Skip to main content

2015 | OriginalPaper | Buchkapitel

Sparse hidden units activation in Restricted Boltzmann Machine

verfasst von : Jakub M. Tomczak, Adam Gonczarek

Erschienen in: Progress in Systems Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sparsity has become a concept of interest in machine learning for many years. In deep learning sparse solutions play crucial role in obtaining robust and discriminative features. In this paper, we study a new regularization term for sparse hidden units activation in the context of Restricted Boltzmann Machine (RBM). Our proposition is based on the symmetric Kullback-Leibler divergence applied to compare the actual and the desired distribution over the active hidden units. We compare our method against two other enforcing sparsity regularization terms by evaluating the empirical classification error using two datasets: (i) for image classification (MNIST), (ii) for document classification (20-newsgroups).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In [5] such approach is called selectivity.
 
2
A i⋅  denotes the i th row of matrix A, A ⋅ j denotes the j th column of matrix A, and A ij is the element of matrix A.
 
4
In the experiments we used the small version of the original dataset: http://​www.​cs.​nyu.​edu/​~roweis/​data.​html.
 
Literatur
1.
Zurück zum Zitat Bengio, Y.: Learning Deep Architectures for AI. Foundations and Trends® in Machine Learning 2(1):1-127. (2009). Bengio, Y.: Learning Deep Architectures for AI. Foundations and Trends® in Machine Learning 2(1):1-127. (2009).
2.
Zurück zum Zitat Bishop, C.M.: Pattern Recognition and Machine Learning. Springer New York. (2006). Bishop, C.M.: Pattern Recognition and Machine Learning. Springer New York. (2006).
3.
Zurück zum Zitat Cho, K., Ilin, A., & Raiko, T.: Tikhonov-Type regularization for Restricted Boltzmann Machines. In Artificial Neural Networks and Machine Learning (ICANN 2012). pp. 81-88. Springer Berlin Heidelberg. (2012). Cho, K., Ilin, A., & Raiko, T.: Tikhonov-Type regularization for Restricted Boltzmann Machines. In Artificial Neural Networks and Machine Learning (ICANN 2012). pp. 81-88. Springer Berlin Heidelberg. (2012).
4.
Zurück zum Zitat Glorot, X., Bordes, A., & Bengio, Y.: Deep Sparse Rectifier Networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS 2011). Journal of Machine Learning Research Workshop & Conference Proceedings 15:315-323. (2011). Glorot, X., Bordes, A., & Bengio, Y.: Deep Sparse Rectifier Networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS 2011). Journal of Machine Learning Research Workshop & Conference Proceedings 15:315-323. (2011).
5.
Zurück zum Zitat Goh, H., Thome, N., & Cord, M.: Biasing restricted Boltzmann machines to manipulate latent selectivity and sparsity. In NIPS workshop on deep learning and unsupervised feature learning. (2010). Goh, H., Thome, N., & Cord, M.: Biasing restricted Boltzmann machines to manipulate latent selectivity and sparsity. In NIPS workshop on deep learning and unsupervised feature learning. (2010).
6.
Zurück zum Zitat Hinton, G. E.: Training products of experts by minimizing contrastive divergence. Neural Comput 14:1771-1800. (2002)CrossRefMATH Hinton, G. E.: Training products of experts by minimizing contrastive divergence. Neural Comput 14:1771-1800. (2002)CrossRefMATH
7.
Zurück zum Zitat Hinton, G. E.: A practical guide to training Restricted Boltzmann Machines. In Neural Networks: Tricks of the Trade. pp. 599-619. Springer Berlin Heidelberg. (2012). Hinton, G. E.: A practical guide to training Restricted Boltzmann Machines. In Neural Networks: Tricks of the Trade. pp. 599-619. Springer Berlin Heidelberg. (2012).
8.
Zurück zum Zitat Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580. (2012). Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580. (2012).
9.
Zurück zum Zitat Larochelle, H., & Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In Proceedings of the 25th International Conference on Machine learning (ICML 2008). pp. 536-543. (2008, July). Larochelle, H., & Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In Proceedings of the 25th International Conference on Machine learning (ICML 2008). pp. 536-543. (2008, July).
10.
Zurück zum Zitat Lee, H., Ekanadham, C., & Ng, A.: Sparse deep belief net model for visual area V2. In Advances in Neural Information Processing Systems (NIPS 2007). pp. 873-880. (2007). Lee, H., Ekanadham, C., & Ng, A.: Sparse deep belief net model for visual area V2. In Advances in Neural Information Processing Systems (NIPS 2007). pp. 873-880. (2007).
11.
Zurück zum Zitat Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., & Ng, A.: On optimization methods for deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML 2011). pp. 265-272. (2011). Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., & Ng, A.: On optimization methods for deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML 2011). pp. 265-272. (2011).
12.
Zurück zum Zitat Le Roux, N., & Bengio, Y.: Representational power of Restricted Boltzmann Machines and deep belief networks. Neural Computation 20(6):1631-1649. (2008).MathSciNetCrossRefMATH Le Roux, N., & Bengio, Y.: Representational power of Restricted Boltzmann Machines and deep belief networks. Neural Computation 20(6):1631-1649. (2008).MathSciNetCrossRefMATH
13.
Zurück zum Zitat Lewicki, M. S., & Sejnowski, T. J.: Learning overcomplete representations. Neural Computation 12(2):337-365. (2000).CrossRef Lewicki, M. S., & Sejnowski, T. J.: Learning overcomplete representations. Neural Computation 12(2):337-365. (2000).CrossRef
14.
Zurück zum Zitat Marlin, B.M., Swersky, K., Chen, B., & Freitas, N.D.: Inductive principles for restricted Boltzmann machine learning. In International Conference on Artificial Intelligence and Statistics (ICML 2010). pp. 509-516. (2010). Marlin, B.M., Swersky, K., Chen, B., & Freitas, N.D.: Inductive principles for restricted Boltzmann machine learning. In International Conference on Artificial Intelligence and Statistics (ICML 2010). pp. 509-516. (2010).
15.
Zurück zum Zitat Martens, J., Chattopadhya, A., Pitassi, T., & Zemel, R.: On the Expressive Power of Restricted Boltzmann Machines. In Advances in Neural Information Processing Systems (NIPS 2013). pp. 2877-2885. (2013). Martens, J., Chattopadhya, A., Pitassi, T., & Zemel, R.: On the Expressive Power of Restricted Boltzmann Machines. In Advances in Neural Information Processing Systems (NIPS 2013). pp. 2877-2885. (2013).
16.
Zurück zum Zitat Nair, V., & Hinton, G. E.: 3D object recognition with deep belief nets. In Advances in Neural Information Processing Systems (NIPS 2009). pp. 1339-1347. (2009). Nair, V., & Hinton, G. E.: 3D object recognition with deep belief nets. In Advances in Neural Information Processing Systems (NIPS 2009). pp. 1339-1347. (2009).
17.
Zurück zum Zitat Nair, V., & Hinton, G. E.: Rectified linear units improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning (ICML 2010). pp. 807-814. (2010). Nair, V., & Hinton, G. E.: Rectified linear units improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning (ICML 2010). pp. 807-814. (2010).
18.
Zurück zum Zitat Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Parallel distributed processing: explorations in the microstructure of cognition, Vol. 1: Foundations, pp. 194281. MIT Press, Cambridge, MA, USA. (1986) Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Parallel distributed processing: explorations in the microstructure of cognition, Vol. 1: Foundations, pp. 194281. MIT Press, Cambridge, MA, USA. (1986)
Metadaten
Titel
Sparse hidden units activation in Restricted Boltzmann Machine
verfasst von
Jakub M. Tomczak
Adam Gonczarek
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-08422-0_27

Neuer Inhalt