Skip to main content

2015 | OriginalPaper | Buchkapitel

Universal Computation and Optimal Construction in the Chemical Reaction Network-Controlled Tile Assembly Model

verfasst von : Nicholas Schiefer, Erik Winfree

Erschienen in: DNA Computing and Molecular Programming

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tile-based self-assembly and chemical reaction networks provide two well-studied models of scalable DNA-based computation. Although tile self-assembly provides a powerful framework for describing Turing-universal self-assembling systems, assembly logic in tile self-assembly is localized, so that only the nearby environment can affect the process of self-assembly. We introduce a new model of tile-based self-assembly in which a well-mixed chemical reaction network interacts with self-assembling tiles to exert non-local control on the self-assembly process. Through simulation of multi-stack machines, we demonstrate that this new model is efficiently Turing-universal, even when restricted to unbounded space in only one spatial dimension. Using a natural notion of program complexity, we also show that this new model can produce many complex shapes with programs of lower complexity. Most notably, we show that arbitrary connected shapes can be produced by a program with complexity bounded by the Kolmogorov complexity of the shape, without the large scale factor that is required for the analogous result in the abstract tile assembly model. These results suggest that controlled self-assembly provides additional algorithmic power over tile-only self-assembly, and that non-local control enhances our ability to perform computation and algorithmically self-assemble structures from small input programs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: ACM Symposium on Theory of Computing (STOC), pp. 740–748 (2001) Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: ACM Symposium on Theory of Computing (STOC), pp. 740–748 (2001)
2.
Zurück zum Zitat Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.Y., de Espanes, P.M., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM J. Comput. 34(6), 1493–1515 (2005)MathSciNetCrossRefMATH Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.Y., de Espanes, P.M., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM J. Comput. 34(6), 1493–1515 (2005)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. 106(15), 6054–6059 (2009)CrossRef Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. 106(15), 6054–6059 (2009)CrossRef
4.
Zurück zum Zitat Bennett, C.H.: The thermodynamics of computation - a review. Int. J. Theor. Phys. 21(12), 905–940 (1982)CrossRef Bennett, C.H.: The thermodynamics of computation - a review. Int. J. Theor. Phys. 21(12), 905–940 (1982)CrossRef
5.
Zurück zum Zitat Cardelli, L., Zavattaro, G.: On the computational power of biochemistry. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 65–80. Springer, Heidelberg (2008) CrossRef Cardelli, L., Zavattaro, G.: On the computational power of biochemistry. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 65–80. Springer, Heidelberg (2008) CrossRef
6.
Zurück zum Zitat Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2014)MathSciNetCrossRef Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2014)MathSciNetCrossRef
7.
Zurück zum Zitat Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)CrossRef Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)CrossRef
8.
Zurück zum Zitat Condon, A., Hu, A.J., Maňuch, J., Thachuk, C.: Less haste, less waste: on recycling and its limits in strand displacement systems. Interface Focus 2(4), 512–521 (2012)CrossRef Condon, A., Hu, A.J., Maňuch, J., Thachuk, C.: Less haste, less waste: on recycling and its limits in strand displacement systems. Interface Focus 2(4), 512–521 (2012)CrossRef
9.
Zurück zum Zitat Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: deterministic assembly in 3D and probabilistic assembly in 2D. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 570–589. SIAM (2011) Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: deterministic assembly in 3D and probabilistic assembly in 2D. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 570–589. SIAM (2011)
10.
Zurück zum Zitat Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. 101(43), 15275–15278 (2004)CrossRef Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. 101(43), 15275–15278 (2004)CrossRef
11.
Zurück zum Zitat Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012)CrossRef Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012)CrossRef
12.
13.
Zurück zum Zitat Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRef Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRef
14.
Zurück zum Zitat Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)CrossRef Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)CrossRef
15.
Zurück zum Zitat Padilla, J.E., Sha, R., Kristiansen, M., Chen, J., Jonoska, N., Seeman, N.C.: A signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures. Angew. Chem. Int. Ed. 54(20), 5939–5942 (2015)CrossRef Padilla, J.E., Sha, R., Kristiansen, M., Chen, J., Jonoska, N., Seeman, N.C.: A signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures. Angew. Chem. Int. Ed. 54(20), 5939–5942 (2015)CrossRef
16.
Zurück zum Zitat Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2013)MathSciNetCrossRef Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2013)MathSciNetCrossRef
17.
Zurück zum Zitat Patitz, M.J., Schweller, R.T., Summers, S.M.: Exact shapes and turing universality at temperature 1 with a single negative glue. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 175–189. Springer, Heidelberg (2011) CrossRef Patitz, M.J., Schweller, R.T., Summers, S.M.: Exact shapes and turing universality at temperature 1 with a single negative glue. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 175–189. Springer, Heidelberg (2011) CrossRef
18.
Zurück zum Zitat Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6(12), 763–772 (2011)CrossRef Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6(12), 763–772 (2011)CrossRef
19.
Zurück zum Zitat Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011) CrossRef Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011) CrossRef
20.
Zurück zum Zitat Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRef Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRef
21.
Zurück zum Zitat Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)CrossRef Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)CrossRef
22.
Zurück zum Zitat Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: ACM Symposium on Theory of Computing (STOC), pp. 459–468. ACM (2000) Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: ACM Symposium on Theory of Computing (STOC), pp. 459–468. ACM (2000)
23.
Zurück zum Zitat Rothemund, P.W., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K., Winfree, E.: Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126(50), 16344–16352 (2004)CrossRef Rothemund, P.W., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K., Winfree, E.: Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126(50), 16344–16352 (2004)CrossRef
24.
Zurück zum Zitat Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRef Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRef
25.
Zurück zum Zitat Seeman, N.C.: An overview of structural DNA nanotechnology. Mol. Biotechnol. 37(3), 246–257 (2007)CrossRef Seeman, N.C.: An overview of structural DNA nanotechnology. Mol. Biotechnol. 37(3), 246–257 (2007)CrossRef
26.
Zurück zum Zitat Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston (2012) Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston (2012)
27.
Zurück zum Zitat Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)MathSciNetCrossRefMATH Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)CrossRef Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)CrossRef
30.
Zurück zum Zitat Summers, S.M.: Reducing tile complexity for the self-assembly of scaled shapes through temperature programming. Algorithmica 63(1–2), 117–136 (2011)MathSciNet Summers, S.M.: Reducing tile complexity for the self-assembly of scaled shapes through temperature programming. Algorithmica 63(1–2), 117–136 (2011)MathSciNet
31.
Zurück zum Zitat Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012)CrossRef Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012)CrossRef
32.
Zurück zum Zitat Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(7176), 318–322 (2008)CrossRef Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(7176), 318–322 (2008)CrossRef
33.
Zurück zum Zitat Zhang, D.Y., Hariadi, R.F., Choi, H.M.T., Winfree, E.: Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat. Commun. 4 (2013). Article No. 1965 Zhang, D.Y., Hariadi, R.F., Choi, H.M.T., Winfree, E.: Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat. Commun. 4 (2013). Article No. 1965
34.
Zurück zum Zitat Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)CrossRef Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)CrossRef
35.
Zurück zum Zitat Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)CrossRef Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)CrossRef
Metadaten
Titel
Universal Computation and Optimal Construction in the Chemical Reaction Network-Controlled Tile Assembly Model
verfasst von
Nicholas Schiefer
Erik Winfree
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-21999-8_3

Premium Partner