Skip to main content

2001 | Buch

Functional Analysis and Infinite-Dimensional Geometry

verfasst von: Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler

Verlag: Springer New York

Buchreihe : CMS Books in Mathematics

insite
SUCHEN

Inhaltsverzeichnis

Frontmatter
1. Basic Concepts in Banach Spaces
Abstract
Most of the theory presented in this text is valid for both real and complex scalar fields. When the proofs are similar, we formulate the theorems without specifying the field over which we are working. When theorems are not valid in both fields or their proofs are different, we specify the scalar field in the formulation of a theorem. K denotes simultaneously the real (R) or complex (C) scalar field. We use N for {1,2,...}. All topologies are assumed to be Hausdorff. In particular, by a compact space we mean a compact Hausdorff space.
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
2. Hahn—Banach and Banach Open Mapping Theorems
Abstract
A real-valued function p on a vector space X is called a positively homogeneous sublinear functional if for all x, y ϵ X and α ≥ 0 it satisfies
$$p(\alpha x) = \alpha p(x)\;\;and\;\;p(x + y) \leqslant p(x) + p(y)$$
.
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
3. Weak Topologies
Abstract
Given a normed space (X, ‖ · ‖), by X** we denote the space (X*)* with the norm \( \left\| F \right\| = \mathop {\sup }\limits_{f \in {B_x}*} \left| {F(f)} \right| \). We define higher duals by induction as X*** = (X**)*, etc.
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
4. Locally Convex Spaces
Abstract
In this chapter, we restrict ourselves to the real scalar field.
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
5. Structure of Banach Spaces
Abstract
Let X be a vector space. A linear map P:X → X is called a projection onto a subspace Y of X if P(X) = Y and P(y) = y for every y ∈ Y.
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
6. Schauder Bases
Abstract
Let X be an infinite-dimensional normed linear space. A sequence \(\left\{ {{e_i}} \right\}_i^\infty = 1\) in X is called a Schauder basis of X if for every x ∈ X there is a unique sequence of scalars \(\left( {{a_i}} \right)_i^\infty = 1\) called the coordinates of x, such that \(x = \sum\limits_{i = 1}^\infty {{a_i}{e_i}}\).
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
7. Compact Operators on Banach Spaces
Abstract
Let X and Y be Banach spaces.
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
8. Differentiability of Norms
Abstract
Let f be a real-valued function on an open subset U of a Banach space X. Let x ∈ U. We say that f is Gâteaux differentiable at x if there is F ∈ X* such that
$$\mathop {\lim }\limits_{t \to 0} \frac{{f(x + th) - f(x)}}{t} = F(h)$$
for every h ∈ X.
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
9. Uniform Convexity
Abstract
Let (X, ‖ · ‖) be a Banach space. For every ε ∈ (0, 2], we define the modulus of convexity (or rotundity) of ‖ · ‖ by
$${\delta _X}\left( \varepsilon \right) = \inf \left\{ {1 - \left\| {\frac{{x + y}}{2}} \right\|;\,x,y \in {B_X},\,\left\| {x - y} \right\| \geqslant \varepsilon } \right\}$$
.
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
10. Smoothness and Structure
Abstract
Let X be a Banach space, n э N.
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
11. Weakly Compactly Generated Spaces
Abstract
A Banach space X is called weakly compactly generated (WCG) if there is a weakly compact set K in X such that X = span̄ (K).
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
12. Topics in Weak Topology
Abstract
Let K be a compact set, and let L be a pointwise closed set in C (K).
Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, Václav Zizler
Backmatter
Metadaten
Titel
Functional Analysis and Infinite-Dimensional Geometry
verfasst von
Marián Fabian
Petr Habala
Petr Hájek
Vicente Montesinos Santalucía
Jan Pelant
Václav Zizler
Copyright-Jahr
2001
Verlag
Springer New York
Electronic ISBN
978-1-4757-3480-5
Print ISBN
978-1-4419-2912-9
DOI
https://doi.org/10.1007/978-1-4757-3480-5