Skip to main content

2020 | OriginalPaper | Buchkapitel

3. Representation of Material Properties by Means of Cartesian Tensors

verfasst von : Manuel Laso, Nieves Jimeno

Erschienen in: Representation Surfaces for Physical Properties of Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of this chapter is to familiarize the reader with the basic ideas and the few manipulation rules for Cartesian tensors [16] that will be required in the rest of the book. If you have previously been exposed to and perhaps intimidated by expressions like “covariant” and “contravariant”, you are about to make a quantum leap in your study of tensor material properties: when working with Cartesian tensors the concepts of “covariant” and “contravariant” are not necessary. The manipulation rules for Cartesian tensors are but a minor extension of the familiar rules for vector and matrices. In the rest of the book the adjective “Cartesian” will often be dropped for brevity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Although in specific cases such as \(\underline{a}\cdot \underline{b}=\underline{b}\cdot \underline{a}\) the order of the factors can be irrelevant.
 
2
The permutation or Levi-Civita symbol provides the componentes of the alternating or totally antisymmetric tensor \({\underline{\underline{\underline{\epsilon }}}}\), which is a third rank, axial, antisymmetric tensor. The values of \(\epsilon _{ijk}\) are the components of \({\underline{\underline{\underline{\epsilon }}}}\), just as the values of Kronecker’s \(\delta _{ij}\) are the components of the second rank unit or isotropic tensor \({\underline{\underline{\delta }}}\).
 
3
It is not unusual to find notations like \(\mathbf {T}\,_{\hat{\mathrm{e}}}\), where the subscript \(\underline{\hat{\mathrm{e}}}\) explicitly indicates the frame to which the tensor \(\mathbf {T}\) is referred.
 
4
All rank zero tensors (scalars) are isotropic; there is no rank one isotropic tensor. The number of isotropic tensors for ranks \(n=0,1,2,3,4,5,6,\dots \) is \(1,0,1,1,3,6,15\dots \) but we will not need them for \(n>4\).
 
5
An infinite number of invariants can be defined from a given one: if I is an invariant, any function containing only I and constants will be invariant as well, although only one of them will be independent.
 
6
We strictly follow [6] left-to-right rule: indices are assigned to the terms appearing in an expression in the same order in which they appear when the expression is read from left to right; see (3.13) and (3.14). If \(\underline{v}\) in (3.13) is a velocity field, the left-to-right rule leads to a velocity gradient which is the transpose of that defined by other authors: \(\underline{\delta }_i\underline{\delta }_j\frac{\partial v_i}{\partial x_j }\).
 
7
It is also common practice to call \(x_i\) the components of \(\underline{r}\), so that \(\underline{r}=\underline{\delta }_ix_i\).
 
8
The use of a “prime” to tag the new frame in this particular case does not imply that the old frame will always be unprimed and the new frame always be primed.
 
9
Again, the nine angles \(\theta _{ij}\) (or their nine cosines \(l_{ij}\)) are not independent. Only three are. This is a consequence of the fact that in order to orient a frame of reference with respect to another in two dimensions, a single angle suffices, whereas three are required in three dimensions (for example three Euler angles). However, to orient a single axis or vector with respect to a frame of reference, one angle is enough in two dimensions, and two in three dimensions. We will come back to this point in later chapters.
 
10
The fact that \(\underline{\underline{\sigma }}\) is a symmetrical tensor did not play any role in this derivation. Equation 3.24 is valid for asymmetric tensors as well.
 
11
The following applies to tensors without any special symmetry. Symmetry reduces the number of independent components.
 
12
Why double?
 
13
This is the reason for naming the stress tensor \(\underline{\underline{\tau }}\) instead of \(\underline{\underline{\sigma }}\), (that is reserved for the electric conductivity) and the dielectric permittivity \(\underline{\underline{\kappa }}\) instead of \(\underline{\underline{\epsilon }}\) (which is reserved for the deformation or  displacement gradient tensor).
 
14
What is the second action of the plane?
 
15
The extensive compilation [14] goes up to rank seven.
 
Literatur
1.
Zurück zum Zitat Jeffreys, H.: Cartesian Tensors. Cambridge University Press, Cambridge (1969) Jeffreys, H.: Cartesian Tensors. Cambridge University Press, Cambridge (1969)
2.
Zurück zum Zitat Halmos, P.R.: Finite Dimensional Vector Spaces. Van Nostrand-Reinhold, New York (1958) Halmos, P.R.: Finite Dimensional Vector Spaces. Van Nostrand-Reinhold, New York (1958)
3.
Zurück zum Zitat Gel’fand, I.M.: Lectures on Linear Algebra. Dover Publications Inc., Mineola (1989) Gel’fand, I.M.: Lectures on Linear Algebra. Dover Publications Inc., Mineola (1989)
4.
Zurück zum Zitat Knowles, J.K.: Linear Vector Spaces and Cartesian Tensors. Oxford University Press, Oxford (1998) Knowles, J.K.: Linear Vector Spaces and Cartesian Tensors. Oxford University Press, Oxford (1998)
5.
Zurück zum Zitat Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Harcourt Academic Press, San Diego (2001) Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Harcourt Academic Press, San Diego (2001)
6.
Zurück zum Zitat Bird, B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, Hoboken (2002) Bird, B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, Hoboken (2002)
7.
Zurück zum Zitat Dodson, C.T.J., Poston, T.: Tensor Geometry: The Geometric Viewpoint and Its Uses. Springer, Berlin (2013) Dodson, C.T.J., Poston, T.: Tensor Geometry: The Geometric Viewpoint and Its Uses. Springer, Berlin (2013)
8.
Zurück zum Zitat Das, A.J.: Tensors: The Mathematics of Relativity Theory and Continuum Mechanics. Springer, Berlin (2007)CrossRef Das, A.J.: Tensors: The Mathematics of Relativity Theory and Continuum Mechanics. Springer, Berlin (2007)CrossRef
9.
Zurück zum Zitat Jeevanjee, N.: An Introduction to Tensors and Group Theory for Physicists. Springer, Berlin (2011)CrossRef Jeevanjee, N.: An Introduction to Tensors and Group Theory for Physicists. Springer, Berlin (2011)CrossRef
10.
Zurück zum Zitat Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Springer, Berlin (2012) Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Springer, Berlin (2012)
11.
Zurück zum Zitat Newnham, R.E.: Properties of Materials: Anisotropy, Symmetry. Structure. Oxford University Press, Oxford (2005) Newnham, R.E.: Properties of Materials: Anisotropy, Symmetry. Structure. Oxford University Press, Oxford (2005)
12.
Zurück zum Zitat Tinder, R.F.: Tensor Properties of Solids: Phenomenological Development of the Tensor Properties of Crystals. Morgan & Claypool Publishers, San Rafael (2008) Tinder, R.F.: Tensor Properties of Solids: Phenomenological Development of the Tensor Properties of Crystals. Morgan & Claypool Publishers, San Rafael (2008)
13.
Zurück zum Zitat Voigt, W.: Lehrbuch der Kristallphysik. Teubner (1928) Voigt, W.: Lehrbuch der Kristallphysik. Teubner (1928)
14.
Zurück zum Zitat Popov, S.V., Svirko, Y.P., Zheludev, N.I.: CD Encyclopedia of Material Tensors. Wiley, Hoboken (1999) Popov, S.V., Svirko, Y.P., Zheludev, N.I.: CD Encyclopedia of Material Tensors. Wiley, Hoboken (1999)
15.
Zurück zum Zitat Nye, J.F.: Physical Properties of Crystals. Oxford University Press, Oxford (1985) Nye, J.F.: Physical Properties of Crystals. Oxford University Press, Oxford (1985)
Metadaten
Titel
Representation of Material Properties by Means of Cartesian Tensors
verfasst von
Manuel Laso
Nieves Jimeno
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40870-1_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.