Skip to main content

2021 | OriginalPaper | Buchkapitel

5. Flow Boiling

verfasst von : Fabio Toshio Kanizawa, Gherhardt Ribatski

Erschienen in: Flow boiling and condensation in microscale channels

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter addresses the analysis of flow boiling, which in turn depends on concepts of nucleate boiling. Hence, it begins with a discussion about the main mechanisms and phenomena during pool boiling, addressing the criteria for bubble nucleation and growth. Subsequently, the boiling curve is discussed, presenting the boiling regimes that can be observed during evaporation of liquid in contact with a surface.
Subsequently, the heat transfer coefficient characteristics during in-tube flow are discussed, inferring the expected trends according to distinct operational conditions.
Finally, predictive methods for the heat transfer coefficient during flow boiling are described, which comprises mostly methods that are based on the combination of nucleate boiling and convective effects. Nonetheless, methods using an approach similar to two-phase multipliers are also described, as well as a mechanistic methods, which are based on the prior identification of the local flow patterns, and then the heat transfer coefficient is modelled for each flow pattern. The chapter finishes describing a new approach to evaluate heat transfer coefficient during flow boiling under transient conditions of heat flux.
After finishing this chapter, the student should be able to identify the dominant mechanisms during flow boiling, as well as select proper predictive methods for heat transfer coefficient depending on the operational conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Check the original reference for water as working fluid.
 
2
For this case, it is impossible to directly determine the Lcrit, hence, an iterative method is required for the solution. In the case of Zhang et al.’s (2006) method, it is possible to isolate the term (Lcrit/d)0.311, and then iteratively find new values for the critical length.
 
Literatur
Zurück zum Zitat Aguiar, G. M., & Ribatski, G. (2019). An experimental study on flow boiling in microchannels under heating pulses and a methodology for predicting the wall temperature fluctuations. Applied Thermal Engineering, 159, 113851.CrossRef Aguiar, G. M., & Ribatski, G. (2019). An experimental study on flow boiling in microchannels under heating pulses and a methodology for predicting the wall temperature fluctuations. Applied Thermal Engineering, 159, 113851.CrossRef
Zurück zum Zitat Bergles, A. E., & Rohsenow, W. M. (1964). The determination of forced-convection surface-boiling heat transfer. Bergles, A. E., & Rohsenow, W. M. (1964). The determination of forced-convection surface-boiling heat transfer.
Zurück zum Zitat Biberg, D. (1999). An explicit approximation for the wetted angle in two-Phase stratified pipe flow. The Canadian Journal of Chemical Engineering, 77(6), 1221–1224.CrossRef Biberg, D. (1999). An explicit approximation for the wetted angle in two-Phase stratified pipe flow. The Canadian Journal of Chemical Engineering, 77(6), 1221–1224.CrossRef
Zurück zum Zitat Blander, M., & Katz, J. L. (1975). Bubble nucleation in liquids. AIChE Journal, 21(5), 833–848.CrossRef Blander, M., & Katz, J. L. (1975). Bubble nucleation in liquids. AIChE Journal, 21(5), 833–848.CrossRef
Zurück zum Zitat Chen, J. C. (1966). Correlation for boiling heat transfer to saturated fluids in convective flow. Industrial & engineering chemistry process design and development, 5(3), 322–329.CrossRef Chen, J. C. (1966). Correlation for boiling heat transfer to saturated fluids in convective flow. Industrial & engineering chemistry process design and development, 5(3), 322–329.CrossRef
Zurück zum Zitat Churchill, S. W. (2000). The art of correlation. Industrial & Engineering Chemistry Research, 39(6), 1850–1877.CrossRef Churchill, S. W. (2000). The art of correlation. Industrial & Engineering Chemistry Research, 39(6), 1850–1877.CrossRef
Zurück zum Zitat Churchill, S. W., & Usagi, R. (1972). A general expression for the correlation of rates of transfer and other phenomena. AIChE Journal, 18(6), 1121–1128.CrossRef Churchill, S. W., & Usagi, R. (1972). A general expression for the correlation of rates of transfer and other phenomena. AIChE Journal, 18(6), 1121–1128.CrossRef
Zurück zum Zitat Cioncolini, A., & Thome, J. R. (2011). Algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow. International Journal of Heat and Fluid Flow, 32(4), 805–817.CrossRef Cioncolini, A., & Thome, J. R. (2011). Algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow. International Journal of Heat and Fluid Flow, 32(4), 805–817.CrossRef
Zurück zum Zitat Collier, J. G., & Thome, J. R. (1994). Convective boiling and condensation. Clarendon Press. Collier, J. G., & Thome, J. R. (1994). Convective boiling and condensation. Clarendon Press.
Zurück zum Zitat Cooper, M. G. (1969). The microlayer and bubble growth in nucleate pool boiling. International Journal of Heat and Mass Transfer, 12(8), 915–933.CrossRef Cooper, M. G. (1969). The microlayer and bubble growth in nucleate pool boiling. International Journal of Heat and Mass Transfer, 12(8), 915–933.CrossRef
Zurück zum Zitat Cooper, M. G. (1984). Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties. Advances in heat transfer, 16, 157–239.CrossRef Cooper, M. G. (1984). Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties. Advances in heat transfer, 16, 157–239.CrossRef
Zurück zum Zitat Cooper, M. G., & Lloyd, A. J. P. (1969). The microlayer in nucleate pool boiling. International Journal of Heat and Mass Transfer, 12(8), 895–913.CrossRef Cooper, M. G., & Lloyd, A. J. P. (1969). The microlayer in nucleate pool boiling. International Journal of Heat and Mass Transfer, 12(8), 895–913.CrossRef
Zurück zum Zitat Costa-Patry, E., Olivier, J., & Thome, J. (2012). Heat transfer charcacteristics in a copper micro-evaporator and flow pattern-based prediction method for flow boiling in microchannels. Frontiers in Heat and Mass Transfer (FHMT), 3(1). Costa-Patry, E., Olivier, J., & Thome, J. (2012). Heat transfer charcacteristics in a copper micro-evaporator and flow pattern-based prediction method for flow boiling in microchannels. Frontiers in Heat and Mass Transfer (FHMT), 3(1).
Zurück zum Zitat Da Riva, E., Del Col, D., Garimella, S. V., & Cavallini, A. (2012). The importance of turbulence during condensation in a horizontal circular minichannel. International Journal of Heat and Mass Transfer, 55(13–14), 3470–3481.CrossRef Da Riva, E., Del Col, D., Garimella, S. V., & Cavallini, A. (2012). The importance of turbulence during condensation in a horizontal circular minichannel. International Journal of Heat and Mass Transfer, 55(13–14), 3470–3481.CrossRef
Zurück zum Zitat Dittus, F. W., & Boelter, L. M. K. (1985). Heat transfer in automobile radiators of the tubular type. International Communications in Heat and Mass Transfer, 12(1), 3–22.MATHCrossRef Dittus, F. W., & Boelter, L. M. K. (1985). Heat transfer in automobile radiators of the tubular type. International Communications in Heat and Mass Transfer, 12(1), 3–22.MATHCrossRef
Zurück zum Zitat Forster, H. K., & Zuber, N. (1955). Dynamics of vapor bubbles and boiling heat transfer. AIChE Journal, 1(4), 531–535.CrossRef Forster, H. K., & Zuber, N. (1955). Dynamics of vapor bubbles and boiling heat transfer. AIChE Journal, 1(4), 531–535.CrossRef
Zurück zum Zitat Gerardi, C., Buongiorno, J., Hu, L. W., & McKrell, T. (2010). Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video. International Journal of Heat and Mass Transfer, 53(19–20), 4185–4192.CrossRef Gerardi, C., Buongiorno, J., Hu, L. W., & McKrell, T. (2010). Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video. International Journal of Heat and Mass Transfer, 53(19–20), 4185–4192.CrossRef
Zurück zum Zitat Gnielinski, V. (1976). New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng., 16(2), 359–368. Gnielinski, V. (1976). New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng., 16(2), 359–368.
Zurück zum Zitat Gorenflo, D., & Kenning, D. B. R. (2010). Pool boiling (Chapter H2). Berlin/Heidelberg: VDI Heat Atlas. Springer-Verlag. Gorenflo, D., & Kenning, D. B. R. (2010). Pool boiling (Chapter H2). Berlin/Heidelberg: VDI Heat Atlas. Springer-Verlag.
Zurück zum Zitat Groeneveld, D. C. (1973). Post-dryout heat transfer at reactor operating conditions (No. AECL--4513). Atomic Energy of Canada Ltd. Groeneveld, D. C. (1973). Post-dryout heat transfer at reactor operating conditions (No. AECL--4513). Atomic Energy of Canada Ltd.
Zurück zum Zitat Gungor, K. E., & Winterton, R. H. S. (1986). A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer, 29(3), 351–358.MATHCrossRef Gungor, K. E., & Winterton, R. H. S. (1986). A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer, 29(3), 351–358.MATHCrossRef
Zurück zum Zitat Gungor, K. E., & Winterton, R. H. S. (1987). Simplified general correlation for saturated flow boiling and comparisons of correlations with data. Chemical Engineering Research and Design, 65(2), 148–156. Gungor, K. E., & Winterton, R. H. S. (1987). Simplified general correlation for saturated flow boiling and comparisons of correlations with data. Chemical Engineering Research and Design, 65(2), 148–156.
Zurück zum Zitat Han, C. H., & Griffith, P. (1965). The mechanism of heat transfer in nucleate pool boiling—part II: the heat flux-temperature difference relation. International Journal of Heat and Mass Transfer, 8(6), 905–914.MATHCrossRef Han, C. H., & Griffith, P. (1965). The mechanism of heat transfer in nucleate pool boiling—part II: the heat flux-temperature difference relation. International Journal of Heat and Mass Transfer, 8(6), 905–914.MATHCrossRef
Zurück zum Zitat Hetsroni, G., Mosyak, A., & Pogrebnyak, E. (2015). Effect of Marangoni flow on subcooled pool boiling on micro-scale and macro-scale heaters in water and surfactant solutions. International Journal of Heat and Mass Transfer, 89, 425–432.CrossRef Hetsroni, G., Mosyak, A., & Pogrebnyak, E. (2015). Effect of Marangoni flow on subcooled pool boiling on micro-scale and macro-scale heaters in water and surfactant solutions. International Journal of Heat and Mass Transfer, 89, 425–432.CrossRef
Zurück zum Zitat Jabardo, J. M., Silva, E., Ribatski, G., & de Barros, S. F. (2004). Evaluation of the Rohsenow correlation through experimental pool boiling of halocarbon refrigerants on cylindrical surfaces. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2), 218–230.CrossRef Jabardo, J. M., Silva, E., Ribatski, G., & de Barros, S. F. (2004). Evaluation of the Rohsenow correlation through experimental pool boiling of halocarbon refrigerants on cylindrical surfaces. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2), 218–230.CrossRef
Zurück zum Zitat Judd, R. L., & Hwang, K. S. (1976, November). A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. Journal of Heat Transfer, 98(4), 623–629.CrossRef Judd, R. L., & Hwang, K. S. (1976, November). A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. Journal of Heat Transfer, 98(4), 623–629.CrossRef
Zurück zum Zitat Kandlikar, S. G. (1990). A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. ASME Journal of Heat Transfer, 112, 219–228.CrossRef Kandlikar, S. G. (1990). A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. ASME Journal of Heat Transfer, 112, 219–228.CrossRef
Zurück zum Zitat Kandlikar, S. G. (1991). A model for predicting the two-phase flow boiling heat transfer coefficient in augmented tube and compact heat exchanger geometries. ASME Journal of Heat Transfer, 113, 966–972.CrossRef Kandlikar, S. G. (1991). A model for predicting the two-phase flow boiling heat transfer coefficient in augmented tube and compact heat exchanger geometries. ASME Journal of Heat Transfer, 113, 966–972.CrossRef
Zurück zum Zitat Kandlikar, S. G., & Balasubramanian, P. (2004). An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels. Heat Transfer Engineering, 25(3), 86–93.CrossRef Kandlikar, S. G., & Balasubramanian, P. (2004). An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels. Heat Transfer Engineering, 25(3), 86–93.CrossRef
Zurück zum Zitat Kanizawa, F. T., & Ribatski, G. (2016). Void fraction predictive method based on the minimum kinetic energy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(1), 209–225.CrossRef Kanizawa, F. T., & Ribatski, G. (2016). Void fraction predictive method based on the minimum kinetic energy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(1), 209–225.CrossRef
Zurück zum Zitat Kattan, N., Thome, J. R., & Favrat, D. (1998). Flow boiling in horizontal tubes: Part 1—Development of a diabatic two-phase flow pattern map. Journal of Heat Transfer, 120(1), 140–147.CrossRef Kattan, N., Thome, J. R., & Favrat, D. (1998). Flow boiling in horizontal tubes: Part 1—Development of a diabatic two-phase flow pattern map. Journal of Heat Transfer, 120(1), 140–147.CrossRef
Zurück zum Zitat Kim, J. (2009). Review of nucleate pool boiling bubble heat transfer mechanisms. International Journal of Multiphase Flow, 35(12), 1067–1076.CrossRef Kim, J. (2009). Review of nucleate pool boiling bubble heat transfer mechanisms. International Journal of Multiphase Flow, 35(12), 1067–1076.CrossRef
Zurück zum Zitat Kutateladze, S. S. (1961). Boiling heat transfer. International Journal of Heat and Mass Transfer, 4, 31–45.CrossRef Kutateladze, S. S. (1961). Boiling heat transfer. International Journal of Heat and Mass Transfer, 4, 31–45.CrossRef
Zurück zum Zitat Kutateladze, S. S. (1948). On the transition to film boiling under natural convection. Kotloturbostroenie, 3, 10–12. Kutateladze, S. S. (1948). On the transition to film boiling under natural convection. Kotloturbostroenie, 3, 10–12.
Zurück zum Zitat Lienhard IV, J. H., & Lienhard V, J. H. (2020). A heat transfer textbook. 5th Edition. Phlogiston press. Lienhard IV, J. H., & Lienhard V, J. H. (2020). A heat transfer textbook. 5th Edition. Phlogiston press.
Zurück zum Zitat Liu, Q., Palm, B., & Anglart, H. (2012, July). Simulation on the flow and heat transfer characteristics of confined bubbles in micro-channels. In International conference on nanochannels, microchannels, and minichannels (Vol. 44793, pp. 63-70). American Society of Mechanical Engineers. Liu, Q., Palm, B., & Anglart, H. (2012, July). Simulation on the flow and heat transfer characteristics of confined bubbles in micro-channels. In International conference on nanochannels, microchannels, and minichannels (Vol. 44793, pp. 63-70). American Society of Mechanical Engineers.
Zurück zum Zitat Liu, Z., & Winterton, R. H. S. (1991). A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. International Journal of Heat and Mass Transfer, 34(11), 2759–2766.CrossRef Liu, Z., & Winterton, R. H. S. (1991). A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. International Journal of Heat and Mass Transfer, 34(11), 2759–2766.CrossRef
Zurück zum Zitat Lockhart, R. W. & Martinelli, R. C. (1949). Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chemical Engineering Progress, Vol. 45–1, 39–48. Lockhart, R. W. & Martinelli, R. C. (1949). Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chemical Engineering Progress, Vol. 45–1, 39–48.
Zurück zum Zitat Mikic, B. B., & Rohsenow, W. M. (1969, May). A new correlation of pool-boiling data including the effect of heating surface characteristics. Journal of Heat Transfer, 91(2), 245–250.CrossRef Mikic, B. B., & Rohsenow, W. M. (1969, May). A new correlation of pool-boiling data including the effect of heating surface characteristics. Journal of Heat Transfer, 91(2), 245–250.CrossRef
Zurück zum Zitat Mori, H., Yoshida, S., Ohishi, K., & Kakimoto, Y. (2000). Dryout quality and post-dryout heat transfer coefficient in horizontal evaporator tubes. In 3rd European thermal sciences conference (Heidelberg, 10–13 September 2000) (pp. 839–844). Mori, H., Yoshida, S., Ohishi, K., & Kakimoto, Y. (2000). Dryout quality and post-dryout heat transfer coefficient in horizontal evaporator tubes. In 3rd European thermal sciences conference (Heidelberg, 10–13 September 2000) (pp. 839–844).
Zurück zum Zitat Moriyama, K., & Inoue, A. (1996). Thickness of the liquid film formed by a growing bubble in a narrow gap between two horizontal plates. Journal of Heat Transfer, 118(1), 132–139.CrossRef Moriyama, K., & Inoue, A. (1996). Thickness of the liquid film formed by a growing bubble in a narrow gap between two horizontal plates. Journal of Heat Transfer, 118(1), 132–139.CrossRef
Zurück zum Zitat Nukiyama, S. (1934). Film boiling water on thin wires. Society of Mechanical Engineering, 37. Nukiyama, S. (1934). Film boiling water on thin wires. Society of Mechanical Engineering, 37.
Zurück zum Zitat Ong, C. L., & Thome, J. R. (2011). Macro-to-microchannel transition in two-phase flow: Part 1–Two-phase flow patterns and film thickness measurements. Experimental Thermal and Fluid Science, 35(1), 37–47.CrossRef Ong, C. L., & Thome, J. R. (2011). Macro-to-microchannel transition in two-phase flow: Part 1–Two-phase flow patterns and film thickness measurements. Experimental Thermal and Fluid Science, 35(1), 37–47.CrossRef
Zurück zum Zitat Petukhov, B. S. (1970). Heat transfer and friction in turbulent pipe flow with variable physical properties. Advances in heat transfer, 6(503), i565. Petukhov, B. S. (1970). Heat transfer and friction in turbulent pipe flow with variable physical properties. Advances in heat transfer, 6(503), i565.
Zurück zum Zitat Plesset, M. S. & Zwick, S. A. (1954). The growth of vapor bubbles in superheated liquids. Journal of applied physics, 25(4), 493–500.MathSciNetMATHCrossRef Plesset, M. S. & Zwick, S. A. (1954). The growth of vapor bubbles in superheated liquids. Journal of applied physics, 25(4), 493–500.MathSciNetMATHCrossRef
Zurück zum Zitat Ribatski, G. (2002). Theoretical and experimental analysis of pool boiling of halocarbon refrigerants (Doctoral Thesis, University of São Paulo). Ribatski, G. (2002). Theoretical and experimental analysis of pool boiling of halocarbon refrigerants (Doctoral Thesis, University of São Paulo).
Zurück zum Zitat Ribatski, G. (2013). A critical overview on the recent literature concerning flow boiling and two-phase flows inside micro-scale channels. Experimental Heat Transfer, 26(2-3), 198–246.CrossRef Ribatski, G. (2013). A critical overview on the recent literature concerning flow boiling and two-phase flows inside micro-scale channels. Experimental Heat Transfer, 26(2-3), 198–246.CrossRef
Zurück zum Zitat Rohsenow, W. M. (1971). Boiling. Annual Review of Fluid Mechanics, 3(1), 211–236.CrossRef Rohsenow, W. M. (1971). Boiling. Annual Review of Fluid Mechanics, 3(1), 211–236.CrossRef
Zurück zum Zitat Rosenhow, W. M. (1952). A method of correlating heat transfer data for surfaceboiling of liquids. Transactions of ASME, 4, 969–975. Rosenhow, W. M. (1952). A method of correlating heat transfer data for surfaceboiling of liquids. Transactions of ASME, 4, 969–975.
Zurück zum Zitat Rouhani, Z. (1969). Modified correlations for void and two-phase presssure drop. Nyköping: Aktiebolaget Atomenergi. Rouhani, Z. (1969). Modified correlations for void and two-phase presssure drop. Nyköping: Aktiebolaget Atomenergi.
Zurück zum Zitat Schweizer, N., Freystein, M., & Stephan, P. (2010, January). High resolution measurement of wall temperature distribution during forced convective boiling in a single minichannel. In International conference on nanochannels, microchannels, and minichannels (Vol. 54501, pp. 101–108). Schweizer, N., Freystein, M., & Stephan, P. (2010, January). High resolution measurement of wall temperature distribution during forced convective boiling in a single minichannel. In International conference on nanochannels, microchannels, and minichannels (Vol. 54501, pp. 101–108).
Zurück zum Zitat Sempértegui-Tapia, D. F., & Ribatski, G. (2017). Flow boiling heat transfer of R134a and low GWP refrigerants in a horizontal micro-scale channel. International Journal of Heat and Mass Transfer, 108, 2417–2432.CrossRef Sempértegui-Tapia, D. F., & Ribatski, G. (2017). Flow boiling heat transfer of R134a and low GWP refrigerants in a horizontal micro-scale channel. International Journal of Heat and Mass Transfer, 108, 2417–2432.CrossRef
Zurück zum Zitat Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts (Advances in Heat Transfer, supplement 1). Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts (Advances in Heat Transfer, supplement 1).
Zurück zum Zitat Stephan, K., & Abdelsalam, M. (1980). Heat-transfer correlations for natural convection boiling. International Journal of Heat and Mass Transfer, 23(1), 73–87.CrossRef Stephan, K., & Abdelsalam, M. (1980). Heat-transfer correlations for natural convection boiling. International Journal of Heat and Mass Transfer, 23(1), 73–87.CrossRef
Zurück zum Zitat Stephan, P., & Hammer, J. (1994). A new model for nucleate boiling heat transfer. Heat and Mass Transfer, 30(2), 119–125. Stephan, P., & Hammer, J. (1994). A new model for nucleate boiling heat transfer. Heat and Mass Transfer, 30(2), 119–125.
Zurück zum Zitat Taitel, Y., & Dukler, A. E. (1976). A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal, 22(1), 47–55.CrossRef Taitel, Y., & Dukler, A. E. (1976). A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal, 22(1), 47–55.CrossRef
Zurück zum Zitat Thome, J. R., Dupont, V., & Jacobi, A. M. (2004). Heat transfer model for evaporation in microchannels. Part I: Presentation of the model. International Journal of Heat and Mass Transfer, 47(14-16), 3375–3385.MATHCrossRef Thome, J. R., Dupont, V., & Jacobi, A. M. (2004). Heat transfer model for evaporation in microchannels. Part I: Presentation of the model. International Journal of Heat and Mass Transfer, 47(14-16), 3375–3385.MATHCrossRef
Zurück zum Zitat Tibirica, C. B., & Ribatski, G. (2014). Flow patterns and bubble departure fundamental characteristics during flow boiling in microscale channels. Experimental Thermal and Fluid Science, 59, 152–165.CrossRef Tibirica, C. B., & Ribatski, G. (2014). Flow patterns and bubble departure fundamental characteristics during flow boiling in microscale channels. Experimental Thermal and Fluid Science, 59, 152–165.CrossRef
Zurück zum Zitat Tibirica, C. B., Czelusniak, L. E., & Ribatski, G. (2015). Critical heat flux in a 0.38 mm microchannel and actions for suppression of flow boiling instabilities. Experimental Thermal and Fluid Science, 67, 48–56.CrossRef Tibirica, C. B., Czelusniak, L. E., & Ribatski, G. (2015). Critical heat flux in a 0.38 mm microchannel and actions for suppression of flow boiling instabilities. Experimental Thermal and Fluid Science, 67, 48–56.CrossRef
Zurück zum Zitat Wojtan, L., Ursenbacher, T., & Thome, J. R. (2005a). Investigation of flow boiling in horizontal tubes: Part I—A new diabatic two-phase flow pattern map. International Journal of Heat and Mass Transfer, 48(14), 2955–2969.CrossRef Wojtan, L., Ursenbacher, T., & Thome, J. R. (2005a). Investigation of flow boiling in horizontal tubes: Part I—A new diabatic two-phase flow pattern map. International Journal of Heat and Mass Transfer, 48(14), 2955–2969.CrossRef
Zurück zum Zitat Wojtan, L., Ursenbacher, T., & Thome, J. R. (2005b). Investigation of flow boiling in horizontal tubes: Part II—Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. International Journal of Heat and Mass Transfer, 48(14), 2970–2985.CrossRef Wojtan, L., Ursenbacher, T., & Thome, J. R. (2005b). Investigation of flow boiling in horizontal tubes: Part II—Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. International Journal of Heat and Mass Transfer, 48(14), 2970–2985.CrossRef
Zurück zum Zitat Zuber, N., & Findlay, J. (1965). Average volumetric concentration in two-phase flow systems. Journal of Heat Transfer, 87(4), 453–468.CrossRef Zuber, N., & Findlay, J. (1965). Average volumetric concentration in two-phase flow systems. Journal of Heat Transfer, 87(4), 453–468.CrossRef
Metadaten
Titel
Flow Boiling
verfasst von
Fabio Toshio Kanizawa
Gherhardt Ribatski
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-68704-5_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.