Skip to main content

2019 | OriginalPaper | Buchkapitel

Secure Computation with Preprocessing via Function Secret Sharing

verfasst von : Elette Boyle, Niv Gilboa, Yuval Ishai

Erschienen in: Theory of Cryptography

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a simple and powerful new approach for secure computation with input-independent preprocessing, building on the general tool of function secret sharing (FSS) and its efficient instantiations. Using this approach, we can make efficient use of correlated randomness to compute any type of gate, as long as a function class naturally corresponding to this gate admits an efficient FSS scheme. Our approach can be viewed as a generalization of the “TinyTable” protocol of Damgård et al. (Crypto 2017), where our generalized variant uses FSS to achieve exponential efficiency improvement for useful types of gates.
By instantiating this general approach with efficient PRG-based FSS schemes of Boyle et al. (Eurocrypt 2015, CCS 2016), we can implement useful nonlinear gates for equality tests, integer comparison, bit-decomposition and more with optimal online communication and with a relatively small amount of correlated randomness. We also provide a unified and simplified view of several existing protocols in the preprocessing model via the FSS framework.
Our positive results provide a useful tool for secure computation tasks that involve secure integer comparisons or conversions between arithmetic and binary representations. These arise in the contexts of approximating real-valued functions, machine-learning classification, and more. Finally, we study the necessity of the FSS machinery that we employ, in the simple context of secure string equality testing. First, we show that any “online-optimal” secure equality protocol implies an FSS scheme for point functions, which in turn implies one-way functions. Then, we show that information-theoretic secure equality protocols with relaxed optimality requirements would follow from the existence of big families of “matching vectors.” This suggests that proving strong lower bounds on the efficiency of such protocols would be difficult.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Our techniques naturally generalize to the multi-party setting, though typically with reduced efficiency benefits over alternative approaches. Moreover, most of our protocols can be extended to the malicious security model by employing simple authentication techniques (as in [4, 14]).
 
2
Unlike previous applications of FSS, here it is important that the input domain additionally be endowed with group structure. From here on, the term “group” will always refer to a finite Abelian group.
 
3
A general method for compressing truth-table correlations was recently suggested in [6]. However, the running time still grows linearly with the truth-table size, or exponentially with the gate input length.
 
Literatur
1.
Zurück zum Zitat Bauer, B., Vihrovs, J., Wee, H.: On the inner product predicate and a generalization of matching vector families. In: 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, 11–13 December 2018, Ahmedabad, India, pp. 41:1–41:13 (2018) Bauer, B., Vihrovs, J., Wee, H.: On the inner product predicate and a generalization of matching vector families. In: 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, 11–13 December 2018, Ahmedabad, India, pp. 41:1–41:13 (2018)
5.
Zurück zum Zitat Bhowmick, A., Dvir, Z., Lovett, S.: New bounds for matching vector families. SIAM J. Comput. 43(5), 1654–1683 (2014)MathSciNetCrossRef Bhowmick, A., Dvir, Z., Lovett, S.: New bounds for matching vector families. SIAM J. Comput. 43(5), 1654–1683 (2014)MathSciNetCrossRef
8.
Zurück zum Zitat Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 1292–1303 (2016). Full version: ePrint report 2018/707 Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 1292–1303 (2016). Full version: ePrint report 2018/707
9.
12.
Zurück zum Zitat Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15CrossRef Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://​doi.​org/​10.​1007/​11681878_​15CrossRef
15.
Zurück zum Zitat Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: NDSS 2015 (2015) Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: NDSS 2015 (2015)
16.
Zurück zum Zitat Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November, pp. 523–535 (2017) Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November, pp. 523–535 (2017)
17.
18.
Zurück zum Zitat Efremenko, K.: 3-query locally decodable codes of subexponential length. SIAM J. Comput. 41(6), 1694–1703 (2012)MathSciNetCrossRef Efremenko, K.: 3-query locally decodable codes of subexponential length. SIAM J. Comput. 41(6), 1694–1703 (2012)MathSciNetCrossRef
20.
Zurück zum Zitat Goldreich, O.: Foundations of Cryptography - Basic Applications. Cambridge University Press, New York (2004)CrossRef Goldreich, O.: Foundations of Cryptography - Basic Applications. Cambridge University Press, New York (2004)CrossRef
23.
Zurück zum Zitat Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 525–537 (2018) Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 525–537 (2018)
25.
Zurück zum Zitat Mohassel, P., Rindal, P.: ABY\({}^{\text{3}}\): a mixed protocol framework for machine learning. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 35–52 (2018) Mohassel, P., Rindal, P.: ABY\({}^{\text{3}}\): a mixed protocol framework for machine learning. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 35–52 (2018)
Metadaten
Titel
Secure Computation with Preprocessing via Function Secret Sharing
verfasst von
Elette Boyle
Niv Gilboa
Yuval Ishai
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-36030-6_14