Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

An Introduction to Geometric Semantic Genetic Programming

verfasst von : Leonardo Vanneschi

Erschienen in: NEO 2015

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For all supervised learning problems, where the quality of solutions is measured by a distance between target and output values (error), geometric semantic operators of genetic programming induce an error surface characterized by the absence of locally suboptimal solutions (unimodal error surface). So, genetic programming that uses geometric semantic operators, called geometric semantic genetic programming, has a potential advantage in terms of evolvability compared to many existing computational methods. This fosters geometric semantic genetic programming as a possible new state-of-the-art machine learning methodology. Nevertheless, research in geometric semantic genetic programming is still much in demand. This chapter is oriented to researchers and students that are not familiar with geometric semantic genetic programming, and are willing to contribute to this exciting and promising field. The main objective of this chapter is explaining why the error surface induced by geometric semantic operators is unimodal, and why this fact is important. Furthermore, the chapter stimulates the reader by showing some promising applicative results that have been obtained so far. The reader will also discover that some properties of geometric semantic operators may help limiting overfitting, bestowing on genetic programming a very interesting generalization ability. Finally, the chapter suggests further reading and discusses open issues of geometric semantic genetic programming.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
When the quality of a solution, or fitness, is equal to an error between calculated values and targets, like in the cases studied in this chapter, the terms error surface and fitness landscape are synonymous. The former term is generally used by the machine learning community, while the latter is more popular in the evolutionary computation terminology. In this chapter, these two terms will be used interchangeably.
 
2
The example in Sect. 3.4, contrarily to the previous examples, is a case of continuous optimization. Thus, it is practically impossible to find exactly the global optimum. From now on, when continuous optimization is considered, the term “solving” the problem will be used to indicate that it is possible to approximate a globally optimal solution with any prefixed precision.
 
3
In several references [49], the term ball mutation, instead of box mutation, can be found for indicating this operator. If the area of variation induced by this operator can geometrically be represented as a “box” or a “ball”, it depends on the particular metric used, as explained in [36]. In this simple example, we are considering the intuitive Euclidean distance and this is why we use the term box mutation.
 
4
The word “cono” actually means cone in several languages of Latin origin, among which Italian and Spanish.
 
5
How could it be otherwise? GP is working with a population of trees, so the genetic operators can only act on them!
 
6
Simple references to lookup table entries can be used in the implementation instead of real memory pointers (see [6, 49]). This makes the implementation possible also in programming languages that do not allow direct manipulation of memory pointers, like for instance Java or MatLab.
 
7
The term “ancestors” here is a bit abused to designate not only the parents but also the random trees used to build an individual by crossover or mutation.
 
Literatur
1.
Zurück zum Zitat Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley, New York (1989)MATH Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley, New York (1989)MATH
2.
Zurück zum Zitat Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton (2007) Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton (2007)
3.
Zurück zum Zitat Back, T., et al. (eds.): Handbook of Evolutionary Computation, 1st edn. IOP Publishing Ltd., Bristol (1997) Back, T., et al. (eds.): Handbook of Evolutionary Computation, 1st edn. IOP Publishing Ltd., Bristol (1997)
4.
Zurück zum Zitat Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L., Archetti, F., Maccagnola, D.: An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics. In: Correia, L., et al. (eds.) Progress in Artificial Intelligence. Lecture Notes in Computer Science, vol. 8154, pp. 78–89. Springer, Berlin (2013)CrossRef Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L., Archetti, F., Maccagnola, D.: An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics. In: Correia, L., et al. (eds.) Progress in Artificial Intelligence. Lecture Notes in Computer Science, vol. 8154, pp. 78–89. Springer, Berlin (2013)CrossRef
5.
Zurück zum Zitat Castelli, M., Henriques, R., Vanneschi, L.: A geometric semantic genetic programming system for the electoral redistricting problem. Neurocomputing 154, 200–207 (2015)CrossRef Castelli, M., Henriques, R., Vanneschi, L.: A geometric semantic genetic programming system for the electoral redistricting problem. Neurocomputing 154, 200–207 (2015)CrossRef
6.
Zurück zum Zitat Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic genetic programming. Genet. Program. Evol. Mach. 1–9 (2014) Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic genetic programming. Genet. Program. Evol. Mach. 1–9 (2014)
7.
Zurück zum Zitat Castelli, M., Silva, S., Vanneschi, L., Cabral, A., Vasconcelos, M., Catarino, L., Carreiras, J.: Land cover/land use multiclass classification using gp with geometric semantic operators. In: Esparcia-Alczar, A. (ed.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 7835, pp. 334–343. Springer, Berlin (2013) Castelli, M., Silva, S., Vanneschi, L., Cabral, A., Vasconcelos, M., Catarino, L., Carreiras, J.: Land cover/land use multiclass classification using gp with geometric semantic operators. In: Esparcia-Alczar, A. (ed.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 7835, pp. 334–343. Springer, Berlin (2013)
9.
Zurück zum Zitat Castelli, M., Trujillo, L., Vanneschi, L., Popovic, A.: Prediction of energy performance of residential buildings: A genetic programming approach. Energy Build. 102, 67–74 (2015)CrossRef Castelli, M., Trujillo, L., Vanneschi, L., Popovic, A.: Prediction of energy performance of residential buildings: A genetic programming approach. Energy Build. 102, 67–74 (2015)CrossRef
10.
Zurück zum Zitat Castelli, M., Trujillo, L., Vanneschi, L., Popovic, A.: Prediction of relative position of CT slices using a computational intelligence system. Appl. Soft Comput. (2015, in press) Castelli, M., Trujillo, L., Vanneschi, L., Popovic, A.: Prediction of relative position of CT slices using a computational intelligence system. Appl. Soft Comput. (2015, in press)
11.
Zurück zum Zitat Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., Z-Flores, E., Legrand, P.: Geometric semantic genetic programming with local search. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15, pp. 999–1006. ACM, New York, NY, USA (2015) Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., Z-Flores, E., Legrand, P.: Geometric semantic genetic programming with local search. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15, pp. 999–1006. ACM, New York, NY, USA (2015)
12.
Zurück zum Zitat Castelli, M., Vanneschi, L., Felice, M.D.: Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The south italy case. Energy Econ. 47, 37–41 (2015)CrossRef Castelli, M., Vanneschi, L., Felice, M.D.: Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The south italy case. Energy Econ. 47, 37–41 (2015)CrossRef
13.
Zurück zum Zitat Castelli, M., Vanneschi, L., Manzoni, L., Popovic, A.: Semantic genetic programming for fast and accurate data knowledge discovery. Swarm Evol. Comput. (2015, in press) Castelli, M., Vanneschi, L., Manzoni, L., Popovic, A.: Semantic genetic programming for fast and accurate data knowledge discovery. Swarm Evol. Comput. (2015, in press)
14.
Zurück zum Zitat Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators. Expert Syst. Appl. 40(17), 6856–6862 (2013)CrossRef Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators. Expert Syst. Appl. 40(17), 6856–6862 (2013)CrossRef
15.
Zurück zum Zitat Castelli, M., Vanneschi, L., Silva, S.: Prediction of the unified parkinson’s disease rating scale assessment using a genetic programming system with geometric semantic genetic operators. Expert Syst. Appl. 41(10), 4608–4616 (2014)CrossRef Castelli, M., Vanneschi, L., Silva, S.: Prediction of the unified parkinson’s disease rating scale assessment using a genetic programming system with geometric semantic genetic operators. Expert Syst. Appl. 41(10), 4608–4616 (2014)CrossRef
16.
Zurück zum Zitat Darwin, C.: On the Origin of Species by Means of Natural Selection. Murray, London (1859) or the Preservation of Favored Races in the Struggle for Life Darwin, C.: On the Origin of Species by Means of Natural Selection. Murray, London (1859) or the Preservation of Favored Races in the Struggle for Life
17.
Zurück zum Zitat Dick, G.: Improving geometric semantic genetic programming with safe tree initialisation. In: Machado, P., et al. (eds.) 18th European Conference on Genetic Programming. LNCS, vol. 9025, pp. 28–40. Springer, Copenhagen, 8–10 April 2015 Dick, G.: Improving geometric semantic genetic programming with safe tree initialisation. In: Machado, P., et al. (eds.) 18th European Conference on Genetic Programming. LNCS, vol. 9025, pp. 28–40. Springer, Copenhagen, 8–10 April 2015
18.
Zurück zum Zitat Fan, W., Bifet, A.: Mining big data: current status, and forecast to the future. SIGKDD Explor. Newsl. 14(2), 1–5 (2013)CrossRef Fan, W., Bifet, A.: Mining big data: current status, and forecast to the future. SIGKDD Explor. Newsl. 14(2), 1–5 (2013)CrossRef
19.
Zurück zum Zitat Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATH Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATH
20.
Zurück zum Zitat Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)MATH Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)MATH
21.
Zurück zum Zitat Hoffmann, L.: Multivariate Isotonic Regression and Its Algorithms. Wichita State University, College of Liberal Arts and Sciences, Department of Mathematics and Statistics (2009) Hoffmann, L.: Multivariate Isotonic Regression and Its Algorithms. Wichita State University, College of Liberal Arts and Sciences, Department of Mathematics and Statistics (2009)
22.
Zurück zum Zitat Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Genetic Programming, Proceedings of EuroGP’2003. LNCS, vol. 2610, pp. 70–82. Springer (2003) Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Genetic Programming, Proceedings of EuroGP’2003. LNCS, vol. 2610, pp. 70–82. Springer (2003)
23.
Zurück zum Zitat Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco (2001) Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco (2001)
24.
25.
Zurück zum Zitat Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATH Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATH
26.
Zurück zum Zitat Krawiec, K.: Behavioral Program Synthesis with Genetic Programming. Studies in Computational Intelligence, vol. 618. Springer, Berlin (2016) Krawiec, K.: Behavioral Program Synthesis with Genetic Programming. Studies in Computational Intelligence, vol. 618. Springer, Berlin (2016)
27.
28.
Zurück zum Zitat Mambrini, A., Manzoni, L., Moraglio, A.: Theory-laden design of mutation-based geometric semantic genetic programming for learning classification trees. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 416–423 (2013) Mambrini, A., Manzoni, L., Moraglio, A.: Theory-laden design of mutation-based geometric semantic genetic programming for learning classification trees. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 416–423 (2013)
29.
Zurück zum Zitat Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)MATH Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)MATH
30.
Zurück zum Zitat Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. Ph.D. thesis, Department of Computer Science, University of Essex, UK (2007) Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. Ph.D. thesis, Department of Computer Science, University of Essex, UK (2007)
31.
Zurück zum Zitat Moraglio, A.: An efficient implementation of GSGP using higher-order functions and memoization. In: Johnson, C., et al. (eds.) Semantic Methods in Genetic Programming, Ljubljana, Slovenia, 13 Sept. 2014. Workshop at Parallel Problem Solving from Nature 2014 conference (2014) Moraglio, A.: An efficient implementation of GSGP using higher-order functions and memoization. In: Johnson, C., et al. (eds.) Semantic Methods in Genetic Programming, Ljubljana, Slovenia, 13 Sept. 2014. Workshop at Parallel Problem Solving from Nature 2014 conference (2014)
32.
Zurück zum Zitat Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Parallel Problem Solving from Nature, PPSN XII (part 1). Lecture Notes in Computer Science, vol. 7491, pp. 21–31. Springer (2012) Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Parallel Problem Solving from Nature, PPSN XII (part 1). Lecture Notes in Computer Science, vol. 7491, pp. 21–31. Springer (2012)
33.
Zurück zum Zitat Moraglio, A., Mambrini, A.: Runtime analysis of mutation-based geometric semantic genetic programming for basis functions regression. In: Blum, C., et al. (eds.) Proceedings of the 15th annual international conference on Genetic and Evolutionary Computation. GECCO ’13, pp. 989–996. ACM, New York, NY, USA (2013) Moraglio, A., Mambrini, A.: Runtime analysis of mutation-based geometric semantic genetic programming for basis functions regression. In: Blum, C., et al. (eds.) Proceedings of the 15th annual international conference on Genetic and Evolutionary Computation. GECCO ’13, pp. 989–996. ACM, New York, NY, USA (2013)
34.
Zurück zum Zitat Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-based geometric semantic genetic programming on boolean functions. In: Neumann, F., De Jong, K. (eds.) Foundations of Genetic Algorithms, pp. 119–132. ACM, Adelaide, Australia, 16–20 January 2013 Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-based geometric semantic genetic programming on boolean functions. In: Neumann, F., De Jong, K. (eds.) Foundations of Genetic Algorithms, pp. 119–132. ACM, Adelaide, Australia, 16–20 January 2013
35.
Zurück zum Zitat Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. World Scientific, Singapore (2006)MATH Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. World Scientific, Singapore (2006)MATH
36.
Zurück zum Zitat Pawlak, T.P., Krawiec, K.: Progress properties and fitness bounds for geometric semantic search operators. Genetic Programming and Evolvable Machines (Online first) Pawlak, T.P., Krawiec, K.: Progress properties and fitness bounds for geometric semantic search operators. Genetic Programming and Evolvable Machines (Online first)
37.
Zurück zum Zitat Pawlak, T.P., Krawiec, K.: Guarantees of progress for geometric semantic genetic programming. In: Johnson, C., et al. (eds.) Semantic Methods in Genetic Programming, Ljubljana, Slovenia, 13 Sept. 2014. Workshop at Parallel Problem Solving from Nature 2014 conference (2014) Pawlak, T.P., Krawiec, K.: Guarantees of progress for geometric semantic genetic programming. In: Johnson, C., et al. (eds.) Semantic Methods in Genetic Programming, Ljubljana, Slovenia, 13 Sept. 2014. Workshop at Parallel Problem Solving from Nature 2014 conference (2014)
38.
Zurück zum Zitat Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Progr. Evol. Mach. 16(3), 351–386 (2015)CrossRef Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Progr. Evol. Mach. 16(3), 351–386 (2015)CrossRef
39.
Zurück zum Zitat Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing search operators in genetic programming. IEEE Trans. Evol. Comput. 19(3), 326–340 (2015)CrossRef Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing search operators in genetic programming. IEEE Trans. Evol. Comput. 19(3), 326–340 (2015)CrossRef
40.
Zurück zum Zitat Poli, R., Langdon, W.B., Mcphee, N.F.: A field guide to genetic programming (2008) Poli, R., Langdon, W.B., Mcphee, N.F.: A field guide to genetic programming (2008)
41.
Zurück zum Zitat Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application of Fitness Landscapes. Emergence. Complexity and Computation, vol. 6. Springer, Berlin (2014) Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application of Fitness Landscapes. Emergence. Complexity and Computation, vol. 6. Springer, Berlin (2014)
42.
Zurück zum Zitat Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive computation and machine learning. MIT Press (2002) Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive computation and machine learning. MIT Press (2002)
43.
Zurück zum Zitat Seber, G., Wild, C.: Nonlinear Regression. Wiley Series in Probability and Statistics. Wiley (2003) Seber, G., Wild, C.: Nonlinear Regression. Wiley Series in Probability and Statistics. Wiley (2003)
44.
Zurück zum Zitat Silva, S., Ingalalli, V., Vinga, S., Carreiras, J., Melo, J., Castelli, M., Vanneschi, L., Gonalves, I., Caldas, J.: Prediction of forest aboveground biomass: An exercise on avoiding overfitting. In: Esparcia-Alczar, A. (ed.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 7835, pp. 407–417. Springer, Berlin Heidelberg (2013) Silva, S., Ingalalli, V., Vinga, S., Carreiras, J., Melo, J., Castelli, M., Vanneschi, L., Gonalves, I., Caldas, J.: Prediction of forest aboveground biomass: An exercise on avoiding overfitting. In: Esparcia-Alczar, A. (ed.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 7835, pp. 407–417. Springer, Berlin Heidelberg (2013)
45.
Zurück zum Zitat Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evol. Comput. 13(2), 213–239 (2005)CrossRefMATH Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evol. Comput. 13(2), 213–239 (2005)CrossRefMATH
46.
Zurück zum Zitat Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland (2004) Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland (2004)
47.
Zurück zum Zitat Vanneschi, L.: Improving genetic programming for the prediction of pharmacokinetic parameters. Memet. Comput. 6(4), 255–262 (2014)CrossRef Vanneschi, L.: Improving genetic programming for the prediction of pharmacokinetic parameters. Memet. Comput. 6(4), 255–262 (2014)CrossRef
48.
Zurück zum Zitat Vanneschi, L., Castelli, M., Costa, E., Re, A., Vaz, H., Lobo, V., Urbano, P.: Improving maritime awareness with semantic genetic programming and linear scaling: prediction of vessels position based on ais data. In: Mora, A.M., Squillero, G. (eds.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 9028, pp. 732–744. Springer International Publishing (2015) Vanneschi, L., Castelli, M., Costa, E., Re, A., Vaz, H., Lobo, V., Urbano, P.: Improving maritime awareness with semantic genetic programming and linear scaling: prediction of vessels position based on ais data. In: Mora, A.M., Squillero, G. (eds.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 9028, pp. 732–744. Springer International Publishing (2015)
49.
Zurück zum Zitat Vanneschi, L., Castelli, M. Manzoni, L., Silva, S.: A new implementation of geometric semantic GP and its application to problems in pharmacokinetics. In: Proceedings of the 16th European Conference on Genetic Programming, EuroGP 2013. LNCS, vol. 7831, pp. 205–216. Springer, Vienna, Austria, 3–5 April 2013 Vanneschi, L., Castelli, M. Manzoni, L., Silva, S.: A new implementation of geometric semantic GP and its application to problems in pharmacokinetics. In: Proceedings of the 16th European Conference on Genetic Programming, EuroGP 2013. LNCS, vol. 7831, pp. 205–216. Springer, Vienna, Austria, 3–5 April 2013
50.
Zurück zum Zitat Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Progr. Evol. Mach. 15(2), 195–214 (2014)CrossRef Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Progr. Evol. Mach. 15(2), 195–214 (2014)CrossRef
51.
Zurück zum Zitat Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming for real life applications. In: Riolo, R., et al. (eds.) Genetic Programming Theory and Practice XI, Genetic and Evolutionary Computation. Springer US, Computer Science Collection, 2013. Invited article (2013, to appear) Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming for real life applications. In: Riolo, R., et al. (eds.) Genetic Programming Theory and Practice XI, Genetic and Evolutionary Computation. Springer US, Computer Science Collection, 2013. Invited article (2013, to appear)
52.
Zurück zum Zitat Weisberg, S.: Applied Linear Regression. Wiley, Wiley Series in Prob. and Stat (2005)CrossRefMATH Weisberg, S.: Applied Linear Regression. Wiley, Wiley Series in Prob. and Stat (2005)CrossRefMATH
53.
Zurück zum Zitat Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D.F. (ed.) Proceedings on the Sixth International Congress on Genetics, vol. 1, pp. 356–366 (1932) Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D.F. (ed.) Proceedings on the Sixth International Congress on Genetics, vol. 1, pp. 356–366 (1932)
Metadaten
Titel
An Introduction to Geometric Semantic Genetic Programming
verfasst von
Leonardo Vanneschi
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-44003-3_1

Premium Partner