Skip to main content

2017 | OriginalPaper | Buchkapitel

4. Regulation and Tracking in Linear Systems

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we will study in some generality the problem of designing a feedback law to the purpose of making a controlled plant stable, and securing exact asymptotic tracking of external commands (respectively, exact asymptotic rejection of external disturbances) which belong to a fixed family of functions. The problem in question can be seen as a (broad) generalization of the classical set point control problem in the elementary theory of servomechanisms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
If some components of w are (external) commands that certain variables of interest are required to track, then some of the components of e can be seen as tracking errors, that is differences between the actual values of those variables of interest and their expected reference values. Overall, the components of e can simply be seen as variables on which the effect of w is expected to vanish asymptotically.
 
2
See [1].
 
3
See Appendix A.2.
 
4
The arguments uses hereafter are essentially the same as those used in [24].
 
5
It is worth observing that, since by assumption the matrix S is not affected by parameter uncertainties, so is its minimal polynomial \(\psi (\lambda )\) and consequently so is the matrix \(\varPhi \) defined in (4.23).
 
6
Note that the filter (4.49) is an invertible system, the inverse being given by
$$\begin{array}{rcl} \dot{\eta } &{}=&{} (\varPhi -G\varGamma )\eta + G\tilde{e}\\ e &{}=&{} -\varGamma \eta + \tilde{e}.\end{array}$$
Hence, if \(\varGamma \) is chosen in such that a way \(\varPhi -G\varGamma \) is Hurwitz, the inverse of (4.49) is a stable system.
 
7
Note that the subscript “e” has been dropped.
 
8
Here and in the following we use the abbreviation “the triplet \(\{A,B,C\}\)” to mean the associated system (2.​1).
 
9
Since the parameters of the equation are \(\mu \)-dependent so is expected to be its solution.
 
10
See Sect. 2.​3.
 
11
The approach in this section closely follows the approach described, in a more general context, in [5].
 
12
It is seen from the construction in Example 4.1 that, in the normal form (4.11), the matrices \(P_0\) and \(P_1\) are found by means of transformations involving ABCP and also S. Thus, if the former are functions of \(\mu \) and the latter is a function of \(\rho \), so are expected to be \(P_0\) and \(P_1\).
 
13
Recall, in this respect, that both the uncertain vectors \(\mu \) and \(\rho \) range on compact sets.
 
14
See Theorem B.6 in Appendix B.
 
15
To prove (i), it suffices to observe that the positive-definite matrix
$$ Q= \left( \begin{matrix}1 &{} 0\\ 0&{} P_2\\ \end{matrix}\right) $$
satisfies
$$\begin{aligned} QF + F^\mathrm{T}Q = \left( \begin{matrix}0 &{} 0\\ 0 &{} -I\\ \end{matrix}\right) \le 0, \end{aligned}$$
and use LaSalle’s invariance principle. The proof of (ii) is achieved by direct substitution. Property (iii) is a consequence of (i) and of (ii), which says that all eigenvalues of \(F+G\varGamma _\rho \) have zero real part. Property (iv) follows from Lemma 4.8.
 
16
The approach in this section essentially follows the approach of [6]. See also [7, 8] for further reading.
 
17
See Sect. 3.​6.
 
Literatur
1.
Zurück zum Zitat B.A. Francis, The linear multivariable regulator problem. SIAM J. Control Optim. 14, 486–505 (1976)MathSciNet B.A. Francis, The linear multivariable regulator problem. SIAM J. Control Optim. 14, 486–505 (1976)MathSciNet
2.
Zurück zum Zitat B. Francis, O.A. Sebakhy, W.M. Wonham, Synthesis of multivariable regulators: the internal model principle. Appl. Math. Optim. 1, 64–86 (1974)MathSciNetCrossRefMATH B. Francis, O.A. Sebakhy, W.M. Wonham, Synthesis of multivariable regulators: the internal model principle. Appl. Math. Optim. 1, 64–86 (1974)MathSciNetCrossRefMATH
3.
Zurück zum Zitat E.J. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Autom. Control 21, 25–34 (1976)MathSciNetCrossRefMATH E.J. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Autom. Control 21, 25–34 (1976)MathSciNetCrossRefMATH
5.
Zurück zum Zitat A. Serrani, A. Isidori, L. Marconi, Semiglobal nonlinear output regulation with adaptive internal model. IEEE Trans. Autom. Control, AC 46, 1178–1194 (2001)MathSciNetCrossRefMATH A. Serrani, A. Isidori, L. Marconi, Semiglobal nonlinear output regulation with adaptive internal model. IEEE Trans. Autom. Control, AC 46, 1178–1194 (2001)MathSciNetCrossRefMATH
6.
Zurück zum Zitat H. Köroglu, C.W. Scherer, An LMI approach to \(H_\infty \) synthesis subject to almost asymptotic regulation constraints. Syst. Control Lett. 57, 300–308 (2008)CrossRefMATH H. Köroglu, C.W. Scherer, An LMI approach to \(H_\infty \) synthesis subject to almost asymptotic regulation constraints. Syst. Control Lett. 57, 300–308 (2008)CrossRefMATH
7.
Zurück zum Zitat J. Abedor, K. Nagpal, P.P. Khargonekar, K. Poolla, Robust regulation in the presence of norm-bounded uncertainty. IEEE Trans. Autom. Control 40, 147–153 (1995)MathSciNetCrossRefMATH J. Abedor, K. Nagpal, P.P. Khargonekar, K. Poolla, Robust regulation in the presence of norm-bounded uncertainty. IEEE Trans. Autom. Control 40, 147–153 (1995)MathSciNetCrossRefMATH
8.
Zurück zum Zitat H. Köroglu, C.W. Scherer, Scheduled control for robust attenuation of non-stationary sinusoidal disturbances with measurable frequencies. Automatica 47, 504–514 (2011)MathSciNetCrossRefMATH H. Köroglu, C.W. Scherer, Scheduled control for robust attenuation of non-stationary sinusoidal disturbances with measurable frequencies. Automatica 47, 504–514 (2011)MathSciNetCrossRefMATH
Metadaten
Titel
Regulation and Tracking in Linear Systems
verfasst von
Alberto Isidori
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-42031-8_4

Neuer Inhalt