter to the Editor: Coments on “About the Beavers and Joseph boundary condition”. Transp. Porous Media 83, 267-268. [1.6] Jäger, W. and Mikelič, A. 2010 Letter to the Editor: Coments on “About the Beavers and Joseph boundary condition”. Transp. Porous Media 83, 267-268. [1.6]
Zurück zum Zitat Jäger, W., Mikelič, A. and Neuss, N. 2001 Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comp. 22, 2006-2028. [1.6] Jäger, W., Mikelič, A. and Neuss, N. 2001 Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comp. 22, 2006-2028. [1.6]
Zurück zum Zitat James, D. F. and Davis, A. M. 2001 Flow at the interface of a model fibrous porous medium. J. Fluid Mech. 426, 47-72. [1.6] James, D. F. and Davis, A. M. 2001 Flow at the interface of a model fibrous porous medium. J. Fluid Mech. 426, 47-72. [1.6]
Zurück zum Zitat Jamet, D. and Chandesris, M. 2009 On the intrinsic nature of jump coefficients at the interface between a porous medium and a free fluid region. Int. J. Heat Mass Transfer 52, 289-300. [1.6] Jamet, D. and Chandesris, M. 2009 On the intrinsic nature of jump coefficients at the interface between a porous medium and a free fluid region. Int. J. Heat Mass Transfer 52, 289-300. [1.6]
Zurück zum Zitat Jamet, D., Chandesris, M. and Goyeau, B. 2009 On the equivalence of the discontinuous one- and two-domain approaches for the modeling of transport phenomena at the fluid/porous interface. Transp. Porous Media 78, 403-418. [1.6] Jamet, D., Chandesris, M. and Goyeau, B. 2009 On the equivalence of the discontinuous one- and two-domain approaches for the modeling of transport phenomena at the fluid/porous interface. Transp. Porous Media 78, 403-418. [1.6]
Zurück zum Zitat Joly, N., Bernard, D. and Menegazzi, P. 1996 ST2D3D: An FE program to compute stability criteria for natural convection in complex porous structures. Numer. Heat Transfer B 29, 91-112. [1.9] Joly, N., Bernard, D. and Menegazzi, P. 1996 ST2D3D: An FE program to compute stability criteria for natural convection in complex porous structures. Numer. Heat Transfer B 29, 91-112. [1.9]
Zurück zum Zitat Jones, I. P. 1973 Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231-238. [1.6] Jones, I. P. 1973 Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231-238. [1.6]
Zurück zum Zitat Joseph, D. D., Nield, D. A. and Papanicolaou, G. 1982 Nonlinear equation governing flow in a saturated porous medium. Water Resources Res. 18, 1049-1052 and 19, 591. [1.5.2] Joseph, D. D., Nield, D. A. and Papanicolaou, G. 1982 Nonlinear equation governing flow in a saturated porous medium. Water Resources Res. 18, 1049-1052 and 19, 591. [1.5.2]
Zurück zum Zitat Kaviany, M. 1995 Principles of Heat Transferin Porous Media, Second Edition, Springer, New York. [1.5.2, 6.10] Kaviany, M. 1995 Principles of Heat Transferin Porous Media, Second Edition, Springer, New York. [1.5.2, 6.10]
Zurück zum Zitat Kelliher, J. P., Teman, R. and Wang, X. M. 2011 Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media. Physica D 240, 619-628 [1.6] Kelliher, J. P., Teman, R. and Wang, X. M. 2011 Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media. Physica D 240, 619-628 [1.6]
Zurück zum Zitat Khaled, A. R. A. and Vafai, K. 2003 The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transfer 46, 4989-5003. [1.9, 2.6] Khaled, A. R. A. and Vafai, K. 2003 The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transfer 46, 4989-5003. [1.9, 2.6]
Zurück zum Zitat Knupp, P. M. and Lage, J. L. 1995 Generalization of the Forchheimer-extended Darcy flow model to the tensor permeability case via a variational principle. J. Fluid Mech. 299, 97-104. [1.5.2] Knupp, P. M. and Lage, J. L. 1995 Generalization of the Forchheimer-extended Darcy flow model to the tensor permeability case via a variational principle. J. Fluid Mech. 299, 97-104. [1.5.2]
Zurück zum Zitat Koponen, E., Kandhai, D., Hellén, E., Alava, M., Hoekstra, A., Kataja, M, Niskasen, K., Sloot, P. and Timonen, J. 1998 Permeability of three-dimensional random fiber web. Phys. Rev. lett. 80, 716-719. [1.5.2] Koponen, E., Kandhai, D., Hellén, E., Alava, M., Hoekstra, A., Kataja, M, Niskasen, K., Sloot, P. and Timonen, J. 1998 Permeability of three-dimensional random fiber web. Phys. Rev. lett. 80, 716-719. [1.5.2]
Zurück zum Zitat Kubik, J. and Cieszko, M. 2005 Analysis of matching conditions at the bounding surface of a fluid-saturated porous solid and a bulk fluid: the use of Lagrange multipliers. Cont. Mech. Therm. 17, 351-359. [1.6] Kubik, J. and Cieszko, M. 2005 Analysis of matching conditions at the bounding surface of a fluid-saturated porous solid and a bulk fluid: the use of Lagrange multipliers. Cont. Mech. Therm. 17, 351-359. [1.6]
Zurück zum Zitat Kulacki, F. A. and Rajen, G. 1991 Buoyancy-induced flow and heat transfer in saturated fissured media. Convective Heat and MassTransfer in Porous Media,(eds. S. Kakaç, B. Kilkis, F. A. Kulacki and F. Arinç), Kluwer Academic Publishers, Dordrecht, 465-498. [1.9] Kulacki, F. A. and Rajen, G. 1991 Buoyancy-induced flow and heat transfer in saturated fissured media. Convective Heat and MassTransfer in Porous Media,(eds. S. Kakaç, B. Kilkis, F. A. Kulacki and F. Arinç), Kluwer Academic Publishers, Dordrecht, 465-498. [1.9]
Zurück zum Zitat Kuwahara, F. and Nakayama, A. 1998 Numerical modelling of non-Darcy convective flow in a porous medium. Heat Transfer 1998, Proc. 11th IHTC, 4, 411-416. [1.5.2, 1.8] Kuwahara, F. and Nakayama, A. 1998 Numerical modelling of non-Darcy convective flow in a porous medium. Heat Transfer 1998, Proc. 11th IHTC, 4, 411-416. [1.5.2, 1.8]
Zurück zum Zitat Kuwahara, F. Yamane, I. and Nakayama, A. 2006 Large eddy simulation of turbulent flow in porous media. Int. Comm. Heat Mass Transfer 33, 411-418. [1.8] Kuwahara, F. Yamane, I. and Nakayama, A. 2006 Large eddy simulation of turbulent flow in porous media. Int. Comm. Heat Mass Transfer 33, 411-418. [1.8]
Zurück zum Zitat Kuwahara, F., Kameyama, Y., Yamashita, S. and Nakayama, A. 1998 Numerical modeling of turbulent flow in porous media using a spatially periodic array. J. Porous Media 1, 47-55. [1.8] Kuwahara, F., Kameyama, Y., Yamashita, S. and Nakayama, A. 1998 Numerical modeling of turbulent flow in porous media using a spatially periodic array. J. Porous Media 1, 47-55. [1.8]
Zurück zum Zitat Kuwahara, F., Nakayama, A. and Koyama, H. 1996 A numerical study of thermal dispersion in porous media. ASME J. Heat Transfer 118, 756-761. [2.2.4] Kuwahara, F., Nakayama, A. and Koyama, H. 1996 A numerical study of thermal dispersion in porous media. ASME J. Heat Transfer 118, 756-761. [2.2.4]
Zurück zum Zitat Kuznetsov, A. V. 1996a Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Appl. Sci. Res. 56, 53-67. [1.6] Kuznetsov, A. V. 1996a Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Appl. Sci. Res. 56, 53-67. [1.6]
Zurück zum Zitat Kuznetsov, A. V. 1997b Influence of the stress jump condition at the porous-medium/clear-fluid interface on a flow at a porous wall. Int. Comm. Heat Mass Transfer 24, 401-410. [1.6] Kuznetsov, A. V. 1997b Influence of the stress jump condition at the porous-medium/clear-fluid interface on a flow at a porous wall. Int. Comm. Heat Mass Transfer 24, 401-410. [1.6]
Zurück zum Zitat Kuznetsov, A. V. 2004a Effect of turbulence on forced convection in a composite tube partly filled with a porous medium. J. Porous Media 7, 59-64. [4.11] Kuznetsov, A. V. 2004a Effect of turbulence on forced convection in a composite tube partly filled with a porous medium. J. Porous Media 7, 59-64. [4.11]
Zurück zum Zitat Kuznetsov, A. V. and Xiong, M. 2003 Development of an engineering approach to computations of turbulent flows in composite porous/fluid domains. Int. J. Therm. Sci. 42, 9123-919. [1.8] Kuznetsov, A. V. and Xiong, M. 2003 Development of an engineering approach to computations of turbulent flows in composite porous/fluid domains. Int. J. Therm. Sci. 42, 9123-919. [1.8]
Zurück zum Zitat Laakkonen, K. 2003 Method to model dryer fabrics in paper machine scale using small-scale simulations and porous medium model. Int. J. Heat Fluid Flow 24, 114-121. [1.8] Laakkonen, K. 2003 Method to model dryer fabrics in paper machine scale using small-scale simulations and porous medium model. Int. J. Heat Fluid Flow 24, 114-121. [1.8]
Zurück zum Zitat Lage, J. L. 1992 Effect of the convective inertia term on Bénard convection in a porous medium. Numer. Heat Transfer A 22, 469-485. [1.5.2] Lage, J. L. 1992 Effect of the convective inertia term on Bénard convection in a porous medium. Numer. Heat Transfer A 22, 469-485. [1.5.2]
Zurück zum Zitat Lage, J. L. 1993a Natural convection within a porous medium cavity: predicting tools for flow regime and heat transfer. Int. Comm. Heat Mass Transfer 20, 501-513. [1.5.2, 6.6] Lage, J. L. 1993a Natural convection within a porous medium cavity: predicting tools for flow regime and heat transfer. Int. Comm. Heat Mass Transfer 20, 501-513. [1.5.2, 6.6]
Zurück zum Zitat Lage, J. L. 1997 Contaminant clean-up in a single rock fracture with porous obstructions. ASME J. Fluids Engng. 119, 180-187. [1.4.1, 1.9] Lage, J. L. 1997 Contaminant clean-up in a single rock fracture with porous obstructions. ASME J. Fluids Engng. 119, 180-187. [1.4.1, 1.9]
Zurück zum Zitat Lage, J. L. 1998 The fundamental theory of flow through permeable media: from Darcy to turbulence. Transport Phenomena in PorousMedia (eds. D.B. Ingham and I. Pop), Elsevier, Oxford, pp.1-30. [1.5.2, 1.8] Lage, J. L. 1998 The fundamental theory of flow through permeable media: from Darcy to turbulence. Transport Phenomena in PorousMedia (eds. D.B. Ingham and I. Pop), Elsevier, Oxford, pp.1-30. [1.5.2, 1.8]
Zurück zum Zitat Lage, J. L. and Antohe, B. V. 2000 Darcy’s experiments and the deviation to nonlinear flow regime. ASME J. Fluids Engng. 122, 619-625. [1.5.2] Lage, J. L. and Antohe, B. V. 2000 Darcy’s experiments and the deviation to nonlinear flow regime. ASME J. Fluids Engng. 122, 619-625. [1.5.2]
Zurück zum Zitat Lage, J. L., Antohe, B. V. and Nield, D. A. 1997 Two types of nonlinear pressure-drop versus flow rate relation observed for saturated porous media. ASME J. Fluids Engng. 119, 701-706. [1.5.2] Lage, J. L., Antohe, B. V. and Nield, D. A. 1997 Two types of nonlinear pressure-drop versus flow rate relation observed for saturated porous media. ASME J. Fluids Engng. 119, 701-706. [1.5.2]
Zurück zum Zitat Lage, J. L., de Lemos, M. J. S. and Nield, D. A. 2002 Modeling turbulence in porous media. In Transport Phenomena in PorousMedia II (D. B. Ingham and I. Pop, eds.) Elsevier, Oxford, pp. 198-230. [1.8] Lage, J. L., de Lemos, M. J. S. and Nield, D. A. 2002 Modeling turbulence in porous media. In Transport Phenomena in PorousMedia II (D. B. Ingham and I. Pop, eds.) Elsevier, Oxford, pp. 198-230. [1.8]
Zurück zum Zitat Lage, J. L., Krueger, P. S. and Narasimhan, A. 2005 Protocol for measuring permeability and form coefficient of porous media. Phys. Fluids 17, art. no. 088101. [1.5.2] Lage, J. L., Krueger, P. S. and Narasimhan, A. 2005 Protocol for measuring permeability and form coefficient of porous media. Phys. Fluids 17, art. no. 088101. [1.5.2]
Zurück zum Zitat Lage, J. L., Merrikh, A. A. and Kulish, V.V. 2004a A porous medium model to investigate the red cell distribution effect on alveolar respiration. In Emerging Technologies and Techniquesin Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 381-407. [1.9] Lage, J. L., Merrikh, A. A. and Kulish, V.V. 2004a A porous medium model to investigate the red cell distribution effect on alveolar respiration. In Emerging Technologies and Techniquesin Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 381-407. [1.9]
Zurück zum Zitat Layton, W., Schieweck, F. and Yotov, I 2003 Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195-2218. [1.6] Layton, W., Schieweck, F. and Yotov, I 2003 Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195-2218. [1.6]
Zurück zum Zitat Lee, J. S. and Ogawa, K. 1994 Pressure drop through packed bed. J. Chem. Engrg Japan 27, 691-693. [1.5.2] Lee, J. S. and Ogawa, K. 1994 Pressure drop through packed bed. J. Chem. Engrg Japan 27, 691-693. [1.5.2]
Zurück zum Zitat Lee, S. L. and Yang, J. H. 1997 Modelling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders. Int. J. Heat Mass Transfer 40, 3149-3155. [1.5.2} Lee, S. L. and Yang, J. H. 1997 Modelling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders. Int. J. Heat Mass Transfer 40, 3149-3155. [1.5.2}
Zurück zum Zitat Levy, A., Levi-Hevroni, D., Sorek, S. and Ben-Dor, G. 1999 Derivation of Forchheimer terms and their verification by applications to waves propagated in porous media. Int. J. Multiphase Flows 25, 683-704. [1.5.2] Levy, A., Levi-Hevroni, D., Sorek, S. and Ben-Dor, G. 1999 Derivation of Forchheimer terms and their verification by applications to waves propagated in porous media. Int. J. Multiphase Flows 25, 683-704. [1.5.2]
Zurück zum Zitat Levy, T. 1981 Loi de Darcy ou loi de Brinkman? C. R. Acad. Sci. Paris, Sér. II 292, 872-874. [1.5.3] Levy, T. 1981 Loi de Darcy ou loi de Brinkman? C. R. Acad. Sci. Paris, Sér. II 292, 872-874. [1.5.3]
Zurück zum Zitat Levy, T. 1990 Écoulement dans un milieu poreux avec fissures unidirectionelles. C.R. Acad. Sci. Paris, Sér. II, 685-690. [1.9] Levy, T. 1990 Écoulement dans un milieu poreux avec fissures unidirectionelles. C.R. Acad. Sci. Paris, Sér. II, 685-690. [1.9]
Zurück zum Zitat Li, Y. and Park, C. W. 1998 Permeability of packed beds filled with polydiverse spherical particles. Ind. Eng. Chem Res. 37, 2005-2011. [1.4.2] Li, Y. and Park, C. W. 1998 Permeability of packed beds filled with polydiverse spherical particles. Ind. Eng. Chem Res. 37, 2005-2011. [1.4.2]
Zurück zum Zitat Liu, S. and Masliyah, J. H. 1998 On non-Newtonian fluid flow in ducts and porous media. Chem. Engng. Sci. 53, 1175-1201. [1.5.4] Liu, S. and Masliyah, J. H. 1998 On non-Newtonian fluid flow in ducts and porous media. Chem. Engng. Sci. 53, 1175-1201. [1.5.4]
Zurück zum Zitat Liu, S. and Masliyah, J. H. 2005 Dispersion in porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, Boca Raton, FL, pp. 81-140. [1.5.1, 2.2.4] Liu, S. and Masliyah, J. H. 2005 Dispersion in porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, Boca Raton, FL, pp. 81-140. [1.5.1, 2.2.4]
Zurück zum Zitat Liu, S., Afacan, A. and Masliyah, J. 1994 Steady incompressible laminar flow in porous media. Chem. Engng Sci. 49, 3565-3586. [1.4.2] Liu, S., Afacan, A. and Masliyah, J. 1994 Steady incompressible laminar flow in porous media. Chem. Engng Sci. 49, 3565-3586. [1.4.2]
Zurück zum Zitat Liu, Y. 2009 Convergence and continuous dependence for the Brinkman-Forchheimer equations. Math. Comput. Modell. 49, 1401-1415. [1.5.3] Liu, Y. 2009 Convergence and continuous dependence for the Brinkman-Forchheimer equations. Math. Comput. Modell. 49, 1401-1415. [1.5.3]
Zurück zum Zitat Lundgren, T. S. 1972 Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273-299. [1.5.3] Lundgren, T. S. 1972 Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273-299. [1.5.3]
Zurück zum Zitat Ma, H. and Ruth, D. W. 1993 The microscopic analysis of high Forchheimer number flow in porous media. Transport Porous Media 13, 139-160. [1.5.2] Ma, H. and Ruth, D. W. 1993 The microscopic analysis of high Forchheimer number flow in porous media. Transport Porous Media 13, 139-160. [1.5.2]
Zurück zum Zitat Macdonald, I. F., El-Sayed, M. S., Mow, K. and Dullien, F. A. L. 1979 Flow through porous media: The Ergun equation revisited. Ind. Chem. Fundam. 18, 199-208. [1.5.2] Macdonald, I. F., El-Sayed, M. S., Mow, K. and Dullien, F. A. L. 1979 Flow through porous media: The Ergun equation revisited. Ind. Chem. Fundam. 18, 199-208. [1.5.2]
Zurück zum Zitat Macedo, H. H., Costa, U. M. S. and Almeido, M. P. 2001 Turbulent effects on fluid flow through disordered porous media. Physica A 299, 371-377. [1.8] Macedo, H. H., Costa, U. M. S. and Almeido, M. P. 2001 Turbulent effects on fluid flow through disordered porous media. Physica A 299, 371-377. [1.8]
Zurück zum Zitat Madani, B., Tobin, F., Rigollet, F. and Tadrist, L. 2007 Flow laws in metallic foams: Experimental determination of inertial and viscous contributions. J. Porous Media 10, 51-70. [1.5.3] Madani, B., Tobin, F., Rigollet, F. and Tadrist, L. 2007 Flow laws in metallic foams: Experimental determination of inertial and viscous contributions. J. Porous Media 10, 51-70. [1.5.3]
Zurück zum Zitat Maier, R. S., Kroll, D. M., Davis, H. T. and Bernard, R. S. 1998 Simulation of flow through bead packs using the lattice Boltzmann method. Phys. Fluids 10, 60-74. [1.9] Maier, R. S., Kroll, D. M., Davis, H. T. and Bernard, R. S. 1998 Simulation of flow through bead packs using the lattice Boltzmann method. Phys. Fluids 10, 60-74. [1.9]
Zurück zum Zitat Manole, D. M. and Lage, J. L. 1993 The inertial effect on the natural convection flow within a fluid saturated porous medium. Int. J. Heat Fluid Flow 14, 376-384. [1.5.2] Manole, D. M. and Lage, J. L. 1993 The inertial effect on the natural convection flow within a fluid saturated porous medium. Int. J. Heat Fluid Flow 14, 376-384. [1.5.2]
Zurück zum Zitat Martys, N., Bentz, D. P. and Garboczi, E. J. 1994 Computer simulation study of the effective viscosity in Brinkman equation. Phys. Fluids 6, 1434-1439. [1.5.3] Martys, N., Bentz, D. P. and Garboczi, E. J. 1994 Computer simulation study of the effective viscosity in Brinkman equation. Phys. Fluids 6, 1434-1439. [1.5.3]
Zurück zum Zitat Marys, N. S. 2001 Improved approximation of the Brinkman equation using a lattice Boltzmann method. Phys. Fluids 13, 1807-1810. [1.5.3] Marys, N. S. 2001 Improved approximation of the Brinkman equation using a lattice Boltzmann method. Phys. Fluids 13, 1807-1810. [1.5.3]
Zurück zum Zitat Masuoka, T. and Takatsu, Y. 1996 Turbulence model for flow through porous media. Int. J. Heat Mass Transfer 39, 2803-2809. [1.8] Masuoka, T. and Takatsu, Y. 1996 Turbulence model for flow through porous media. Int. J. Heat Mass Transfer 39, 2803-2809. [1.8]
Zurück zum Zitat Masuoka, T. and Takatsu, Y. 2002 Turbulence characteristics in porous media. In Transport Phenomena in PorousMedia II (D. B. Ingham and I. Pop, eds.) Elsevier, Oxford, pp. 231-256. [1.8] Masuoka, T. and Takatsu, Y. 2002 Turbulence characteristics in porous media. In Transport Phenomena in PorousMedia II (D. B. Ingham and I. Pop, eds.) Elsevier, Oxford, pp. 231-256. [1.8]
Zurück zum Zitat Mauran, S., Riguad, L. and Coudevylle, O. 2001 Application of the Carman-Kozeny correlation to a high porosity and anisotropic consolidated medium: The compressed expanded natural graphite. Transport Porous Media 43, 355-376. [1.4.2] Mauran, S., Riguad, L. and Coudevylle, O. 2001 Application of the Carman-Kozeny correlation to a high porosity and anisotropic consolidated medium: The compressed expanded natural graphite. Transport Porous Media 43, 355-376. [1.4.2]
Zurück zum Zitat Mei, C. C., Auriault, J. L. and Ng, C. O. 1996 Some applications of the homogenization theory. Adv. Appl. Mech. 32, 278-348. [1.4.4] Mei, C. C., Auriault, J. L. and Ng, C. O. 1996 Some applications of the homogenization theory. Adv. Appl. Mech. 32, 278-348. [1.4.4]
Zurück zum Zitat Miglio, E., Quarteroni, A. and Saleri, F. 2003 Coupling of free surface and groundwater flows. Compt. Fluids 32, 73-83. [1.6] Miglio, E., Quarteroni, A. and Saleri, F. 2003 Coupling of free surface and groundwater flows. Compt. Fluids 32, 73-83. [1.6]
Zurück zum Zitat Miglio, E., Quarteroni, A. and Saleri, F. 2003 Coupling of free surface and groundwater flows. Comput. Fluids 32, 73-83. [1.6] Miglio, E., Quarteroni, A. and Saleri, F. 2003 Coupling of free surface and groundwater flows. Comput. Fluids 32, 73-83. [1.6]
Zurück zum Zitat Min, J. Y. and Kim, S. J. 2005 A novel methodology for thermal analysis of a composite system consisting of a porous medium and an adjacent fluid layer. ASME J. Heat Transfer 127, 648-656. [1.6, 2.4] Min, J. Y. and Kim, S. J. 2005 A novel methodology for thermal analysis of a composite system consisting of a porous medium and an adjacent fluid layer. ASME J. Heat Transfer 127, 648-656. [1.6, 2.4]
Zurück zum Zitat Montillet, A. 2004 Flow through a finite packed bed of spheres: A note on the limit of applicability of the Forchheimer-type equation. ASME J. Fluids Engng. 126, 139-143. [1.5.2] Montillet, A. 2004 Flow through a finite packed bed of spheres: A note on the limit of applicability of the Forchheimer-type equation. ASME J. Fluids Engng. 126, 139-143. [1.5.2]
Zurück zum Zitat Murdoch, A. and Soliman, A. 1999 On the slip-boundary condition for liquid flow over planar boundaries. Proc. Roy. Soc. Lond. A . 455, 1315-1340. [1.6] Murdoch, A. and Soliman, A. 1999 On the slip-boundary condition for liquid flow over planar boundaries. Proc. Roy. Soc. Lond. A . 455, 1315-1340. [1.6]
Zurück zum Zitat Naakteboren, C., Krueger, P. S. and Lage, J. L. 2012 Inlet and outlet pressure-drop effects on the determination of permeability and form coefficient of a porous medium. ASME J. Fluids Engng. 134, 051209. [1.5.2] Naakteboren, C., Krueger, P. S. and Lage, J. L. 2012 Inlet and outlet pressure-drop effects on the determination of permeability and form coefficient of a porous medium. ASME J. Fluids Engng. 134, 051209. [1.5.2]
Zurück zum Zitat Nakayama, A. and Kuwahara, F. 1999 A macroscopic turbulence model for flow in a porous medium. ASME J. Fluids Engng. 121, 427-433. [1.8] Nakayama, A. and Kuwahara, F. 1999 A macroscopic turbulence model for flow in a porous medium. ASME J. Fluids Engng. 121, 427-433. [1.8]
Zurück zum Zitat Nakayama, A. and Kuwahara, F. 2000 Numerical modeling of convective heat transfer in porous media using microscopic structures. Handbook of Porous Media (K. Vafai, ed.), Marcel Dekker, New York., pp. 441-488. [1.8] Nakayama, A. and Kuwahara, F. 2000 Numerical modeling of convective heat transfer in porous media using microscopic structures. Handbook of Porous Media (K. Vafai, ed.), Marcel Dekker, New York., pp. 441-488. [1.8]
Zurück zum Zitat Nakayama, A. and Kuwahara, F. 2005 Three-dimensional numerical models for periodically-developed heat and fluid flows within porous media. In Transport Phenomena in PorousMedia III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 174-200. [1.8] Nakayama, A. and Kuwahara, F. 2005 Three-dimensional numerical models for periodically-developed heat and fluid flows within porous media. In Transport Phenomena in PorousMedia III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 174-200. [1.8]
Zurück zum Zitat Nakayama, A., Kuwahara, F. and Hayashi, T. 2004 Numerical modeling for three-dimensional heat and fluid flow through a bank of cylinders with yaw. J. Fluid Mech. 498, 139-159. [1.8] Nakayama, A., Kuwahara, F. and Hayashi, T. 2004 Numerical modeling for three-dimensional heat and fluid flow through a bank of cylinders with yaw. J. Fluid Mech. 498, 139-159. [1.8]
Zurück zum Zitat Nakayama, A., Kuwahara, F., Kawamura, Y. and Koyama, H. 1995 Three-dimensional numerical simulation of flow through microscopic porous structure. Proc. ASME/JSME Thermal Engineering Conf., vol. 3, pp. 313-318. [1.5.2] Nakayama, A., Kuwahara, F., Kawamura, Y. and Koyama, H. 1995 Three-dimensional numerical simulation of flow through microscopic porous structure. Proc. ASME/JSME Thermal Engineering Conf., vol. 3, pp. 313-318. [1.5.2]
Zurück zum Zitat Nassehi, V. 1998 Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration. Chem. Engng. Sci. 53, 1253-1265. [1.6] Nassehi, V. 1998 Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration. Chem. Engng. Sci. 53, 1253-1265. [1.6]
Zurück zum Zitat Neale, G. and Nader, W. 1974 Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Canad. J. Chem. Engng. 52, 475-478. [1.6] Neale, G. and Nader, W. 1974 Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Canad. J. Chem. Engng. 52, 475-478. [1.6]
Zurück zum Zitat Nepf, H. M. 1999 Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Res. 35, 479-489. [1.8] Nepf, H. M. 1999 Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Res. 35, 479-489. [1.8]
Zurück zum Zitat Nield, D. A 2009b The modeling of form drag in a porous medium saturated by a power-law fluid. ASME Journal of HeatTransfer 131, #104501. [1.5.2] Nield, D. A 2009b The modeling of form drag in a porous medium saturated by a power-law fluid. ASME Journal of HeatTransfer 131, #104501. [1.5.2]
Zurück zum Zitat Nield, D. A. 1983 The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37-46. Corrigendum 150, 503. [1.6, 6.19.1.2] Nield, D. A. 1983 The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37-46. Corrigendum 150, 503. [1.6, 6.19.1.2]
Zurück zum Zitat Nield, D. A. 1994b Modelling high speed flow of a compressible fluid in a saturated porous medium. Transport in Porous Media 14, 85-88. [1.5.1] Nield, D. A. 1994b Modelling high speed flow of a compressible fluid in a saturated porous medium. Transport in Porous Media 14, 85-88. [1.5.1]
Zurück zum Zitat Nield, D. A. 1997a Discussion of a discussion by F. Chen and C.F. Chen. ASME J. Heat Transfer 119, 193-194. [1.6] Nield, D. A. 1997a Discussion of a discussion by F. Chen and C.F. Chen. ASME J. Heat Transfer 119, 193-194. [1.6]
Zurück zum Zitat Nield, D. A. 1997c Comments on “Turbulence model for flow through porous media”. Int. J. Heat Mass Transfer 40, 2499. [1.8] Nield, D. A. 1997c Comments on “Turbulence model for flow through porous media”. Int. J. Heat Mass Transfer 40, 2499. [1.8]
Zurück zum Zitat Nield, D. A. 2001b Alternative models of turbulence in a porous medium, and related matters. ASME J. Fluids Engng. 123, 928-931. [1.8] Nield, D. A. 2001b Alternative models of turbulence in a porous medium, and related matters. ASME J. Fluids Engng. 123, 928-931. [1.8]
Zurück zum Zitat Nield, D. A. 2003 The stability of flow in a channel or duct occupied by a porous medium. Int. J. Heat Mass Transfer 46, 4351-4354. [1.8] Nield, D. A. 2003 The stability of flow in a channel or duct occupied by a porous medium. Int. J. Heat Mass Transfer 46, 4351-4354. [1.8]
Zurück zum Zitat Nield, D. A. 2009a Closure to “Discussion of ‘The modeling of viscous dissipation in a saturated porous medium.’ “ (2009, ASME J. Heat Transfer, 131, p. 025501), ASME J. Heat Transfer 131, #025502. [2.2.2] Nield, D. A. 2009a Closure to “Discussion of ‘The modeling of viscous dissipation in a saturated porous medium.’ “ (2009, ASME J. Heat Transfer, 131, p. 025501), ASME J. Heat Transfer 131, #025502. [2.2.2]
Zurück zum Zitat Nield, D. A. 2009c The Beavers-Joseph boundary condition and related matters: A historical and critical note. Transp. Porous Media 78, 537-540. [1.6] Nield, D. A. 2009c The Beavers-Joseph boundary condition and related matters: A historical and critical note. Transp. Porous Media 78, 537-540. [1.6]
Zurück zum Zitat Nield, D. A. and Kuznetsov, A. V. 2005c Heat transfer in bidisperse porous media. In Transport Phenomena in PorousMedia III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 34-59. [4.16.4] Nield, D. A. and Kuznetsov, A. V. 2005c Heat transfer in bidisperse porous media. In Transport Phenomena in PorousMedia III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 34-59. [4.16.4]
Zurück zum Zitat Nield, D. A. and Kuznetsov, A. V. 2009a Forced convection with laminar pulsating counterflow in a saturated porous channel. ASME J. Heat Transfer 131, #101005. [2.6, 4.16.2] Nield, D. A. and Kuznetsov, A. V. 2009a Forced convection with laminar pulsating counterflow in a saturated porous channel. ASME J. Heat Transfer 131, #101005. [2.6, 4.16.2]
Zurück zum Zitat Nield, D. A. and Kuznetsov, A. V. 2009b The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5792-5795. [9.7] Nield, D. A. and Kuznetsov, A. V. 2009b The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5792-5795. [9.7]
Zurück zum Zitat Nield, D. A. and Kuznetsov, A. V. 2009c The effect of a transition layer between a fluid and a porous medium: shear flow in a channel. Transp. Porous Media 78, 477-487. [1.6] Nield, D. A. and Kuznetsov, A. V. 2009c The effect of a transition layer between a fluid and a porous medium: shear flow in a channel. Transp. Porous Media 78, 477-487. [1.6]
Zurück zum Zitat Nield, D. A. and Kuznetsov, A. V. 2009d Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5796-5801. [3.8,9.7] Nield, D. A. and Kuznetsov, A. V. 2009d Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5796-5801. [3.8,9.7]
Zurück zum Zitat Nield, D. A. and Lage, J. L. 1997 Discussion of a Discussion by K. Vafai and S.J. Kim. ASME J. Heat Transfer 119, 195-197. [1.5.3] Nield, D. A. and Lage, J. L. 1997 Discussion of a Discussion by K. Vafai and S.J. Kim. ASME J. Heat Transfer 119, 195-197. [1.5.3]
Zurück zum Zitat Ochoa-Tapia, J. A. and Whitaker, S. 1995a Momentum transfer at the boundary between a porous medium and a homogeneous fluid — I. Theoretical development. Int. J. Heat Mass Transfer 38, 2635-2646. [1.5.3, 1.6] Ochoa-Tapia, J. A. and Whitaker, S. 1995a Momentum transfer at the boundary between a porous medium and a homogeneous fluid — I. Theoretical development. Int. J. Heat Mass Transfer 38, 2635-2646. [1.5.3, 1.6]
Zurück zum Zitat Ochoa-Tapia, J. A. and Whitaker, S. 1995b Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment. Int. J. Heat Mass Transfer 38, 2647-2655. [1.6] Ochoa-Tapia, J. A. and Whitaker, S. 1995b Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment. Int. J. Heat Mass Transfer 38, 2647-2655. [1.6]
Zurück zum Zitat Ochoa-Tapia, J. A. and Whitaker, S. 1998 Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: Inertia effects. J. Porous Media 1, 201-207. [1.6] Ochoa-Tapia, J. A. and Whitaker, S. 1998 Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: Inertia effects. J. Porous Media 1, 201-207. [1.6]
Zurück zum Zitat Ochoa-Tapia, J. A., Valdes-Parada, F. J. and Alvarez-Ramirez, J. 2007 A fractional-order Darcy’s law. Physica A 374, 1-14. [1.4.3] Ochoa-Tapia, J. A., Valdes-Parada, F. J. and Alvarez-Ramirez, J. 2007 A fractional-order Darcy’s law. Physica A 374, 1-14. [1.4.3]
Zurück zum Zitat Panilov, M. and Fourar, M. 2006 Physical splitting of nonlinear effects in high-velocity stable flow through porous media. Adv. Water Resources 29, 30-41. [1.5.2] Panilov, M. and Fourar, M. 2006 Physical splitting of nonlinear effects in high-velocity stable flow through porous media. Adv. Water Resources 29, 30-41. [1.5.2]
Zurück zum Zitat Papathanasiou, T. D., Markicevic, B. and Dendy, E. D. 2001 A computational evaluation of the Ergun and Forchheimer equations for fibrous porous media. Phys. Fluids 13, 2795-2804. [1.5.2] Papathanasiou, T. D., Markicevic, B. and Dendy, E. D. 2001 A computational evaluation of the Ergun and Forchheimer equations for fibrous porous media. Phys. Fluids 13, 2795-2804. [1.5.2]
Zurück zum Zitat Payne, L. E. and Song, J. C. 1997 Spatial decay estimates for the Brinkman and Darcy flows in a semi-infinit cylinder. Cont. Mech. Thermodyn. 9, 175-190. [1.5.3] Payne, L. E. and Song, J. C. 1997 Spatial decay estimates for the Brinkman and Darcy flows in a semi-infinit cylinder. Cont. Mech. Thermodyn. 9, 175-190. [1.5.3]
Zurück zum Zitat Payne, L. E. and Song, J. C. 2000 Spatial decay for a model of double diffusive convection in Darcy and Brinkman flow. Z. Angew. Math. Phys. 51, 867-889. [1.5.3] Payne, L. E. and Song, J. C. 2000 Spatial decay for a model of double diffusive convection in Darcy and Brinkman flow. Z. Angew. Math. Phys. 51, 867-889. [1.5.3]
Zurück zum Zitat Payne, L. E. and Song, J. C. 2002 Spatial decay bounds for the Forchheimer equation. Int. J. Engng. Sci. 40, 943-956. [1.5.3] Payne, L. E. and Song, J. C. 2002 Spatial decay bounds for the Forchheimer equation. Int. J. Engng. Sci. 40, 943-956. [1.5.3]
Zurück zum Zitat Payne, L. E. and Straughan, B. 1998a Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J. Math. Pures Appl. 77, 317-354. [1.6] Payne, L. E. and Straughan, B. 1998a Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J. Math. Pures Appl. 77, 317-354. [1.6]
Zurück zum Zitat Payne, L. E. and Straughan, B. 1998b Structure stability for the darcy equations of flow in porous media. Proc. Roy. Soc. Lond. A. 454, 1691-1698. [1.5.3] Payne, L. E. and Straughan, B. 1998b Structure stability for the darcy equations of flow in porous media. Proc. Roy. Soc. Lond. A. 454, 1691-1698. [1.5.3]
Zurück zum Zitat Payne, L. E. and Straughan, B. 1999 Convergence and continuous dependence for the Brinkman-Focrchheimer equations. Stud. Appl. Math. 102, 419-439. [1.5.3] Payne, L. E. and Straughan, B. 1999 Convergence and continuous dependence for the Brinkman-Focrchheimer equations. Stud. Appl. Math. 102, 419-439. [1.5.3]
Zurück zum Zitat Payne, L. E., Rodriigues, J. F. and Straughan, B. 2001 Effect of anisotropic permeability on Darcy’s law. Math. Meth. Appl. Sci. 24, 427-438. [1.5.3] Payne, L. E., Rodriigues, J. F. and Straughan, B. 2001 Effect of anisotropic permeability on Darcy’s law. Math. Meth. Appl. Sci. 24, 427-438. [1.5.3]
Zurück zum Zitat Payne, L., Song, J. and Straughan, B. 1999 Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. Proc. Roy. Soc. Londaon A 455, 2173-2190. [1.5.3] Payne, L., Song, J. and Straughan, B. 1999 Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. Proc. Roy. Soc. Londaon A 455, 2173-2190. [1.5.3]
Zurück zum Zitat Pedras, M. H. J. and de Lemos, M. J. S. 2000 On the definition of turbulent kinetic energy for flow in porous media. Int. Comm. Heat Mass Transfer 27, 211-220. [1.8] Pedras, M. H. J. and de Lemos, M. J. S. 2000 On the definition of turbulent kinetic energy for flow in porous media. Int. Comm. Heat Mass Transfer 27, 211-220. [1.8]
Zurück zum Zitat Pedras, M. H. J. and de Lemos, M. J. S. 2001a Macroscopic turbulence modeling for incompressible flow through undeformable porous media. Int. J. Heat Mass Transfer 44, 1081-1093. [1.8] Pedras, M. H. J. and de Lemos, M. J. S. 2001a Macroscopic turbulence modeling for incompressible flow through undeformable porous media. Int. J. Heat Mass Transfer 44, 1081-1093. [1.8]
Zurück zum Zitat Pedras, M. H. J. and de Lemos, M. J. S. 2001b Simulation of turbulent flow in porous media using a spatially periodic array and low Re two-equation closure. Numer. Heat Transfer A 39, 35-59. [1.8] Pedras, M. H. J. and de Lemos, M. J. S. 2001b Simulation of turbulent flow in porous media using a spatially periodic array and low Re two-equation closure. Numer. Heat Transfer A 39, 35-59. [1.8]
Zurück zum Zitat Pedras, M. H. J. and de Lemos, M. J. S. 2001c On the mathematical description and simulation of turbulent flow in a porous medium formed by an array of elliptical rods. ASME J. Fluids Engng. 123, 941-947. [1.8] Pedras, M. H. J. and de Lemos, M. J. S. 2001c On the mathematical description and simulation of turbulent flow in a porous medium formed by an array of elliptical rods. ASME J. Fluids Engng. 123, 941-947. [1.8]
Zurück zum Zitat Pedras, M. H. J. and de Lemos, M. J. S. 2003 Computation of turbulent flow in porous media using a low Reynolds number k - ε model and an infinite array of transversely displaced elliptic rods. Numer. Heat Transfer A 43, 585-602. [1.8] Pedras, M. H. J. and de Lemos, M. J. S. 2003 Computation of turbulent flow in porous media using a low Reynolds number k - ε model and an infinite array of transversely displaced elliptic rods. Numer. Heat Transfer A 43, 585-602. [1.8]
Zurück zum Zitat Pinson, F., Gregoire, O. and Simonin, O. 2006 Kappa-epsilon macroscale modeling of turbulence based on a two-scale analysis in porous media. Int. J. Heat Fluid Flow 27, 955-966. [1.8] Pinson, F., Gregoire, O. and Simonin, O. 2006 Kappa-epsilon macroscale modeling of turbulence based on a two-scale analysis in porous media. Int. J. Heat Fluid Flow 27, 955-966. [1.8]
Zurück zum Zitat Pinson, F., Gregoire, O. and Simonin, O. 2007 Macroscale turbulence modeling for flows in media laden with solid structures. Comptes Rendus Mecanique 335, 13-19. [1.8] Pinson, F., Gregoire, O. and Simonin, O. 2007 Macroscale turbulence modeling for flows in media laden with solid structures. Comptes Rendus Mecanique 335, 13-19. [1.8]
Zurück zum Zitat Prescott, P. J. and Incropera, F. P. 1995 The effect of turbulence on solidification of binary metal alloy with electromagnetic stirring. ASME J. Heat Transfer 117, 716-724. [1.8, 10.2.3] Prescott, P. J. and Incropera, F. P. 1995 The effect of turbulence on solidification of binary metal alloy with electromagnetic stirring. ASME J. Heat Transfer 117, 716-724. [1.8, 10.2.3]
Zurück zum Zitat Rahli, O., Tadrist, L., Miscevic, M. and Santini, R. 1997 Fluid flow through randomly packed monodisperse fibers: the Kozeny-Carman parameter analysis. ASME J. Fluids Engng. 119, 188-192. [1.4.2] Rahli, O., Tadrist, L., Miscevic, M. and Santini, R. 1997 Fluid flow through randomly packed monodisperse fibers: the Kozeny-Carman parameter analysis. ASME J. Fluids Engng. 119, 188-192. [1.4.2]
Zurück zum Zitat Richardson, S. 1971 A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49, 327-336. [1.6] Richardson, S. 1971 A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49, 327-336. [1.6]
Zurück zum Zitat Rocamora, F. D. and de Lemos, M. J. S. 2000 Analysis of convective heat transfer for turbulent flow in saturated porous media. Int. Comm. Heat Mass Transfer 27, 825-834. [1.8] Rocamora, F. D. and de Lemos, M. J. S. 2000 Analysis of convective heat transfer for turbulent flow in saturated porous media. Int. Comm. Heat Mass Transfer 27, 825-834. [1.8]
Zurück zum Zitat Royer, P., Auriault, J. L. and Boutin, C. 1995 Contribution de l’homogénéisation à l’étude de la filtration d’un fluide en mileux poreux fracturé. Rev. Inst. Franc. Petr. 50, 337-352. [1.9] Royer, P., Auriault, J. L. and Boutin, C. 1995 Contribution de l’homogénéisation à l’étude de la filtration d’un fluide en mileux poreux fracturé. Rev. Inst. Franc. Petr. 50, 337-352. [1.9]
Zurück zum Zitat Rubinstein, J. 1986 Effective equations for flow in random porous media with a large number of scales. J. Fluid Mech. 170, 379-383. [1.5.3] Rubinstein, J. 1986 Effective equations for flow in random porous media with a large number of scales. J. Fluid Mech. 170, 379-383. [1.5.3]
Zurück zum Zitat Rudraiah, N. 1985 Coupled parallel flows in a channel and a bounding porous medium of finite thickness. ASME J. Fluids Engng. 107, 322-329. [1.6] Rudraiah, N. 1985 Coupled parallel flows in a channel and a bounding porous medium of finite thickness. ASME J. Fluids Engng. 107, 322-329. [1.6]
Zurück zum Zitat Rudraiah, N. 1988 Turbulent convection in porous media with non-Darcy effects. ASME HTD 96, vol. 1, 747-754. [1.8] Rudraiah, N. 1988 Turbulent convection in porous media with non-Darcy effects. ASME HTD 96, vol. 1, 747-754. [1.8]
Zurück zum Zitat Saez, A. E., Perfetti, J. C. and Rusinek, I. 1991 Prediction of effective diffusivities in porous media using spatially periodic models. Transport Porous Media 11, 187-199. [1.5.2] Saez, A. E., Perfetti, J. C. and Rusinek, I. 1991 Prediction of effective diffusivities in porous media using spatially periodic models. Transport Porous Media 11, 187-199. [1.5.2]
Zurück zum Zitat Saffman, P. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93-101. [1.6] Saffman, P. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93-101. [1.6]
Zurück zum Zitat Saghir, M. Z., Nejad, M., Vaziri, H. H. and Islam, M. R. 2001 Modeling of heat and mass transfer in a fractured porous medium. Int. J. Comput. Fluid Dyn. 15, 279-292. [1.9] Saghir, M. Z., Nejad, M., Vaziri, H. H. and Islam, M. R. 2001 Modeling of heat and mass transfer in a fractured porous medium. Int. J. Comput. Fluid Dyn. 15, 279-292. [1.9]
Zurück zum Zitat Sahimi, M. 1993 Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 1393-1534. [1.9] Sahimi, M. 1993 Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 1393-1534. [1.9]
Zurück zum Zitat Sahimi, M. 1995 Flow and Transport inPorous Media and Fractured Rock. VCH Verlagsgesellschaft, Weinheim. [1.9] Sahimi, M. 1995 Flow and Transport inPorous Media and Fractured Rock. VCH Verlagsgesellschaft, Weinheim. [1.9]
Zurück zum Zitat Sahraoui, M. and Kaviany, M. 1992 Slip and no-slip velocity boundary conditions at the interface of porous, plain media. Int. J. Heat Mass Transfer 35, 927-943. [1.6] Sahraoui, M. and Kaviany, M. 1992 Slip and no-slip velocity boundary conditions at the interface of porous, plain media. Int. J. Heat Mass Transfer 35, 927-943. [1.6]
Zurück zum Zitat Saito, M. B. and de Lemos, J. S. 2006 A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods. ASME J. Heat Transfer 128, 444-452. [1.8] Saito, M. B. and de Lemos, J. S. 2006 A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods. ASME J. Heat Transfer 128, 444-452. [1.8]
Zurück zum Zitat Saito, M. B. and de Lemos, M. J. S. 2009 Laminar heat transfer in a porous channel simulated with a two-energy equation model. Int. Comm. Heat Mass Transfer 36, 1002-1007. [1.8] Saito, M. B. and de Lemos, M. J. S. 2009 Laminar heat transfer in a porous channel simulated with a two-energy equation model. Int. Comm. Heat Mass Transfer 36, 1002-1007. [1.8]
Zurück zum Zitat Saito, M. B. and de Lemos, M. J. S. 2010 A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media. Int.J. Heat Mass Transfer 53, 2424-2433. [1.8] Saito, M. B. and de Lemos, M. J. S. 2010 A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media. Int.J. Heat Mass Transfer 53, 2424-2433. [1.8]
Zurück zum Zitat Sakamoto, H. and Kulacki, F. A. 2008 Effective thermal diffusivity of porous media in the wall vicinity. ASME J. Heat Transfer 130, #022601. [1.7] Sakamoto, H. and Kulacki, F. A. 2008 Effective thermal diffusivity of porous media in the wall vicinity. ASME J. Heat Transfer 130, #022601. [1.7]
Zurück zum Zitat Salinger, A. G., Aris, R. and Derby, J. J. 1994a Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains. Int. J. Numer. Meth. Fluids 18, 1185-1209. [1.6] Salinger, A. G., Aris, R. and Derby, J. J. 1994a Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains. Int. J. Numer. Meth. Fluids 18, 1185-1209. [1.6]
Zurück zum Zitat Scheidegger, A. E. 1974 The Physics of Flowthrough Porous Media, University of Toronto Press, Toronto. [1.2] Scheidegger, A. E. 1974 The Physics of Flowthrough Porous Media, University of Toronto Press, Toronto. [1.2]
Zurück zum Zitat Seguin, D., Montillet, A., Comiti, J. and Huet, F. 1998 Experimental characterization of flow regimes in various porous media – II: Transition to turbulent regime. Chem. Engng. Sci. 53, 3897-3909. [1.8] Seguin, D., Montillet, A., Comiti, J. and Huet, F. 1998 Experimental characterization of flow regimes in various porous media – II: Transition to turbulent regime. Chem. Engng. Sci. 53, 3897-3909. [1.8]
Zurück zum Zitat Shah, C. B. and Yortsos, Y. C. 1995 Aspects of flow of power-law fluids in porous media. AIChE J. 41, 1099-1112. [1.5.4] Shah, C. B. and Yortsos, Y. C. 1995 Aspects of flow of power-law fluids in porous media. AIChE J. 41, 1099-1112. [1.5.4]
Zurück zum Zitat Shavit, U., Bar-Yosef, G., Rosenzweig, R. and Assouline, S. 2002 Modified Brinkman equation for a free flow problem at the interface of porous surfaces: The Cantor-Taylor brush configuration case. Water Resour. Res. 38, 1320-1334. [1.6} Shavit, U., Bar-Yosef, G., Rosenzweig, R. and Assouline, S. 2002 Modified Brinkman equation for a free flow problem at the interface of porous surfaces: The Cantor-Taylor brush configuration case. Water Resour. Res. 38, 1320-1334. [1.6}
Zurück zum Zitat Shavit, U., Rosenzweig, R. and Assouline, S. 2004 Free flow at the interface of porous surfaces: A generalization of the Taylor brush configuration. Transport Porous Media. 54, 345-360. [1.6] Shavit, U., Rosenzweig, R. and Assouline, S. 2004 Free flow at the interface of porous surfaces: A generalization of the Taylor brush configuration. Transport Porous Media. 54, 345-360. [1.6]
Zurück zum Zitat Shenoy, A. V. 1994 Non-Newtonian fluid heat transfer in porous media. Adv. Heat Transfer 24, 101-190. [1.5.4] Shenoy, A. V. 1994 Non-Newtonian fluid heat transfer in porous media. Adv. Heat Transfer 24, 101-190. [1.5.4]
Zurück zum Zitat Silva, R. A. and de Lemos, M. J. S. 2003a Numerical analysis of the stress jump interface condition for laminar flow over a porous layer. Numer. Heat Transfer A 43, 603-617. [1.6] Silva, R. A. and de Lemos, M. J. S. 2003a Numerical analysis of the stress jump interface condition for laminar flow over a porous layer. Numer. Heat Transfer A 43, 603-617. [1.6]
Zurück zum Zitat Silva, R. A. and de Lemos, M. J. S. 2003b Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transfer 46, 5113-5136. [1.8] Silva, R. A. and de Lemos, M. J. S. 2003b Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transfer 46, 5113-5136. [1.8]
Zurück zum Zitat Siyyam, H., Merabet, N. and Hamdan, M. H. 2007 Standard numerical schemes for coupled parallel flow over porous layers. Appl. Math. Comput. 194, 38-45. [1.6] Siyyam, H., Merabet, N. and Hamdan, M. H. 2007 Standard numerical schemes for coupled parallel flow over porous layers. Appl. Math. Comput. 194, 38-45. [1.6]
Zurück zum Zitat Skjetne, E. and Auriault, J. L. 1999a New insights on steady, nonlinear flow in porous media. Europ. J. Mech. B – Fluids 18, 131-145. [1.5.2] Skjetne, E. and Auriault, J. L. 1999a New insights on steady, nonlinear flow in porous media. Europ. J. Mech. B – Fluids 18, 131-145. [1.5.2]
Zurück zum Zitat Skjetne, E. and Auriault, J. L. 1999b Homogenization of wall-slip gas flow through porous media. Transport Porous Media 36, 293-306. [1.6] Skjetne, E. and Auriault, J. L. 1999b Homogenization of wall-slip gas flow through porous media. Transport Porous Media 36, 293-306. [1.6]
Zurück zum Zitat Somerton, C. W. and Catton, I. 1982 On the thermal instability of superimposed porous and fluid layers. ASME J. Heat Transfer 104, 160-165. [1.6, 6.19.1.2, 6.19.2] Somerton, C. W. and Catton, I. 1982 On the thermal instability of superimposed porous and fluid layers. ASME J. Heat Transfer 104, 160-165. [1.6, 6.19.1.2, 6.19.2]
Zurück zum Zitat Song, J. 2002 Spatial decay estimate in time-dependent double-diffusive Darcy plane flow. J. Math. Anal. Appl. 267, 76-88. [1.5.3] Song, J. 2002 Spatial decay estimate in time-dependent double-diffusive Darcy plane flow. J. Math. Anal. Appl. 267, 76-88. [1.5.3]
Zurück zum Zitat Straughan, B. 2004b The Energy Method, Stability,and Nonlinear Convection, 2nd ed., Springer, New York. [1.6, 6.4, 6.19.3, 11.2, 11.3] Straughan, B. 2004b The Energy Method, Stability,and Nonlinear Convection, 2nd ed., Springer, New York. [1.6, 6.4, 6.19.3, 11.2, 11.3]
Zurück zum Zitat Straughan, B. 2010a Green-Naghdi fluid with non-thermal equilibrium effects. Proc Roy. Soc. Lond. A 466, 2021-2032. [6.23] Straughan, B. 2010a Green-Naghdi fluid with non-thermal equilibrium effects. Proc Roy. Soc. Lond. A 466, 2021-2032. [6.23]
Zurück zum Zitat Straughan, B. 2010b Porous convection with Cattaneo heat flux. Int. J. Heat Mass Transfer 53, 2808-2812. [6.24] Straughan, B. 2010b Porous convection with Cattaneo heat flux. Int. J. Heat Mass Transfer 53, 2808-2812. [6.24]
Zurück zum Zitat Straughan, B. 2010c Structure of the dependence of Darcy and Forchheimer coefficients on porosity. Int. J. Engng. Sci. 48, 1610-1621. [1.5.2] Straughan, B. 2010c Structure of the dependence of Darcy and Forchheimer coefficients on porosity. Int. J. Engng. Sci. 48, 1610-1621. [1.5.2]
Zurück zum Zitat Takatsu, Y. and Masuoka, T. 1998 Turbulent phenomena in flow through porous media. J. Porous Media 1, 243-251. [1.8] Takatsu, Y. and Masuoka, T. 1998 Turbulent phenomena in flow through porous media. J. Porous Media 1, 243-251. [1.8]
Zurück zum Zitat Tam, C. K. W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38, 537-546. [1.5.3] Tam, C. K. W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38, 537-546. [1.5.3]
Zurück zum Zitat Taylor, G. I. 1971 A model for the boundary condition of a porous material, Part 1. J. Fluid Mech. 49, 319-326. [1.6] Taylor, G. I. 1971 A model for the boundary condition of a porous material, Part 1. J. Fluid Mech. 49, 319-326. [1.6]
Zurück zum Zitat Teng, H. and Zhao, H. 2000 An extension of Darcy’s law to non-Stokes flow in porous media. Chem. Eng. Sci. 55, 2727-2735. [1.5.2] Teng, H. and Zhao, H. 2000 An extension of Darcy’s law to non-Stokes flow in porous media. Chem. Eng. Sci. 55, 2727-2735. [1.5.2]
Zurück zum Zitat Toutant, A., Chandesris, M. and Jamet, D. 2009 Jump conditions for filtered quantities at an under-resolved discontinuous interface. Part I; Theoretical development. Int. J. Multiphase Flow 35, 1100-1118. [1.6] Toutant, A., Chandesris, M. and Jamet, D. 2009 Jump conditions for filtered quantities at an under-resolved discontinuous interface. Part I; Theoretical development. Int. J. Multiphase Flow 35, 1100-1118. [1.6]
Zurück zum Zitat Travkin, V. and Catton, I. 1995 A two-temperature model for turbulent flow and heat transfer in a porous layer. ASME J. Fluids Engng. 117, 181-188. [1.8] Travkin, V. and Catton, I. 1995 A two-temperature model for turbulent flow and heat transfer in a porous layer. ASME J. Fluids Engng. 117, 181-188. [1.8]
Zurück zum Zitat Travkin, V. S. and Catton, I. 1994 Turbulent transport of momentum, heat and mass in a two-level highly porous medium. Heat Transfer 1994, Inst. Chem. Engrs, Rugby, vol. 6, pp. 399-404. [1.8] Travkin, V. S. and Catton, I. 1994 Turbulent transport of momentum, heat and mass in a two-level highly porous medium. Heat Transfer 1994, Inst. Chem. Engrs, Rugby, vol. 6, pp. 399-404. [1.8]
Zurück zum Zitat Travkin, V. S. and Catton, I. 1998 Porous media transport descriptions – non-local, linear and nonlinear against effective thermal/fluid properties. Adv. Colloid Interface Sci. 77, 389-443. [1.8] Travkin, V. S. and Catton, I. 1998 Porous media transport descriptions – non-local, linear and nonlinear against effective thermal/fluid properties. Adv. Colloid Interface Sci. 77, 389-443. [1.8]
Zurück zum Zitat Vadasz, P. 1999a Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transport Porous Media 37, 213-245. [6.4] Vadasz, P. 1999a Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transport Porous Media 37, 213-245. [6.4]
Zurück zum Zitat Vadasz, P. 1999b A note and discussion on J.-L. Auriault’s letter “Comments on the paper ‘Local and global transitions to chaos and hysteresis in a porous layer heated from below’ by P. Vadasz.” Transport Porous Media 37, 251-254. [6.4] Vadasz, P. 1999b A note and discussion on J.-L. Auriault’s letter “Comments on the paper ‘Local and global transitions to chaos and hysteresis in a porous layer heated from below’ by P. Vadasz.” Transport Porous Media 37, 251-254. [6.4]
Zurück zum Zitat Vafai, K. and Kim, S. J. 1997 Closure. ASME J. Heat Transfer 119, 197-198. [1.5.3] Vafai, K. and Kim, S. J. 1997 Closure. ASME J. Heat Transfer 119, 197-198. [1.5.3]
Zurück zum Zitat Vafai, K. and Tien, C. L. 1982 Boundary and inertial effects on convective mass transfer in porous media. Int. J. Heat Mass Transfer 25, 1183-1190. [1.5.3] Vafai, K. and Tien, C. L. 1982 Boundary and inertial effects on convective mass transfer in porous media. Int. J. Heat Mass Transfer 25, 1183-1190. [1.5.3]
Zurück zum Zitat Vafai, K. and Tien, C.L. 1981 Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Transfer 24, 195-203. [1.5.3, 4.9] Vafai, K. and Tien, C.L. 1981 Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Transfer 24, 195-203. [1.5.3, 4.9]
Zurück zum Zitat Vafai, K., Bejan, A., Minkowycz, W. J. and Khanafer, K. 2006 A critical synthesis of pertinent models for turbulent transport through porous media. In Handbook of Numerical HeatTransfer (W. J. Minkowycz, E. M. Sparrow, J. Y. Murthy, eds.), 2nd ed., Wiley, New York, pp. 389-416. [1.8] Vafai, K., Bejan, A., Minkowycz, W. J. and Khanafer, K. 2006 A critical synthesis of pertinent models for turbulent transport through porous media. In Handbook of Numerical HeatTransfer (W. J. Minkowycz, E. M. Sparrow, J. Y. Murthy, eds.), 2nd ed., Wiley, New York, pp. 389-416. [1.8]
Zurück zum Zitat Vafai, K., Minkowycz, W. J., Bejan, A. and Khanafer, K. 2006 Synthesis of models for turbulent transport through porous media. Handbook of Numerical HeatTransfer (eds. W. J. Minkowycz and E. M. Sparrow), Wiley, New York, ch. 12. [1.8] Vafai, K., Minkowycz, W. J., Bejan, A. and Khanafer, K. 2006 Synthesis of models for turbulent transport through porous media. Handbook of Numerical HeatTransfer (eds. W. J. Minkowycz and E. M. Sparrow), Wiley, New York, ch. 12. [1.8]
Zurück zum Zitat Valdes-Parada, F. J., Alvarez-Ramirez, J., Goyeau, B. and Ochoa-Tapia, J. A. 2009a Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp. Porous Media 78, 439-457. [1.6] Valdes-Parada, F. J., Alvarez-Ramirez, J., Goyeau, B. and Ochoa-Tapia, J. A. 2009a Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp. Porous Media 78, 439-457. [1.6]
Zurück zum Zitat Valdes-Parada, F. J., Alvarez-Ramirez, J., Goyeau, B. and Ochoa-Tapia, J. A. 2009b Jump condition for diffusive and convective mass transfer between a porous medium and a fluid involving adsorption and chemical reaction. Transp. Porous Media 78, 459-476. [2.4] Valdes-Parada, F. J., Alvarez-Ramirez, J., Goyeau, B. and Ochoa-Tapia, J. A. 2009b Jump condition for diffusive and convective mass transfer between a porous medium and a fluid involving adsorption and chemical reaction. Transp. Porous Media 78, 459-476. [2.4]
Zurück zum Zitat Valdes-Parada, F. J., Goyeau, B. and Ochoa-Tapia, J. A. 2007 Jump momentum boundary condition at a fluid-porous dividing surface: Derivation of the closure problem. Chem. Engng. Sci. 62, 4025-4039. [1.6] Valdes-Parada, F. J., Goyeau, B. and Ochoa-Tapia, J. A. 2007 Jump momentum boundary condition at a fluid-porous dividing surface: Derivation of the closure problem. Chem. Engng. Sci. 62, 4025-4039. [1.6]
Zurück zum Zitat Valdes-Parada, F. J., Ochoa-Tapia, J. A. and Alvarez-Ramirez, J. 2007 On the effective viscosity for the Darcy-Brinkman equation. Physica A 385, 69-79. [1.5.3] Valdes-Parada, F. J., Ochoa-Tapia, J. A. and Alvarez-Ramirez, J. 2007 On the effective viscosity for the Darcy-Brinkman equation. Physica A 385, 69-79. [1.5.3]
Zurück zum Zitat Venkataraman, P. and Rao, P. R. M. 2000 Validation of Forchheimer’s law for flow through porous media with converging boundaries. J. Hydr. Engng. 126, 63-71. [1.5.2] Venkataraman, P. and Rao, P. R. M. 2000 Validation of Forchheimer’s law for flow through porous media with converging boundaries. J. Hydr. Engng. 126, 63-71. [1.5.2]
Zurück zum Zitat Wang, H. and Takle, E. 1995 Boundary-layer flow and turbulence near porous obstacles. Boundary-Layer Meteor. 74, 73-88. [1.8] Wang, H. and Takle, E. 1995 Boundary-layer flow and turbulence near porous obstacles. Boundary-Layer Meteor. 74, 73-88. [1.8]
Zurück zum Zitat Wang, X., Thauvin, F. and Mohanty, K. K. 1999 Non-Darcy flow through anisotropic porous media. Chem. Engng. Sci. 54, 1859-1869. [1.5.2] Wang, X., Thauvin, F. and Mohanty, K. K. 1999 Non-Darcy flow through anisotropic porous media. Chem. Engng. Sci. 54, 1859-1869. [1.5.2]
Zurück zum Zitat Ward, J. C. 1964 Turbulent flow in porous media. ASCE J. Hydraul. Div. 90 (HY5), 1-12. [1.5.2, 10.1.6] Ward, J. C. 1964 Turbulent flow in porous media. ASCE J. Hydraul. Div. 90 (HY5), 1-12. [1.5.2, 10.1.6]
Zurück zum Zitat Weinert, A. and Lage, J. L. 1994 Porous aluminum-alloy based cooling devices for electronics. SMU-MED-CPMA Inter. Rep. 1.01/94, Southern Methodist University, Dallas, TX. [1.5.3] Weinert, A. and Lage, J. L. 1994 Porous aluminum-alloy based cooling devices for electronics. SMU-MED-CPMA Inter. Rep. 1.01/94, Southern Methodist University, Dallas, TX. [1.5.3]
Zurück zum Zitat Whitaker, S. 1986 Flow in porous media J: A theoretical derivation of Darcy’s law. Transport in Porous Media 1, 3-25. [1.4.3] Whitaker, S. 1986 Flow in porous media J: A theoretical derivation of Darcy’s law. Transport in Porous Media 1, 3-25. [1.4.3]
Zurück zum Zitat Whitaker, S. 1996 The Forchheimer equation: a theoretical development. Transport in Porous Media 25, 27-61. [1.5.2] Whitaker, S. 1996 The Forchheimer equation: a theoretical development. Transport in Porous Media 25, 27-61. [1.5.2]
Zurück zum Zitat Whitaker, S. 1999 The Method of VolumeAveraging. Springer, New York. [1.1, 3.5] Whitaker, S. 1999 The Method of VolumeAveraging. Springer, New York. [1.1, 3.5]
Zurück zum Zitat Wooding, R. A. 1957 Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2, 273-285. [1.5.1] Wooding, R. A. 1957 Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2, 273-285. [1.5.1]
Zurück zum Zitat Wu J. and Yu, B. 2007 A fractal resistance model for flow through porous media Int. J. Heat Mass Transfer 50, 3925-3932. [1.4.3] Wu J. and Yu, B. 2007 A fractal resistance model for flow through porous media Int. J. Heat Mass Transfer 50, 3925-3932. [1.4.3]
Zurück zum Zitat Yang, Y. T. and Hwang, C. Z. 2003 Calculation of turbulent flow and heat transfer in a porous-baffled channel. Int. J. Heat Mass Transfer 46, 771-780. [1.8] Yang, Y. T. and Hwang, C. Z. 2003 Calculation of turbulent flow and heat transfer in a porous-baffled channel. Int. J. Heat Mass Transfer 46, 771-780. [1.8]
Zurück zum Zitat Yu, P., Lee, T. S., Zeng, Y. and Low, H. T. 2007 A numerical method for flows in porous and homogeneous fluid domains coupled at the interface by a stress jump. Int. J. Numer. Meth. Fluids 53, 1755-1775. [1.6] Yu, P., Lee, T. S., Zeng, Y. and Low, H. T. 2007 A numerical method for flows in porous and homogeneous fluid domains coupled at the interface by a stress jump. Int. J. Numer. Meth. Fluids 53, 1755-1775. [1.6]
Zurück zum Zitat Zhang, X. Y. and Nepf, H. M. 2011 Exchange flow between open water and floating vegetation. Exp. Fluid Mech. 11, 531-546. [1.6] Zhang, X. Y. and Nepf, H. M. 2011 Exchange flow between open water and floating vegetation. Exp. Fluid Mech. 11, 531-546. [1.6]
Zurück zum Zitat Zhu, J. and Kuznetsov, A. V. 2005 Forced convection in a composite parallel plate channel: modeling the effect of interface roughness and turbulence using a k-ε model. Int. Comm. Heat Mass Transfer 32, 10-18. [1.8] Zhu, J. and Kuznetsov, A. V. 2005 Forced convection in a composite parallel plate channel: modeling the effect of interface roughness and turbulence using a k-ε model. Int. Comm. Heat Mass Transfer 32, 10-18. [1.8]
Metadaten
Titel
Mechanics of Fluid Flow Through a Porous Medium
verfasst von
Donald A. Nield
Adrian Bejan
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5541-7_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.