Skip to main content

2019 | OriginalPaper | Buchkapitel

ConvCaps: Multi-input Capsule Network for Brain Tumor Classification

verfasst von : Yiming Cheng, Guihe Qin, Rui Zhao, Yanhua Liang, Minghui Sun

Erschienen in: Neural Information Processing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Brain tumor is considered one of the most deadly cancer. Determining the type of brain tumor has a significant effect on the choice of treatment and improves the survival rate of the patients. In general, manual diagnosis is time-consuming and error-prone. With the development of deep learning, especially the convolutional neural network (CNN), the process of automatic classification and diagnosis of medical images has been greatly promoted. However, CNN’s pooling operation decreases a lot of spatial relationships that play important roles in discriminating tumor types, resulting in inaccurate classification results. Capsule Network (CapsNet) is a novel architecture proposed in recent years to overcome shortcomings of CNN. However, it cannot handle inputs in large size. To tackle this problem, a Convolutional Capsule Network (ConvCaps) architecture for brain tumor classification is proposed which has the following properties: (1) It can accept large-size images as input without scaling them in advance. (2) Preserving the spatial relationships of components in the image. (3) Multiple convolutional layers are added in front of the primary capsule layer so that the network can extract low-level features. (4) Image of brain tumor region is fed into our model as extra input to improve the network’s attention to the region of interest. The experimental results on the brain MR dataset show that our model improves significantly compared with the previous work, the classification accuracy increases to 93.5%, and the training speed is also improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)CrossRef Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)CrossRef
2.
Zurück zum Zitat Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA Cancer J. Clin. 60(5), 277–300 (2010)CrossRef Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA Cancer J. Clin. 60(5), 277–300 (2010)CrossRef
3.
Zurück zum Zitat Cheng, J., et al.: Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10(10), e0140381 (2015)CrossRef Cheng, J., et al.: Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10(10), e0140381 (2015)CrossRef
4.
Zurück zum Zitat Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
5.
Zurück zum Zitat Ravi, D., et al.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 4–21 (2017)CrossRef Ravi, D., et al.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 4–21 (2017)CrossRef
6.
Zurück zum Zitat Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, pp. 3856–3866 (2017) Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, pp. 3856–3866 (2017)
7.
Zurück zum Zitat Usman, K., Rajpoot, K.: Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal. Appl. 20(3), 871–881 (2017)MathSciNetCrossRef Usman, K., Rajpoot, K.: Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal. Appl. 20(3), 871–881 (2017)MathSciNetCrossRef
8.
Zurück zum Zitat El Abbadi, N.K., Kadhim, N.E.: Brain cancer classification based on features and artificial neural network. Brain 6(1), 123–134 (2017) El Abbadi, N.K., Kadhim, N.E.: Brain cancer classification based on features and artificial neural network. Brain 6(1), 123–134 (2017)
9.
Zurück zum Zitat Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, E.S.M., Salem, A.B.M.: Classification using deep learning neural networks for brain tumors. Futur. Comput. Inform. J. 3(1), 68–71 (2018)CrossRef Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, E.S.M., Salem, A.B.M.: Classification using deep learning neural networks for brain tumors. Futur. Comput. Inform. J. 3(1), 68–71 (2018)CrossRef
10.
Zurück zum Zitat Mathew, A.R., Anto, P.B.: Tumor detection and classification of MRI brain image using wavelet transform and SVM. In: 2017 International Conference on Signal Processing and Communication (ICSPC), pp. 75–78. IEEE, July 2017 Mathew, A.R., Anto, P.B.: Tumor detection and classification of MRI brain image using wavelet transform and SVM. In: 2017 International Conference on Signal Processing and Communication (ICSPC), pp. 75–78. IEEE, July 2017
11.
Zurück zum Zitat Li, X., Plataniotis, K.N.: Color model comparative analysis for breast cancer diagnosis using H and E stained images. In: Medical Imaging 2015: Digital Pathology, vol. 9420, p. 94200L. International Society for Optics and Photonics, March 2015 Li, X., Plataniotis, K.N.: Color model comparative analysis for breast cancer diagnosis using H and E stained images. In: Medical Imaging 2015: Digital Pathology, vol. 9420, p. 94200L. International Society for Optics and Photonics, March 2015
12.
Zurück zum Zitat Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2015)CrossRef Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2015)CrossRef
13.
Zurück zum Zitat Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)CrossRef Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)CrossRef
14.
Zurück zum Zitat Sutskever, I., Hinton, G.E., Krizhevsky, A.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Sutskever, I., Hinton, G.E., Krizhevsky, A.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
15.
Zurück zum Zitat Li, Z., Wang, Y., Yu, J., Guo, Y., Cao, W.: Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci. Rep. 7(1), 5467 (2017)CrossRef Li, Z., Wang, Y., Yu, J., Guo, Y., Cao, W.: Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci. Rep. 7(1), 5467 (2017)CrossRef
16.
Zurück zum Zitat Sabour, S., Frosst, N., Hinton, G.: Matrix capsules with EM routing. In: 6th International Conference on Learning Representations, ICLR, pp. 1–15, February 2018 Sabour, S., Frosst, N., Hinton, G.: Matrix capsules with EM routing. In: 6th International Conference on Learning Representations, ICLR, pp. 1–15, February 2018
17.
Zurück zum Zitat Afshar, P., Mohammadi, A., Plataniotis, K.N.: Brain tumor type classification via capsule networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3129–3133. IEEE, October 2018 Afshar, P., Mohammadi, A., Plataniotis, K.N.: Brain tumor type classification via capsule networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3129–3133. IEEE, October 2018
18.
Zurück zum Zitat Afshar, P., Plataniotis, K.N., Mohammadi, A.: Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1368-1372. IEEE, May 2019 Afshar, P., Plataniotis, K.N., Mohammadi, A.: Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1368-1372. IEEE, May 2019
19.
Zurück zum Zitat Cheng, J., Yang, W., Huang, M., Huang, W., Jiang, J., Zhou, Y., et al.: Retrieval of brain tumors by adaptive spatial pooling and fisher vector representation. PLoS ONE 11(6), e0157112 (2016)CrossRef Cheng, J., Yang, W., Huang, M., Huang, W., Jiang, J., Zhou, Y., et al.: Retrieval of brain tumors by adaptive spatial pooling and fisher vector representation. PLoS ONE 11(6), e0157112 (2016)CrossRef
20.
Zurück zum Zitat Paul, J.S., Plassard, A.J., Landman, B.A., Fabbri, D.: Deep learning for brain tumor classification. In: SPIE Medical Imaging, vol. 10137, pp. 1–16 (2017) Paul, J.S., Plassard, A.J., Landman, B.A., Fabbri, D.: Deep learning for brain tumor classification. In: SPIE Medical Imaging, vol. 10137, pp. 1–16 (2017)
Metadaten
Titel
ConvCaps: Multi-input Capsule Network for Brain Tumor Classification
verfasst von
Yiming Cheng
Guihe Qin
Rui Zhao
Yanhua Liang
Minghui Sun
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-36708-4_43