Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Formal Techniques for Verification and Testing of Cyber-Physical Systems

verfasst von : Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan

Erschienen in: Design Automation of Cyber-Physical Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern cyber-physical systems (CPS) are often developed in a model-based development (MBD) paradigm. The MBD paradigm involves the construction of different kinds of models: (1) a plant model that encapsulates the physical components of the system (e.g., mechanical, electrical, chemical components) using representations based on differential and algebraic equations, (2) a controller model that encapsulates the embedded software components of the system, and (3) an environment model that encapsulates physical assumptions on the external environment of the CPS application. In order to reason about the correctness of CPS applications, we typically pose the following question: For all possible environment scenarios, does the closed-loop system consisting of the plant and the controller exhibit the desired behavior? Typically, the desired behavior is expressed in terms of properties that specify unsafe behaviors of the closed-loop system. Often, such behaviors are expressed using variants of real-time temporal logics. In this chapter, we will examine formal methods based on bounded-time reachability analysis, simulation-guided reachability analysis, deductive techniques based on safety invariants, and formal, requirement-driven testing techniques. We will review key results in the literature, and discuss the scalability and applicability of such systems to various academic and industrial contexts. We conclude this chapter by discussing the challenge to formal verification and testing techniques posed by newer CPS applications that use AI-based software components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Allowing stochasticity in the plant or environment model necessitates treating the closed-loop CPS model as a stochastic dynamical system. The techniques for verification and testing of such systems are quite different. As we wish to focus on techniques that are closer to industrial use of MBD for CPS applications, we refer the reader to [36, 71] for excellent surveys.
 
2
For a set X, let \(\mathcal {P}(X)\) denote its power set.
 
Literatur
1.
Zurück zum Zitat Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivancic, F., & Gupta, A. (2013). Probabilistic temporal logic falsification of cyber-physical systems. ACM Transactions on Embedded Computing Systems, 12, 95.CrossRef Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivancic, F., & Gupta, A. (2013). Probabilistic temporal logic falsification of cyber-physical systems. ACM Transactions on Embedded Computing Systems, 12, 95.CrossRef
2.
Zurück zum Zitat Abbas, H., Hoxha, B., Fainekos, G., & Ueda, K. (2014). Robustness-guided temporal logic testing and verification for stochastic cyber-physical systems. In 2014 IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) (pp. 1–6). Piscataway: IEEE. Abbas, H., Hoxha, B., Fainekos, G., & Ueda, K. (2014). Robustness-guided temporal logic testing and verification for stochastic cyber-physical systems. In 2014 IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) (pp. 1–6). Piscataway: IEEE.
3.
Zurück zum Zitat Abbas, H., O’Kelly, M., Rodionova, A., & Mangharam, R. (2017). Safe at any speed: A simulation-based test harness for autonomous vehicles. In 7th Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy’17). Abbas, H., O’Kelly, M., Rodionova, A., & Mangharam, R. (2017). Safe at any speed: A simulation-based test harness for autonomous vehicles. In 7th Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy’17).
4.
Zurück zum Zitat Abbas, H., Rodionova, A., Bartocci, E., Smolka, S. A., & Grosu, R. (2017). Quantitative regular expressions for arrhythmia detection algorithms. In Proceedings of the International Conference on Computational Methods in Systems Biology (pp. 23–39). Berlin: Springer.CrossRef Abbas, H., Rodionova, A., Bartocci, E., Smolka, S. A., & Grosu, R. (2017). Quantitative regular expressions for arrhythmia detection algorithms. In Proceedings of the International Conference on Computational Methods in Systems Biology (pp. 23–39). Berlin: Springer.CrossRef
5.
Zurück zum Zitat Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., & Jin, X. (2017). Classification and coverage-based falsification for embedded control systems. In International Conference on Computer Aided Verification (pp. 483–503). Berlin: Springer.CrossRef Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., & Jin, X. (2017). Classification and coverage-based falsification for embedded control systems. In International Conference on Computer Aided Verification (pp. 483–503). Berlin: Springer.CrossRef
6.
Zurück zum Zitat Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., & Hao, J. (2018). Falsification of cyber-physical systems using deep reinforcement learning. arXiv preprint arXiv:1805.00200. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., & Hao, J. (2018). Falsification of cyber-physical systems using deep reinforcement learning. arXiv preprint arXiv:1805.00200.
7.
Zurück zum Zitat Althoff, M. (2015). An introduction to CORA 2015. In Proceedings of the Workshop on Applied Verification for Continuous and Hybrid Systems (pp. 120–151). Althoff, M. (2015). An introduction to CORA 2015. In Proceedings of the Workshop on Applied Verification for Continuous and Hybrid Systems (pp. 120–151).
8.
Zurück zum Zitat Althoff, M., & Grebenyuk, D. (2016). Implementation of interval arithmetic in CORA 2016. In Proceedings of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems (pp. 91–105). Althoff, M., & Grebenyuk, D. (2016). Implementation of interval arithmetic in CORA 2016. In Proceedings of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems (pp. 91–105).
9.
Zurück zum Zitat Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P. H., Nicollin, X., et al. (1995). The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1), 3–34.MathSciNetMATHCrossRef Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P. H., Nicollin, X., et al. (1995). The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1), 3–34.MathSciNetMATHCrossRef
10.
Zurück zum Zitat Alur, R., Courcoubetis, C., Henzinger, T. A., & Ho, P. H. (1993). Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In Workshop on International Hybrid Systems (pp. 209–229). Berlin: Springer.CrossRef Alur, R., Courcoubetis, C., Henzinger, T. A., & Ho, P. H. (1993). Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In Workshop on International Hybrid Systems (pp. 209–229). Berlin: Springer.CrossRef
11.
Zurück zum Zitat Alur, R., Dang, T., & Ivančić, F. (2003). Counter-example guided predicate abstraction of hybrid systems. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science (Vol. 2619, pp. 208–223). Berlin: Springer Alur, R., Dang, T., & Ivančić, F. (2003). Counter-example guided predicate abstraction of hybrid systems. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science (Vol. 2619, pp. 208–223). Berlin: Springer
13.
Zurück zum Zitat Alur, R., Fisman, D., & Raghothaman, M. (2016). Regular programming for quantitative properties of data streams. In Proceedings of the European Symposium on Programming Languages and Systems (pp. 15–40). Berlin: Springer.MATHCrossRef Alur, R., Fisman, D., & Raghothaman, M. (2016). Regular programming for quantitative properties of data streams. In Proceedings of the European Symposium on Programming Languages and Systems (pp. 15–40). Berlin: Springer.MATHCrossRef
14.
Zurück zum Zitat Alur, R., & Henzinger, T. A. (1989). A really temporal logic. In Proceedings of the Symposium on Foundations of Computer Science (pp. 164–169). Alur, R., & Henzinger, T. A. (1989). A really temporal logic. In Proceedings of the Symposium on Foundations of Computer Science (pp. 164–169).
15.
Zurück zum Zitat Alur, R., Henzinger, T. A., Lafferriere, G., & Pappas, G.J. (2000). Discrete abstractions of hybrid systems. Proceedings of the IEEE, 88(7), 971–984.CrossRef Alur, R., Henzinger, T. A., Lafferriere, G., & Pappas, G.J. (2000). Discrete abstractions of hybrid systems. Proceedings of the IEEE, 88(7), 971–984.CrossRef
16.
Zurück zum Zitat Alur, R., Mamouras, K., & Ulus, D. (2017). Derivatives of quantitative regular expressions. In Models, algorithms, logics and tools (pp. 75–95). Cham: Springer.CrossRef Alur, R., Mamouras, K., & Ulus, D. (2017). Derivatives of quantitative regular expressions. In Models, algorithms, logics and tools (pp. 75–95). Cham: Springer.CrossRef
17.
Zurück zum Zitat Ames, A. D., Grizzle, J. W., & Tabuada, P. (2014). Control barrier function based quadratic programs with application to adaptive cruise control. In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC) (pp. 6271–6278). Piscataway: IEEE. Ames, A. D., Grizzle, J. W., & Tabuada, P. (2014). Control barrier function based quadratic programs with application to adaptive cruise control. In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC) (pp. 6271–6278). Piscataway: IEEE.
18.
Zurück zum Zitat Annapureddy, Y. S. R., & Fainekos, G. E. (2010). Ant colonies for temporal logic falsification of hybrid systems. In Proceedings of the 36th Annual Conference of IEEE Industrial Electronics (pp. 91–96). Piscataway: IEEE. Annapureddy, Y. S. R., & Fainekos, G. E. (2010). Ant colonies for temporal logic falsification of hybrid systems. In Proceedings of the 36th Annual Conference of IEEE Industrial Electronics (pp. 91–96). Piscataway: IEEE.
19.
Zurück zum Zitat Annpureddy, Y., Liu, C., Fainekos, G. E., & Sankaranarayanan, S. (2011). S-TaLiRo: A tool for temporal logic falsification for hybrid systems. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems (pp. 254–257). Berlin: Springer.MATH Annpureddy, Y., Liu, C., Fainekos, G. E., & Sankaranarayanan, S. (2011). S-TaLiRo: A tool for temporal logic falsification for hybrid systems. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems (pp. 254–257). Berlin: Springer.MATH
20.
Zurück zum Zitat Aréchiga, N., & Krogh, B. (2014). Using verified control envelopes for safe controller design. In 2014 American Control Conference (ACC) (pp. 2918–2923). Piscataway: IEEE.CrossRef Aréchiga, N., & Krogh, B. (2014). Using verified control envelopes for safe controller design. In 2014 American Control Conference (ACC) (pp. 2918–2923). Piscataway: IEEE.CrossRef
22.
Zurück zum Zitat Asarin, E., Dang, T., & Girard, A. (2007). Hybridization methods for the analysis of nonlinear systems. Acta Informatica, 43(7), 451–476.MathSciNetMATHCrossRef Asarin, E., Dang, T., & Girard, A. (2007). Hybridization methods for the analysis of nonlinear systems. Acta Informatica, 43(7), 451–476.MathSciNetMATHCrossRef
23.
Zurück zum Zitat Asarin, E., Maler, O., & Pnueli, A. (1995). Reachability analysis of dynamical systems having piecewise-constant derivatives. Theoretical Computer Science, 138, 35–65.MathSciNetMATHCrossRef Asarin, E., Maler, O., & Pnueli, A. (1995). Reachability analysis of dynamical systems having piecewise-constant derivatives. Theoretical Computer Science, 138, 35–65.MathSciNetMATHCrossRef
24.
Zurück zum Zitat Baier, C., & Katoen, J. P. (2008). Principles of model checking. Cambridge, MA: MIT Press.MATH Baier, C., & Katoen, J. P. (2008). Principles of model checking. Cambridge, MA: MIT Press.MATH
25.
Zurück zum Zitat Bak, S., & Duggirala, P. S. (2017). HyLAA: A tool for computing simulation-equivalent reachability for linear systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control (pp. 173–178). New York: ACM. Bak, S., & Duggirala, P. S. (2017). HyLAA: A tool for computing simulation-equivalent reachability for linear systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control (pp. 173–178). New York: ACM.
26.
Zurück zum Zitat Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., & Criminisi, A. (2016). Measuring neural net robustness with constraints. In Advances in Neural Information Processing Systems (pp. 2613–2621). Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., & Criminisi, A. (2016). Measuring neural net robustness with constraints. In Advances in Neural Information Processing Systems (pp. 2613–2621).
27.
Zurück zum Zitat Berz, M. (1999). Modern map methods in particle beam physics. Advances in Imaging and Electron Physics (Vol. 108). London: Academic. Berz, M. (1999). Modern map methods in particle beam physics. Advances in Imaging and Electron Physics (Vol. 108). London: Academic.
28.
Zurück zum Zitat Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., et al. (2016) End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., et al. (2016) End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.
29.
Zurück zum Zitat Bonakdarpour, B., & Finkbeiner, B. (2016). Runtime verification for HyperLTL. In International Conference on Runtime Verification (pp. 41–45). Cham: Springer.CrossRef Bonakdarpour, B., & Finkbeiner, B. (2016). Runtime verification for HyperLTL. In International Conference on Runtime Verification (pp. 41–45). Cham: Springer.CrossRef
30.
Zurück zum Zitat Bonakdarpour, B., Sanchez, C., & Schneider, G. (2018). Monitoring hyperproperties by combining static analysis and runtime verification. In International Symposium on Leveraging Applications of Formal Methods (pp. 8–27). Berlin: Springer. Bonakdarpour, B., Sanchez, C., & Schneider, G. (2018). Monitoring hyperproperties by combining static analysis and runtime verification. In International Symposium on Leveraging Applications of Formal Methods (pp. 8–27). Berlin: Springer.
31.
Zurück zum Zitat Bournez, O., Maler, O., & Pnueli, A. (1999). Orthogonal polyhedra: Representation and computation. In Hybrid systems: Computation and control. Lecture Notes in Computer Science (Vol. 1569, pp. 46–60). Berlin: Springer. Bournez, O., Maler, O., & Pnueli, A. (1999). Orthogonal polyhedra: Representation and computation. In Hybrid systems: Computation and control. Lecture Notes in Computer Science (Vol. 1569, pp. 46–60). Berlin: Springer.
32.
Zurück zum Zitat Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In Robustness in Statistics (pp. 201–236). London: Academic.CrossRef Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In Robustness in Statistics (pp. 201–236). London: Academic.CrossRef
33.
Zurück zum Zitat Brockett, R. (1993). Hybrid models for motion control systems. In Essays on control: Perspectives in the theory and its applications (pp. 29 –53). Boston: Birkhäuser.CrossRef Brockett, R. (1993). Hybrid models for motion control systems. In Essays on control: Perspectives in the theory and its applications (pp. 29 –53). Boston: Birkhäuser.CrossRef
34.
Zurück zum Zitat Cameron, F., Fainekos, G., Maahs, D. M., & Sankaranarayanan, S. (2015). Towards a verified artificial pancreas: Challenges and solutions for runtime verification. In Proceedings of Runtime Verification (RV’15). Lecture Notes in Computer Science (Vol. 9333, pp. 3–17). Cham: Springer. Cameron, F., Fainekos, G., Maahs, D. M., & Sankaranarayanan, S. (2015). Towards a verified artificial pancreas: Challenges and solutions for runtime verification. In Proceedings of Runtime Verification (RV’15). Lecture Notes in Computer Science (Vol. 9333, pp. 3–17). Cham: Springer.
35.
Zurück zum Zitat Cameron, F., Wilson, D. M., Buckingham, B. A., Arzumanyan, H., Clinton, P., Chase, H. P., et al. (2012). Inpatient studies of a Kalman-filter-based predictive pump shutoff algorithm. Journal of Diabetes Science and Technology, 6(5), 1142–1147.CrossRef Cameron, F., Wilson, D. M., Buckingham, B. A., Arzumanyan, H., Clinton, P., Chase, H. P., et al. (2012). Inpatient studies of a Kalman-filter-based predictive pump shutoff algorithm. Journal of Diabetes Science and Technology, 6(5), 1142–1147.CrossRef
36.
Zurück zum Zitat Cassandras, C. G., & Lygeros, J. (2006). Stochastic hybrid systems. Boca Raton: CRC Press.MATHCrossRef Cassandras, C. G., & Lygeros, J. (2006). Stochastic hybrid systems. Boca Raton: CRC Press.MATHCrossRef
37.
Zurück zum Zitat Chaochen, Z., Hoare, C. A. R., & Ravn, A. P. (1991). A calculus of durations. Information Processing Letters, 40(5), 269–276.MathSciNetMATHCrossRef Chaochen, Z., Hoare, C. A. R., & Ravn, A. P. (1991). A calculus of durations. Information Processing Letters, 40(5), 269–276.MathSciNetMATHCrossRef
38.
Zurück zum Zitat Chee, F., & Fernando, T. (2007). Closed-loop control of blood glucose. Berlin: Springer.MATH Chee, F., & Fernando, T. (2007). Closed-loop control of blood glucose. Berlin: Springer.MATH
39.
Zurück zum Zitat Chen, S., O’Kelly, M., Weimer, J., Sokolsky, O., & Lee, I. (2015). An intraoperative glucose control benchmark for formal verification. In 5th IFAC conference on Analysis and Design of Hybrid Systems (ADHS) (2015) Chen, S., O’Kelly, M., Weimer, J., Sokolsky, O., & Lee, I. (2015). An intraoperative glucose control benchmark for formal verification. In 5th IFAC conference on Analysis and Design of Hybrid Systems (ADHS) (2015)
40.
Zurück zum Zitat Chen, X., Ábrahám, E., & Sankaranarayanan, S. (2012). Taylor model flowpipe construction for non-linear hybrid systems. In Proceedings of the 2012 IEEE 33rd Real-Time Systems Symposium (RTSS’12) (pp. 183–192). Piscataway: IEEE.CrossRef Chen, X., Ábrahám, E., & Sankaranarayanan, S. (2012). Taylor model flowpipe construction for non-linear hybrid systems. In Proceedings of the 2012 IEEE 33rd Real-Time Systems Symposium (RTSS’12) (pp. 183–192). Piscataway: IEEE.CrossRef
41.
Zurück zum Zitat Chen, X., Ábrahám, E., & Sankaranarayanan, S. (2013). Flow*: An analyzer for non-linear hybrid systems. In International Conference on Computer Aided Verification. Lecture Notes in Computer Science (Vol. 8044, pp. 258–263). Berlin: Springer. Chen, X., Ábrahám, E., & Sankaranarayanan, S. (2013). Flow*: An analyzer for non-linear hybrid systems. In International Conference on Computer Aided Verification. Lecture Notes in Computer Science (Vol. 8044, pp. 258–263). Berlin: Springer.
42.
Zurück zum Zitat Chen, X., Mover, S., & Sankaranarayanan, S. (2017). Compositional relational abstraction for nonlinear systems. ACM Transactions on Embedded Computing Systems, 16(5s), 187. Chen, X., Mover, S., & Sankaranarayanan, S. (2017). Compositional relational abstraction for nonlinear systems. ACM Transactions on Embedded Computing Systems, 16(5s), 187.
43.
Zurück zum Zitat Chen, X., & Sankaranarayanan, S. (2016). Decomposed reachability analysis for nonlinear systems. In 2016 IEEE Real-Time Systems Symposium (RTSS) (pp. 13–24). Piscataway: IEEE.CrossRef Chen, X., & Sankaranarayanan, S. (2016). Decomposed reachability analysis for nonlinear systems. In 2016 IEEE Real-Time Systems Symposium (RTSS) (pp. 13–24). Piscataway: IEEE.CrossRef
44.
Zurück zum Zitat Chonev, V., Ouaknine, J., & Worrell, J. (2016). On the Skolem problem for continuous linear dynamical systems. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (Vol. 55, pp. 100:1–100:13). Wadern: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Chonev, V., Ouaknine, J., & Worrell, J. (2016). On the Skolem problem for continuous linear dynamical systems. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (Vol. 55, pp. 100:1–100:13). Wadern: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
45.
Zurück zum Zitat Chutinan, A., & Krogh, B. (1998). Computing polyhedral approximations to flow pipes for dynamic systems. In Proceedings of the 37th IEEE Conference on Decision and Control. Piscataway: IEEE. Chutinan, A., & Krogh, B. (1998). Computing polyhedral approximations to flow pipes for dynamic systems. In Proceedings of the 37th IEEE Conference on Decision and Control. Piscataway: IEEE.
47.
Zurück zum Zitat Clarkson, M. R., & Schneider, F. B. (2010). Hyperproperties. Journal of Computer Security, 18(6), 1157–1210.CrossRef Clarkson, M. R., & Schneider, F. B. (2010). Hyperproperties. Journal of Computer Security, 18(6), 1157–1210.CrossRef
48.
Zurück zum Zitat Cobelli, C., Man, C. D., Sparacino, G., Magni, L., Nicolao, G. D., & Kovatchev, B. P. (2009). Diabetes: Models, signals and control (methodological review). IEEE Reviews in Biomedical Engineering, 2, 54–95.CrossRef Cobelli, C., Man, C. D., Sparacino, G., Magni, L., Nicolao, G. D., & Kovatchev, B. P. (2009). Diabetes: Models, signals and control (methodological review). IEEE Reviews in Biomedical Engineering, 2, 54–95.CrossRef
49.
Zurück zum Zitat Dang, T., & Maler, O. (1998). Reachability via face lifting. In Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 1386, pp. 96–109). Berlin: Springer Dang, T., & Maler, O. (1998). Reachability via face lifting. In Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 1386, pp. 96–109). Berlin: Springer
50.
Zurück zum Zitat Dang, T., Maler, O., & Testylier, R. (2010). Accurate hybridization of nonlinear systems. In Hybrid Systems: Computation and Control (HSCC ’10) (pp. 11–20). New York: ACM.MATH Dang, T., Maler, O., & Testylier, R. (2010). Accurate hybridization of nonlinear systems. In Hybrid Systems: Computation and Control (HSCC ’10) (pp. 11–20). New York: ACM.MATH
51.
Zurück zum Zitat Deshmukh, J., Horvat, M., Jin, X., Majumdar, R., & Prabhu, V. S. (2017). Testing cyber-physical systems through Bayesian optimization. ACM Transactions on Embedded Computing Systems, 16(5s), 170.CrossRef Deshmukh, J., Horvat, M., Jin, X., Majumdar, R., & Prabhu, V. S. (2017). Testing cyber-physical systems through Bayesian optimization. ACM Transactions on Embedded Computing Systems, 16(5s), 170.CrossRef
52.
Zurück zum Zitat Deshmukh, J., Jin, X., Kapinski, J., & Maler, O. (2015). Stochastic local earch for falsification of hybrid ystems. In International Symposium on Automated Technology for Verification and Analysis (pp. 500–517). Berlin: Springer.MATHCrossRef Deshmukh, J., Jin, X., Kapinski, J., & Maler, O. (2015). Stochastic local earch for falsification of hybrid ystems. In International Symposium on Automated Technology for Verification and Analysis (pp. 500–517). Berlin: Springer.MATHCrossRef
53.
Zurück zum Zitat Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M. N., & Seidl, H. (2012). Model checking information flow in reactive systems. In International Workshop on Verification, Model Checking, and Abstract Interpretation (pp. 169–185). Berlin: Springer.MATHCrossRef Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M. N., & Seidl, H. (2012). Model checking information flow in reactive systems. In International Workshop on Verification, Model Checking, and Abstract Interpretation (pp. 169–185). Berlin: Springer.MATHCrossRef
54.
Zurück zum Zitat Dokhanchi, A., Zutshi, A., Srinivas, R. T., Sankaranarayanan, S., & Fainekos, G. E. (2015). Requirements driven falsification with coverage metrics. In 2015 International Conference on Embedded Software (EMSOFT’15) (pp. 31–40). Piscataway: IEEE.CrossRef Dokhanchi, A., Zutshi, A., Srinivas, R. T., Sankaranarayanan, S., & Fainekos, G. E. (2015). Requirements driven falsification with coverage metrics. In 2015 International Conference on Embedded Software (EMSOFT’15) (pp. 31–40). Piscataway: IEEE.CrossRef
55.
Zurück zum Zitat Donzé, A. (2010). Breach, a toolbox for verification and parameter synthesis of hybrid systems. In International Conference on Computer Aided Verification (pp. 167–170). Berlin: Springer.CrossRef Donzé, A. (2010). Breach, a toolbox for verification and parameter synthesis of hybrid systems. In International Conference on Computer Aided Verification (pp. 167–170). Berlin: Springer.CrossRef
56.
Zurück zum Zitat Donzé, A., Ferrère, T., & Maler, O. (2013). Efficient robust monitoring for STL. In Computer Aided Verification (pp. 264–279). Berlin: Springer.CrossRef Donzé, A., Ferrère, T., & Maler, O. (2013). Efficient robust monitoring for STL. In Computer Aided Verification (pp. 264–279). Berlin: Springer.CrossRef
57.
Zurück zum Zitat Donzé, A., & Maler, O. (2007). Systematic simulation using sensitivity analysis. In International Workshop on Hybrid Systems: Computation and Control (pp. 174–189). Berlin: Springer.CrossRef Donzé, A., & Maler, O. (2007). Systematic simulation using sensitivity analysis. In International Workshop on Hybrid Systems: Computation and Control (pp. 174–189). Berlin: Springer.CrossRef
58.
Zurück zum Zitat Donzé, A., & Maler, O. (2010). Robust satisfaction of temporal logic over real-valued signals. In Formal Modeling and Analysis of Timed Systems (pp. 92–106). Berlin: Springer.MATHCrossRef Donzé, A., & Maler, O. (2010). Robust satisfaction of temporal logic over real-valued signals. In Formal Modeling and Analysis of Timed Systems (pp. 92–106). Berlin: Springer.MATHCrossRef
59.
Zurück zum Zitat Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Deshmukh, J., & Jin, X. (2015). Efficient guiding strategies for testing of temporal properties of hybrid systems. In NASA Formal Methods Symposium (pp. 127–142). Berlin: Springer. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Deshmukh, J., & Jin, X. (2015). Efficient guiding strategies for testing of temporal properties of hybrid systems. In NASA Formal Methods Symposium (pp. 127–142). Berlin: Springer.
60.
Zurück zum Zitat Dreossi, T., Donzé, A., & Seshia, S. A. (2017). Compositional falsification of cyber-physical systems with machine learning components. In NASA Formal Methods. Lecture Notes in Computer Science (Vol. 10227). Berlin: Springer. Dreossi, T., Donzé, A., & Seshia, S. A. (2017). Compositional falsification of cyber-physical systems with machine learning components. In NASA Formal Methods. Lecture Notes in Computer Science (Vol. 10227). Berlin: Springer.
62.
Zurück zum Zitat Duggirala, P. S., Fan, C., Mitra, S., & Viswanathan, M. (2015). Meeting a powertrain verification challenge. In Proceedings of the 27th International Conference on Computer Aided Verification. Part I (pp. 536–543). Cham: Springer. Duggirala, P. S., Fan, C., Mitra, S., & Viswanathan, M. (2015). Meeting a powertrain verification challenge. In Proceedings of the 27th International Conference on Computer Aided Verification. Part I (pp. 536–543). Cham: Springer.
63.
Zurück zum Zitat Duggirala, P. S., Potok, M., Mitra, S., & Viswanathan, M. (2015). C2E2: A tool for verifying annotated hybrid systems. In Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control (HSCC’15) (pp. 307–308). New York: ACM. Duggirala, P. S., Potok, M., Mitra, S., & Viswanathan, M. (2015). C2E2: A tool for verifying annotated hybrid systems. In Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control (HSCC’15) (pp. 307–308). New York: ACM.
64.
Zurück zum Zitat Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018). Learning and verification of feedback control systems using feedforward neural networks. IFAC-PapersOnLine, 51(16), 151–156.CrossRef Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018). Learning and verification of feedback control systems using feedforward neural networks. IFAC-PapersOnLine, 51(16), 151–156.CrossRef
65.
Zurück zum Zitat Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018). Output range analysis for deep feedforward neural networks. In Proceedings of NASA Formal Methods Symposium (NFM). Lecture Notes in Computer Science (Vol. 10811, pp. 121–138). Berlin: Springer. Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018). Output range analysis for deep feedforward neural networks. In Proceedings of NASA Formal Methods Symposium (NFM). Lecture Notes in Computer Science (Vol. 10811, pp. 121–138). Berlin: Springer.
66.
Zurück zum Zitat Dutta, S., Kushner, T., & Sankaranarayanan, S. (2018). Robust data-driven control of artificial pancreas systems using neural networks. In M. Češka, & D. Šafránek (Eds.), Computational methods in systems biology (pp. 183–202). Cham: Springer.MATHCrossRef Dutta, S., Kushner, T., & Sankaranarayanan, S. (2018). Robust data-driven control of artificial pancreas systems using neural networks. In M. Češka, & D. Šafránek (Eds.), Computational methods in systems biology (pp. 183–202). Cham: Springer.MATHCrossRef
67.
Zurück zum Zitat Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks. In International Symposium on Automated Technology for Verification and Analysis. Lecture Notes in Computer Science (Vol. 10482, pp. 269–286). Berlin: Springer.CrossRef Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks. In International Symposium on Automated Technology for Verification and Analysis. Lecture Notes in Computer Science (Vol. 10482, pp. 269–286). Berlin: Springer.CrossRef
68.
Zurück zum Zitat Fainekos, G. E., & Pappas, G. J. (2009). Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science, 410(42), 4262–4291.MathSciNetMATHCrossRef Fainekos, G. E., & Pappas, G. J. (2009). Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science, 410(42), 4262–4291.MathSciNetMATHCrossRef
69.
Zurück zum Zitat Fan, C., Kapinski, J., Jin, X., & Mitra, S. (2018). Simulation-driven reachability using matrix measures. ACM Transactions on Embedded Computing Systems, 17(1), 21:1–21:28. Fan, C., Kapinski, J., Jin, X., & Mitra, S. (2018). Simulation-driven reachability using matrix measures. ACM Transactions on Embedded Computing Systems, 17(1), 21:1–21:28.
70.
Zurück zum Zitat Finkbeiner, B., Rabe, M. N., & Sánchez, C. (2015). Algorithms for model checking HyperLTL and HyperCTL*. In International Conference on Computer Aided Verification (pp. 30–48). Berlin: Springer.CrossRef Finkbeiner, B., Rabe, M. N., & Sánchez, C. (2015). Algorithms for model checking HyperLTL and HyperCTL*. In International Conference on Computer Aided Verification (pp. 30–48). Berlin: Springer.CrossRef
71.
Zurück zum Zitat Forejt, V., Kwiatkowska, M., Norman, G., & Parker, D. (2011). Automated verification techniques for probabilistic systems. In International School on Formal Methods for the Design of Computer, Communication and Software Systems (pp. 53–113). Berlin: Springer. Forejt, V., Kwiatkowska, M., Norman, G., & Parker, D. (2011). Automated verification techniques for probabilistic systems. In International School on Formal Methods for the Design of Computer, Communication and Software Systems (pp. 53–113). Berlin: Springer.
72.
Zurück zum Zitat Fränzle, M., Herde, C., Ratschan, S., Schubert, T., & Teige, T. (2007). Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Computation, 1, 209–236.MATH Fränzle, M., Herde, C., Ratschan, S., Schubert, T., & Teige, T. (2007). Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Computation, 1, 209–236.MATH
73.
Zurück zum Zitat Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., et al. (2011). SpaceEx: Scalable verification of hybrid systems. In International Conference on Computer Aided Verification (CAV’11). Lecture Notes in Computer Science (Vol. 6806, pp. 379–395). Berlin: Springer.CrossRef Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., et al. (2011). SpaceEx: Scalable verification of hybrid systems. In International Conference on Computer Aided Verification (CAV’11). Lecture Notes in Computer Science (Vol. 6806, pp. 379–395). Berlin: Springer.CrossRef
75.
Zurück zum Zitat Gadkari, A., Yeolekar, A., Suresh, J., Ramesh, S., Mohalik, S., & Shashidhar, K. (2008). Automotgen: Automatic model oriented test generator for embedded control systems. In A. Gupta & S. Malik (Eds.), Computer aided verification. Lecture Notes in Computer Science (Vol. 5123, pp. 204–208). Berlin: Springer. Gadkari, A., Yeolekar, A., Suresh, J., Ramesh, S., Mohalik, S., & Shashidhar, K. (2008). Automotgen: Automatic model oriented test generator for embedded control systems. In A. Gupta & S. Malik (Eds.), Computer aided verification. Lecture Notes in Computer Science (Vol. 5123, pp. 204–208). Berlin: Springer.
76.
Zurück zum Zitat Gao, S., Kong, S., & Clarke, E. M. (2013). dReal: An SMT solver for nonlinear theories over the reals. In International Conference on Automated Deduction (CADE’13). Lecture Notes in Computer Science (Vol. 7898, pp. 208–214). Berlin: Springer. Gao, S., Kong, S., & Clarke, E. M. (2013). dReal: An SMT solver for nonlinear theories over the reals. In International Conference on Automated Deduction (CADE’13). Lecture Notes in Computer Science (Vol. 7898, pp. 208–214). Berlin: Springer.
77.
Zurück zum Zitat Geiger, A., Lenz, P., & Urtasun, R. (2012) Are we ready for autonomous driving? The Kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3354–3361). Piscataway: IEEE.CrossRef Geiger, A., Lenz, P., & Urtasun, R. (2012) Are we ready for autonomous driving? The Kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3354–3361). Piscataway: IEEE.CrossRef
78.
Zurück zum Zitat Girard, A. (2005). Reachability of uncertain linear systems using zonotopes. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 3414, pp. 291–305). Berlin: Springer.MATHCrossRef Girard, A. (2005). Reachability of uncertain linear systems using zonotopes. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 3414, pp. 291–305). Berlin: Springer.MATHCrossRef
79.
Zurück zum Zitat Girard, A., & Pappas, G. J. (2005). Approximate bisimulations for nonlinear dynamical systems. In Proceedings of the 44th IEEE Conference on Decision and Control (pp. 684–689). Piscataway: IEEE.CrossRef Girard, A., & Pappas, G. J. (2005). Approximate bisimulations for nonlinear dynamical systems. In Proceedings of the 44th IEEE Conference on Decision and Control (pp. 684–689). Piscataway: IEEE.CrossRef
81.
Zurück zum Zitat Goubault, E., Jourdan, J. H., Putot, S., & Sankaranarayanan, S. (2014). Finding non-polynomial positive invariants and lyapunov functions for polynomial systems through darboux polynomials. In Proceedings of the American Control Conference (ACC) (pp. 3571–3578). New York: IEEE Press. Goubault, E., Jourdan, J. H., Putot, S., & Sankaranarayanan, S. (2014). Finding non-polynomial positive invariants and lyapunov functions for polynomial systems through darboux polynomials. In Proceedings of the American Control Conference (ACC) (pp. 3571–3578). New York: IEEE Press.
82.
Zurück zum Zitat Hainry, E. (2008). Reachability in linear dynamical systems. In Logic and theory of algorithms (pp. 241–250). Berlin: Springer.CrossRef Hainry, E. (2008). Reachability in linear dynamical systems. In Logic and theory of algorithms (pp. 241–250). Berlin: Springer.CrossRef
83.
Zurück zum Zitat Henzinger, T. A. (1996). The theory of hybrid automata. In Proceedings of the Logic in Computer Science (pp. 278–292). Piscataway: IEEE. Henzinger, T. A. (1996). The theory of hybrid automata. In Proceedings of the Logic in Computer Science (pp. 278–292). Piscataway: IEEE.
84.
Zurück zum Zitat Henzinger, T. A., Kopke, P. W., Puri, A., & Varaiya, P. (1998). What’s decidable about hybrid automata? Journal of Computer and System Sciences, 57(1), 94–124.MathSciNetMATHCrossRef Henzinger, T. A., Kopke, P. W., Puri, A., & Varaiya, P. (1998). What’s decidable about hybrid automata? Journal of Computer and System Sciences, 57(1), 94–124.MathSciNetMATHCrossRef
85.
Zurück zum Zitat Herde, C., Eggers, A., Franzle M., & Teige, T. (2008). Analysis of hybrid systems using HySAT. In Third International Conference on Systems, 2008 (pp. 13–18). Piscataway: IEEE. Herde, C., Eggers, A., Franzle M., & Teige, T. (2008). Analysis of hybrid systems using HySAT. In Third International Conference on Systems, 2008 (pp. 13–18). Piscataway: IEEE.
86.
Zurück zum Zitat Hovorka, R. (2005). Continuous glucose monitoring and closed-loop systems. Diabetic Medicine, 23(1), 1–12.CrossRef Hovorka, R. (2005). Continuous glucose monitoring and closed-loop systems. Diabetic Medicine, 23(1), 1–12.CrossRef
87.
Zurück zum Zitat Huang, X., Kwiatkowska, M., Wang, S., & Wu, M. (2017). Safety verification of deep neural networks. In Proceedings of the Computer Aided Verification (pp. 3–29). Cham: Springer.CrossRef Huang, X., Kwiatkowska, M., Wang, S., & Wu, M. (2017). Safety verification of deep neural networks. In Proceedings of the Computer Aided Verification (pp. 3–29). Cham: Springer.CrossRef
88.
Zurück zum Zitat Jiang, Z., Pajic, M., Moarref, S., Alur, R., & Mangharam, R. (2012). Modeling and verification of a dual chamber implantable pacemaker. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer Science (Vol. 7214, pp. 188–203). Berlin: Springer. Jiang, Z., Pajic, M., Moarref, S., Alur, R., & Mangharam, R. (2012). Modeling and verification of a dual chamber implantable pacemaker. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer Science (Vol. 7214, pp. 188–203). Berlin: Springer.
89.
Zurück zum Zitat Junghanns, A., Mauss, J., & Tatar, M. (2008). Tatar: Testweaver—a tool for simulation-based test of mechatronic designs. In 6th International Modelica Conference, Bielefeld, March 3. Citeseer Junghanns, A., Mauss, J., & Tatar, M. (2008). Tatar: Testweaver—a tool for simulation-based test of mechatronic designs. In 6th International Modelica Conference, Bielefeld, March 3. Citeseer
90.
Zurück zum Zitat Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., & Aréchiga, N. (2014). Simulation-guided lyapunov analysis for hybrid dynamical systems. In Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control (pp. 133–142 ). New York: ACM.MATH Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., & Aréchiga, N. (2014). Simulation-guided lyapunov analysis for hybrid dynamical systems. In Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control (pp. 133–142 ). New York: ACM.MATH
91.
Zurück zum Zitat Kapinski, J., Krogh, B. H., Maler, O., & Stursberg, O. (2003). On systematic simulation of open continuous systems. In International Workshop on Hybrid Systems: Computation and Control (pp. 283–297). Berlin: Springer.MATHCrossRef Kapinski, J., Krogh, B. H., Maler, O., & Stursberg, O. (2003). On systematic simulation of open continuous systems. In International Workshop on Hybrid Systems: Computation and Control (pp. 283–297). Berlin: Springer.MATHCrossRef
92.
Zurück zum Zitat Kato, K., Ishikawa, F., & Honiden, S. (2018). Falsification of cyber-physical systems with reinforcement learning. In 2018 IEEE Workshop on Monitoring and Testing of Cyber-Physical Systems (MT-CPS) (pp. 5–6). Piscataway: IEEE.CrossRef Kato, K., Ishikawa, F., & Honiden, S. (2018). Falsification of cyber-physical systems with reinforcement learning. In 2018 IEEE Workshop on Monitoring and Testing of Cyber-Physical Systems (MT-CPS) (pp. 5–6). Piscataway: IEEE.CrossRef
93.
Zurück zum Zitat Katz, G., Barrett, C., Dill, D., Julian, K., & Kochenderfer, M. (2017). Reluplex: An efficient smt solver for verifying deep neural networks. In International Conference on Computer Aided Verification (pp. 97–117). Berlin: Springer.CrossRef Katz, G., Barrett, C., Dill, D., Julian, K., & Kochenderfer, M. (2017). Reluplex: An efficient smt solver for verifying deep neural networks. In International Conference on Computer Aided Verification (pp. 97–117). Berlin: Springer.CrossRef
94.
Zurück zum Zitat Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Real-Time System, 2(4), 255–299.CrossRef Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Real-Time System, 2(4), 255–299.CrossRef
95.
Zurück zum Zitat Kurzhanski, A. B., & Varaiya, P. (2000). Ellipsoidal techniques for reachability analysis. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 1790, pp. 202–214). Berlin: Springer. Kurzhanski, A. B., & Varaiya, P. (2000). Ellipsoidal techniques for reachability analysis. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 1790, pp. 202–214). Berlin: Springer.
96.
Zurück zum Zitat Kushner, T., Bortz, D., Maahs, D., & Sankaranarayanan, S. (2018). A data-driven approach to artificial pancreas verification and synthesis. In International Conference on Cyber-Physical Systems (ICCPS’18). New York: IEEE Press. Kushner, T., Bortz, D., Maahs, D., & Sankaranarayanan, S. (2018). A data-driven approach to artificial pancreas verification and synthesis. In International Conference on Cyber-Physical Systems (ICCPS’18). New York: IEEE Press.
97.
Zurück zum Zitat Labinaz, G., Bayoumi, M. M., & Rudie, K. (1997). A survey of modeling and control of hybrid systems. Annual Reviews in Control, 21, 79–92.CrossRef Labinaz, G., Bayoumi, M. M., & Rudie, K. (1997). A survey of modeling and control of hybrid systems. Annual Reviews in Control, 21, 79–92.CrossRef
98.
Zurück zum Zitat Lafferriere, G., Pappas, G. J., & Sastry, S. (2000). O-minimal hybrid systems. Mathematics of Control, Signals and Systems, 13(1), 1–21.MathSciNetMATHCrossRef Lafferriere, G., Pappas, G. J., & Sastry, S. (2000). O-minimal hybrid systems. Mathematics of Control, Signals and Systems, 13(1), 1–21.MathSciNetMATHCrossRef
99.
Zurück zum Zitat Leitner, F., & Leue, S. (2008). Simulink design verifier vs. SPIN a comparative case study. In Proceedings of the 13th International Workshop on Formal Methods for Industrial Critical Systems. Leitner, F., & Leue, S. (2008). Simulink design verifier vs. SPIN a comparative case study. In Proceedings of the 13th International Workshop on Formal Methods for Industrial Critical Systems.
100.
Zurück zum Zitat Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., et al. (2011). Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE Intelligent Vehicles Symposium (IV) (pp. 163–168). Piscataway: IEEE.CrossRef Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., et al. (2011). Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE Intelligent Vehicles Symposium (IV) (pp. 163–168). Piscataway: IEEE.CrossRef
102.
Zurück zum Zitat Loos, S. M., Platzer, A., & Nistor, L. (2011). Adaptive cruise control: Hybrid, distributed, and now formally verified. In International Symposium on Formal Methods (pp. 42–56). Berlin: Springer. Loos, S. M., Platzer, A., & Nistor, L. (2011). Adaptive cruise control: Hybrid, distributed, and now formally verified. In International Symposium on Formal Methods (pp. 42–56). Berlin: Springer.
103.
Zurück zum Zitat Maahs, D. M., Calhoun, P., Buckingham, B. A., Chase, H. P., Hramiak, I., Lum, J., et al. (2014). A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1 diabetes. Diabetes Care, 37(7), 1885–1891.CrossRef Maahs, D. M., Calhoun, P., Buckingham, B. A., Chase, H. P., Hramiak, I., Lum, J., et al. (2014). A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1 diabetes. Diabetes Care, 37(7), 1885–1891.CrossRef
104.
Zurück zum Zitat Magdici, S., & Althoff, M. (2017). Adaptive cruise control with safety guarantees for autonomous vehicles. IFAC-PapersOnLine, 50(1), 5774–5781.CrossRef Magdici, S., & Althoff, M. (2017). Adaptive cruise control with safety guarantees for autonomous vehicles. IFAC-PapersOnLine, 50(1), 5774–5781.CrossRef
105.
Zurück zum Zitat Makino, K., & Berz, M. (2003). Taylor models and other validated functional inclusion methods. Journal of Pure and Applied Mathematics, 4(4), 379–456.MathSciNetMATH Makino, K., & Berz, M. (2003). Taylor models and other validated functional inclusion methods. Journal of Pure and Applied Mathematics, 4(4), 379–456.MathSciNetMATH
106.
Zurück zum Zitat Maler, O., & Nickovic, D. (2004). Monitoring temporal properties of continuous signals. In Proceedings of Formal Modeling and Analysis of Timed Systems (pp. 152–166). Berlin: Springer.MATH Maler, O., & Nickovic, D. (2004). Monitoring temporal properties of continuous signals. In Proceedings of Formal Modeling and Analysis of Timed Systems (pp. 152–166). Berlin: Springer.MATH
107.
108.
Zurück zum Zitat Mitchell, I., & Tomlin, C. (2000). Level set methods for computation in hybrid systems. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 1790, pp. 310–323). Berlin: Springer. Mitchell, I., & Tomlin, C. (2000). Level set methods for computation in hybrid systems. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 1790, pp. 310–323). Berlin: Springer.
109.
Zurück zum Zitat Mover, S., Cimatti, A., Tiwari, A., & Tonetta, S. (2013). Time-aware relational abstractions for hybrid systems. In Proceedings of the Eleventh ACM International Conference on Embedded Software (EMSOFT ’13) (pp. 14:1–14:10). Piscataway: IEEE Press. Mover, S., Cimatti, A., Tiwari, A., & Tonetta, S. (2013). Time-aware relational abstractions for hybrid systems. In Proceedings of the Eleventh ACM International Conference on Embedded Software (EMSOFT ’13) (pp. 14:1–14:10). Piscataway: IEEE Press.
111.
Zurück zum Zitat Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., & Pappas, G.J. (2010). Monte-Carlo techniques for falsification of temporal properties of non-linear hybrid systems. In Proceedings of Hybrid Systems: Computation and Control (pp. 211–220). New York: ACM.MATH Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., & Pappas, G.J. (2010). Monte-Carlo techniques for falsification of temporal properties of non-linear hybrid systems. In Proceedings of Hybrid Systems: Computation and Control (pp. 211–220). New York: ACM.MATH
112.
Zurück zum Zitat Nguyen, L. V., Kapinski, J., Jin, X., Deshmukh, J. V., & Johnson, T. T. (2017). Hyperproperties of real-valued signals. In Proceedings of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design (pp. 104–113). New York: ACM. Nguyen, L. V., Kapinski, J., Jin, X., Deshmukh, J. V., & Johnson, T. T. (2017). Hyperproperties of real-valued signals. In Proceedings of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design (pp. 104–113). New York: ACM.
113.
Zurück zum Zitat Nicolescu, G., & Mosterman, P. J. (2009). Model-based design for embedded systems (1st ed.). Boca Raton: CRC Press.CrossRef Nicolescu, G., & Mosterman, P. J. (2009). Model-based design for embedded systems (1st ed.). Boca Raton: CRC Press.CrossRef
114.
Zurück zum Zitat Nilsson, P., Hussien, O., Chen, Y., Balkan, A., Rungger, M., Ames, A., et al. (2014). Preliminary results on correct-by-construction control software synthesis for adaptive cruise control. In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC) (pp. 816–823). Piscataway: IEEE. Nilsson, P., Hussien, O., Chen, Y., Balkan, A., Rungger, M., Ames, A., et al. (2014). Preliminary results on correct-by-construction control software synthesis for adaptive cruise control. In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC) (pp. 816–823). Piscataway: IEEE.
115.
Zurück zum Zitat Norris, J. (1998). Markov chains. Cambridge: Cambridge University Press.MATH Norris, J. (1998). Markov chains. Cambridge: Cambridge University Press.MATH
116.
Zurück zum Zitat Øksendal, B. K. (2000). Stochastic differential equations: An introduction. Berlin: Springer.MATH Øksendal, B. K. (2000). Stochastic differential equations: An introduction. Berlin: Springer.MATH
117.
Zurück zum Zitat Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., & Lee, I. (2014). Model-driven safety analysis of closed-loop medical systems. IEEE Transactions on Industrial Informatics, 10(1), 3–16.CrossRef Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., & Lee, I. (2014). Model-driven safety analysis of closed-loop medical systems. IEEE Transactions on Industrial Informatics, 10(1), 3–16.CrossRef
118.
Zurück zum Zitat Papachristodoulou, A., & Prajna, S. (2005). Analysis of non-polynomial systems using the sum of squares decomposition. In Positive Polynomials in Control (pp. 23–43). Berlin: Springer.CrossRef Papachristodoulou, A., & Prajna, S. (2005). Analysis of non-polynomial systems using the sum of squares decomposition. In Positive Polynomials in Control (pp. 23–43). Berlin: Springer.CrossRef
119.
Zurück zum Zitat Pei, Y., Entcheva, E., Grosu, R., & Smolka, S. (2005) Efficient modeling of excitable cells using hybrid automata. In Proceedings of the Computational Methods in Systems Biology (pp. 216–227). Pei, Y., Entcheva, E., Grosu, R., & Smolka, S. (2005) Efficient modeling of excitable cells using hybrid automata. In Proceedings of the Computational Methods in Systems Biology (pp. 216–227).
120.
121.
Zurück zum Zitat Platzer, A. (2010). Logical analysis of hybrid systems: Proving theorems for complex dynamics. Heidelberg: Springer. https://doi.org/10.1007/978-3-642-14509-4MATHCrossRef Platzer, A. (2010). Logical analysis of hybrid systems: Proving theorems for complex dynamics. Heidelberg: Springer. https://​doi.​org/​10.​1007/​978-3-642-14509-4MATHCrossRef
122.
Zurück zum Zitat Platzer, A., & Clarke, E. M. (2008). Computing differential invariants of hybrid systems as fixedpoints. In A. Gupta & S. Malik (Eds.), Proceedings of computer aided verification. Lecture Notes in Computer Science (Vol. 5123, pp. 176–189). Berlin: Springer. Platzer, A., & Clarke, E. M. (2008). Computing differential invariants of hybrid systems as fixedpoints. In A. Gupta & S. Malik (Eds.), Proceedings of computer aided verification. Lecture Notes in Computer Science (Vol. 5123, pp. 176–189). Berlin: Springer.
123.
Zurück zum Zitat Pnueli, A. (1977). The temporal logic of programs. In Proceedings of Symposium on Foundations of Computer Science (pp. 46–57). Piscataway: IEEE. Pnueli, A. (1977). The temporal logic of programs. In Proceedings of Symposium on Foundations of Computer Science (pp. 46–57). Piscataway: IEEE.
124.
Zurück zum Zitat Podelski, A., & Wagner, S. (2007). Region stability proofs for hybrid systems (pp. 320–335). Berlin: Springer.MATH Podelski, A., & Wagner, S. (2007). Region stability proofs for hybrid systems (pp. 320–335). Berlin: Springer.MATH
125.
Zurück zum Zitat Prabhakar, P., Duggirala, P. S., Mitra, S., & Viswanathan, M. (2013). Hybrid automata-based CEGAR for rectangular hybrid systems. In R. Giacobazzi, J. Berdine, I. Mastroeni (Eds.), Verification, model checking, and abstract interpretation (pp. 48–67). Berlin: Springer.CrossRef Prabhakar, P., Duggirala, P. S., Mitra, S., & Viswanathan, M. (2013). Hybrid automata-based CEGAR for rectangular hybrid systems. In R. Giacobazzi, J. Berdine, I. Mastroeni (Eds.), Verification, model checking, and abstract interpretation (pp. 48–67). Berlin: Springer.CrossRef
126.
Zurück zum Zitat Prajna, S. (2005). Optimization-based methods for nonlinear and hybrid systems verification. Ph.D. thesis, California Institute of Technology, Caltech, Pasadena, CA, USA. Prajna, S. (2005). Optimization-based methods for nonlinear and hybrid systems verification. Ph.D. thesis, California Institute of Technology, Caltech, Pasadena, CA, USA.
127.
Zurück zum Zitat Prajna, S., & Jadbabaie, A. (2004). Safety verification of hybrid systems using barrier certificates. In Hybrid Systems: Computation and Control (pp. 477–492). Berlin: Springer.MATHCrossRef Prajna, S., & Jadbabaie, A. (2004). Safety verification of hybrid systems using barrier certificates. In Hybrid Systems: Computation and Control (pp. 477–492). Berlin: Springer.MATHCrossRef
128.
Zurück zum Zitat Pulina, L., & Tacchella, A. (2012). Challenging smt solvers to verify neural networks. AI Communications, 25(2), 117–135.MathSciNetMATH Pulina, L., & Tacchella, A. (2012). Challenging smt solvers to verify neural networks. AI Communications, 25(2), 117–135.MathSciNetMATH
129.
Zurück zum Zitat Ratschan, S., & She, Z. (2005). Safety verification of hybrid systems by constraint propagation based abstraction refinement. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 3414, pp. 573–589). Berlin: Springer. Ratschan, S., & She, Z. (2005). Safety verification of hybrid systems by constraint propagation based abstraction refinement. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 3414, pp. 573–589). Berlin: Springer.
132.
Zurück zum Zitat Roohi, N., Prabhakar, P., & Viswanathan, M. (2016). Hybridization based CEGAR for hybrid automata with affine dynamics. In M. Chechik, & J. F. Raskin (Eds.), Tools and algorithms for the construction and analysis of systems (pp. 752–769). Berlin: Springer.CrossRef Roohi, N., Prabhakar, P., & Viswanathan, M. (2016). Hybridization based CEGAR for hybrid automata with affine dynamics. In M. Chechik, & J. F. Raskin (Eds.), Tools and algorithms for the construction and analysis of systems (pp. 752–769). Berlin: Springer.CrossRef
134.
Zurück zum Zitat Sankaranarayanan, S., & Fainekos, G. E. (2012). Falsification of temporal properties of hybrid systems using the cross-entropy method. In ACM International Conference on Hybrid Systems: Computation and Control (pp. 125–134 ). New York: ACM.MATH Sankaranarayanan, S., & Fainekos, G. E. (2012). Falsification of temporal properties of hybrid systems using the cross-entropy method. In ACM International Conference on Hybrid Systems: Computation and Control (pp. 125–134 ). New York: ACM.MATH
135.
Zurück zum Zitat Sankaranarayanan, S., Kumar, S. A., Cameron, F., Bequette, B. W., Fainekos, G., & Maahs, D. M. (2017). Model-based falsification of an artificial pancreas control system. ACM SIGBED Review, 14(2), 24–33.CrossRef Sankaranarayanan, S., Kumar, S. A., Cameron, F., Bequette, B. W., Fainekos, G., & Maahs, D. M. (2017). Model-based falsification of an artificial pancreas control system. ACM SIGBED Review, 14(2), 24–33.CrossRef
136.
Zurück zum Zitat Sankaranarayanan, S., & Tiwari, A. (2011). Relational abstractions for continuous and hybrid systems. In International Conference on Computer Aided Verification. Lecture Notes in Computer Science (Vol. 6806, pp. 686–702). Berlin: Springer. Sankaranarayanan, S., & Tiwari, A. (2011). Relational abstractions for continuous and hybrid systems. In International Conference on Computer Aided Verification. Lecture Notes in Computer Science (Vol. 6806, pp. 686–702). Berlin: Springer.
137.
Zurück zum Zitat Siper, M. J. (2005). An Introduction to mathematical theory of computation (2nd ed.). Toronto: Thompson Publishing (Course Technology) Siper, M. J. (2005). An Introduction to mathematical theory of computation (2nd ed.). Toronto: Thompson Publishing (Course Technology)
138.
Zurück zum Zitat Skyler, J. S. (Ed.). (2012). Atlas of diabetes (4th ed.). Berlin: Springer. Skyler, J. S. (Ed.). (2012). Atlas of diabetes (4th ed.). Berlin: Springer.
139.
Zurück zum Zitat Sontag, E. D. (1981). Nonlinear regulation: The piecewise linear approach. IEEE Transactions on Automatic Control, 26(2), 346–358.MathSciNetMATHCrossRef Sontag, E. D. (1981). Nonlinear regulation: The piecewise linear approach. IEEE Transactions on Automatic Control, 26(2), 346–358.MathSciNetMATHCrossRef
140.
Zurück zum Zitat Steil, G., Panteleon, A., & Rebrin, K. (2004). Closed-sloop insulin delivery—the path to physiological glucose control. Advanced Drug Delivery Reviews, 56(2), 125–144.CrossRef Steil, G., Panteleon, A., & Rebrin, K. (2004). Closed-sloop insulin delivery—the path to physiological glucose control. Advanced Drug Delivery Reviews, 56(2), 125–144.CrossRef
141.
Zurück zum Zitat Steil, G. M. (2013). Algorithms for a closed-loop artificial pancreas: The case for proportional-integral-derivative control. Journal of Diabetes Science and Technology, 7, 1621–1631.CrossRef Steil, G. M. (2013). Algorithms for a closed-loop artificial pancreas: The case for proportional-integral-derivative control. Journal of Diabetes Science and Technology, 7, 1621–1631.CrossRef
142.
Zurück zum Zitat Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). Cambridge: MIT Press.MATH Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). Cambridge: MIT Press.MATH
143.
Zurück zum Zitat Teixeira, R. E., & Malin, S. (2008). The next generation of artificial pancreas control algorithms. Journal of Diabetes Science and Technology, 2, 105–112.CrossRef Teixeira, R. E., & Malin, S. (2008). The next generation of artificial pancreas control algorithms. Journal of Diabetes Science and Technology, 2, 105–112.CrossRef
145.
Zurück zum Zitat Topcu, U., & Packard, A. (2009). Stability region analysis for uncertain nonlinear systems. IEEE Transactions on Automatic Control, 54, 1042–1047.MathSciNetMATHCrossRef Topcu, U., & Packard, A. (2009). Stability region analysis for uncertain nonlinear systems. IEEE Transactions on Automatic Control, 54, 1042–1047.MathSciNetMATHCrossRef
146.
Zurück zum Zitat Topcu, U., Seiler, P., & Packard, A. (2008). Local stability analysis using simulations and sum-of-squares programming. Automatica, 44, 2669–2675.MathSciNetMATHCrossRef Topcu, U., Seiler, P., & Packard, A. (2008). Local stability analysis using simulations and sum-of-squares programming. Automatica, 44, 2669–2675.MathSciNetMATHCrossRef
147.
Zurück zum Zitat Tuncali, C. E., Fainekos, G., Ito, H., & Kapinski, J. (2018). Simulation-based adversarial test generation for autonomous vehicles with machine learning components. In Proceedings of IEEE Intelligent Vehicles Symposium (IV) Tuncali, C. E., Fainekos, G., Ito, H., & Kapinski, J. (2018). Simulation-based adversarial test generation for autonomous vehicles with machine learning components. In Proceedings of IEEE Intelligent Vehicles Symposium (IV)
148.
Zurück zum Zitat Tuncali, C. E., Kapinski, J., Ito, H., & Deshmukh, J. V. (2018). Reasoning about safety of learning-enabled components in autonomous cyber-physical systems. In Proceedings of the 55th Annual Design Automation Conference, DAC 2018 (pp. 30:1–30:6). New York: ACM. Tuncali, C. E., Kapinski, J., Ito, H., & Deshmukh, J. V. (2018). Reasoning about safety of learning-enabled components in autonomous cyber-physical systems. In Proceedings of the 55th Annual Design Automation Conference, DAC 2018 (pp. 30:1–30:6). New York: ACM.
149.
Zurück zum Zitat Ulus, D. (2017). Montre: A tool for monitoring timed regular expressions. In Proceedings of the International Conference on Computer Aided Verification (pp. 329–335). Berlin: Springer.CrossRef Ulus, D. (2017). Montre: A tool for monitoring timed regular expressions. In Proceedings of the International Conference on Computer Aided Verification (pp. 329–335). Berlin: Springer.CrossRef
150.
Zurück zum Zitat Ulus, D., Ferrère, T., Asarin, E., & Maler, O. (2014). Timed pattern matching. In Proceedings of the International Conference on Formal Modeling and Analysis of Timed Systems (pp. 222–236). Berlin: Springer.MATH Ulus, D., Ferrère, T., Asarin, E., & Maler, O. (2014). Timed pattern matching. In Proceedings of the International Conference on Formal Modeling and Analysis of Timed Systems (pp. 222–236). Berlin: Springer.MATH
151.
Zurück zum Zitat Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Jin, X. (2016). Symbolic-numeric reachability analysis of closed-loop control software. In Hybrid Systems: Computation and Control (HSCC) (pp. 135–144). New York: ACM Press.MATH Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Jin, X. (2016). Symbolic-numeric reachability analysis of closed-loop control software. In Hybrid Systems: Computation and Control (HSCC) (pp. 135–144). New York: ACM Press.MATH
152.
Zurück zum Zitat Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Kapinski, J. (2013). A trajectory splicing approach to concretizing counterexamples for hybrid systems. In IEEE Conference on Decision and Control (CDC) (pp. 3918–3925). New York: IEEE Press.CrossRef Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Kapinski, J. (2013). A trajectory splicing approach to concretizing counterexamples for hybrid systems. In IEEE Conference on Decision and Control (CDC) (pp. 3918–3925). New York: IEEE Press.CrossRef
153.
Zurück zum Zitat Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Kapinski, J. (2014). Multiple-shooting CEGAR-based falsification for hybrid systems. In International Conference on Embedded Software (EMSOFT) (pp. 5:1–5:10). New York: ACM Press. Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Kapinski, J. (2014). Multiple-shooting CEGAR-based falsification for hybrid systems. In International Conference on Embedded Software (EMSOFT) (pp. 5:1–5:10). New York: ACM Press.
154.
Zurück zum Zitat Zutshi A., Sankaranarayanan S., & Tiwari A. (2012). Timed relational abstractions for sampled data control systems. In P. Madhusudan & S. A. Seshia (Eds.), Computer Aided Verification. Lecture Notes in Computer Science (Vol. 7358). Berlin: Springer. Zutshi A., Sankaranarayanan S., & Tiwari A. (2012). Timed relational abstractions for sampled data control systems. In P. Madhusudan & S. A. Seshia (Eds.), Computer Aided Verification. Lecture Notes in Computer Science (Vol. 7358). Berlin: Springer.
Metadaten
Titel
Formal Techniques for Verification and Testing of Cyber-Physical Systems
verfasst von
Jyotirmoy V. Deshmukh
Sriram Sankaranarayanan
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13050-3_4

Neuer Inhalt