Skip to main content

2015 | OriginalPaper | Buchkapitel

Prediction of Clinical Information from Cardiac MRI Using Manifold Learning

verfasst von : Haiyan Wang, Wenzhe Shi, Wenjia Bai, Antonio M. Simoes Monteiro de Marvao, Timothy J. W. Dawes, Declan P. O’Regan, Philip Edwards, Stuart Cook, Daniel Rueckert

Erschienen in: Functional Imaging and Modeling of the Heart

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cardiac MR imaging contains rich information that can be used to investigate the anatomy and function of the heart. In this paper, we demonstrate that it is possible to learn anatomical and functional information from cardiac MR imaging without explicit segmentation in order to predict clinical variables such as blood pressure with high accuracy. To learn the anatomical variations, we build manifolds of different time points across different subjects. In addition, we investigate two different approaches to incorporate motion information into a manifold, and compare these manifolds to a manifold learned from a single time point. Combining both inter- and intra-subject variation, we are able to construct accurate and reliable classifiers to predict clinical variables. Our proposed method does not require any explicit image segmentation and motion estimation and is able to predict clinical variables with good accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aljabar, P., Wolz, R., Rueckert, D.: Manifold learning for medical image registration, segmentation, and classification. In: Machine Learning in Computer-aided Diagnosis: Medical Imaging Intelligence and Analysis. IGI Global (2012) Aljabar, P., Wolz, R., Rueckert, D.: Manifold learning for medical image registration, segmentation, and classification. In: Machine Learning in Computer-aided Diagnosis: Medical Imaging Intelligence and Analysis. IGI Global (2012)
2.
Zurück zum Zitat Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)MATHCrossRef Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)MATHCrossRef
3.
Zurück zum Zitat Bhatia, K., Rao, A., Price, A., Wolz, R., Hajnal, J., Rueckert, D.: Hierarchical manifold learning for regional image analysis. IEEE Trans. Med. Imaging 33(2), 444–461 (2014)CrossRef Bhatia, K., Rao, A., Price, A., Wolz, R., Hajnal, J., Rueckert, D.: Hierarchical manifold learning for regional image analysis. IEEE Trans. Med. Imaging 33(2), 444–461 (2014)CrossRef
4.
Zurück zum Zitat Chang, W.-Y., Chen, C.-S., Hung, Y.-P.: Analyzing facial expression by fusing manifolds. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 621–630. Springer, Heidelberg (2007) CrossRef Chang, W.-Y., Chen, C.-S., Hung, Y.-P.: Analyzing facial expression by fusing manifolds. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 621–630. Springer, Heidelberg (2007) CrossRef
5.
Zurück zum Zitat Duchateau, N., Craene, M.D., Piella, G., Frangi, A.F.: Constrained manifold learning for the characterization of pathological deviations from normality. Med. Image Anal. 16(8), 1532–1549 (2012)CrossRef Duchateau, N., Craene, M.D., Piella, G., Frangi, A.F.: Constrained manifold learning for the characterization of pathological deviations from normality. Med. Image Anal. 16(8), 1532–1549 (2012)CrossRef
6.
Zurück zum Zitat Duchateau, N., De Craene, M., Piella, G., Silva, E., Doltra, A., Sitges, M., Bijnens, B.H., Frangi, A.F.: A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Med. Image Anal. 15(3), 316–328 (2011)CrossRef Duchateau, N., De Craene, M., Piella, G., Silva, E., Doltra, A., Sitges, M., Bijnens, B.H., Frangi, A.F.: A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Med. Image Anal. 15(3), 316–328 (2011)CrossRef
7.
Zurück zum Zitat Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Do Chung, J., Cowan, B.R., Dinov, I.D., Finn, J.P., Hunter, P.J., Kadish, A.H.: The cardiac atlas projectan imaging database for computational modeling and statistical atlases of the heart. Bioinf. 27(16), 2288–2295 (2011)CrossRef Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Do Chung, J., Cowan, B.R., Dinov, I.D., Finn, J.P., Hunter, P.J., Kadish, A.H.: The cardiac atlas projectan imaging database for computational modeling and statistical atlases of the heart. Bioinf. 27(16), 2288–2295 (2011)CrossRef
8.
Zurück zum Zitat Hoogendoorn, C.: A Statistical Dynamic Cardiac Atlas for the Virtual Physiological Human: Construction and Application. Universitat Pompeu Fabra, Barcelona (2014) Hoogendoorn, C.: A Statistical Dynamic Cardiac Atlas for the Virtual Physiological Human: Construction and Application. Universitat Pompeu Fabra, Barcelona (2014)
9.
Zurück zum Zitat Lombaert, H., Peyrat, J., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., Ayache, N.: Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans. Med. Imaging 31(7), 1436–1447 (2012)CrossRef Lombaert, H., Peyrat, J., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., Ayache, N.: Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans. Med. Imaging 31(7), 1436–1447 (2012)CrossRef
10.
Zurück zum Zitat Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRef Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRef
11.
Zurück zum Zitat Vapnik, V.: Statistical Learning Theory, 1st edn. Wiley, New York (1998) MATH Vapnik, V.: Statistical Learning Theory, 1st edn. Wiley, New York (1998) MATH
12.
Zurück zum Zitat Wachinger, C., Yigitsoy, M., Navab, N.: Manifold learning for image-based breathing gating with application to 4D ultrasound. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 26–33. Springer, Heidelberg (2010) CrossRef Wachinger, C., Yigitsoy, M., Navab, N.: Manifold learning for image-based breathing gating with application to 4D ultrasound. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 26–33. Springer, Heidelberg (2010) CrossRef
13.
Zurück zum Zitat Wang, C., Mahadevan, S.: Manifold alignment using procrustes analysis. In: Proceedings of the 25th international conference on Machine learning, pp. 1120–1127. ACM (2008) Wang, C., Mahadevan, S.: Manifold alignment using procrustes analysis. In: Proceedings of the 25th international conference on Machine learning, pp. 1120–1127. ACM (2008)
14.
Zurück zum Zitat Wang, Z., Ben Salah, M., Gu, B., Islam, A., Goela, A., Li, S.: Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation. IEEE Trans. Biomed. Eng. 61(4), 1251–1260 (2014)CrossRef Wang, Z., Ben Salah, M., Gu, B., Islam, A., Goela, A., Li, S.: Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation. IEEE Trans. Biomed. Eng. 61(4), 1251–1260 (2014)CrossRef
15.
Zurück zum Zitat Wolz, R., Aljabar, P., Hajnal, J., Hammers, A., Rueckert, D., Initi, A.D.N.: Leap: learning embeddings for atlas propagation. Neuroimage 49(2), 1316–1325 (2010)CrossRef Wolz, R., Aljabar, P., Hajnal, J., Hammers, A., Rueckert, D., Initi, A.D.N.: Leap: learning embeddings for atlas propagation. Neuroimage 49(2), 1316–1325 (2010)CrossRef
16.
Zurück zum Zitat Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S.: Direct estimation of cardiac bi-ventricular volumes with regression forests. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 586–593. Springer, Heidelberg (2014) Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S.: Direct estimation of cardiac bi-ventricular volumes with regression forests. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 586–593. Springer, Heidelberg (2014)
Metadaten
Titel
Prediction of Clinical Information from Cardiac MRI Using Manifold Learning
verfasst von
Haiyan Wang
Wenzhe Shi
Wenjia Bai
Antonio M. Simoes Monteiro de Marvao
Timothy J. W. Dawes
Declan P. O’Regan
Philip Edwards
Stuart Cook
Daniel Rueckert
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-20309-6_11

Premium Partner