Skip to main content

2017 | OriginalPaper | Buchkapitel

3. Numerical Simulation of Incompressible Flows

verfasst von : Takeo Kajishima, Kunihiko Taira

Erschienen in: Computational Fluid Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For compressible and incompressible flows, there is a difference in how the numerical solution techniques are formulated, based on whether or not the mass conservation equation includes a time-derivative term. Fluid motion is described by the conser4 vation equations for mass, momentum, and energy. For incompressible flow, the 5 conservation equation for kinetic energy can be derived from the momentum conser6 vation equation. Hence, we only need to be concerned with the mass and momentum 7 conservation equations. Furthermore, if the temperature field is not a variable of 8 interest, we do not need to consider the internal energy in the formulation. We do 9 note that the treatment of momentum conservation should be consistent with the 10 conservation of kinetic energy in a discrete manner, as it influences the achievement 11 of reliable solution and numerical stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The variable P can be regarded as a Lagrange multiplier that is needed to enforce the incompressibility constraint [5, 24].
 
2
Numerically solving stiff differential equations requires excessively small time steps due to the disparity in the magnitude of the characteristic eigenvalues [17, 19]. In the case of low-Mach-number flow, the time step necessary to satisfy the CFL condition with the acoustic speed c is much smaller than that with the advective speed u, leading to the requirement of very small time steps to be used for time integration.
 
3
We make a distinction between the regular and collocated grids. The regular grid places all variables at the same location. On the other hand, the collocated grid places the fluxes between where u, v, and p are positioned. For further details, see Sect. 4.​4.
 
4
Let us consider an interval of \(-1 \le x \le 1\), discretized nonuniformly into N cells with velocity defined on
$$\begin{aligned} x_j^u = - \cos \frac{\pi (j-1/2)}{N}, \quad j = \frac{1}{2}, \frac{3}{2}, \dots , N+\frac{1}{2}. \end{aligned}$$
In this case, there are two ways to place the pressure variables [22]. One way is to use the midpoints of where the velocity variables are positioned
$$\begin{aligned} x_j^p = \frac{1}{2} (x^u_{j-\frac{1}{2}} + x^u_{j+\frac{1}{2}}), \quad j = 1,2,\dots ,N. \end{aligned}$$
In this case, the distance between discrete pressure \(\tilde{\Delta }_{j+\frac{1}{2}}\) is described in the text above. On the other hand, one can use
$$\begin{aligned} x_j^p = - \cos \frac{\pi (j-1/2)}{N}, \quad j = 1,2,\dots , N \end{aligned}$$
as a mapping function. This approach allows for a smooth distribution of
$$\begin{aligned} \widetilde{\Delta }_{j+\frac{1}{2}} = - x_j^p + x_{j+1}^p \end{aligned}$$
but such grid distribution based on a functional description is limited to spacial cases and is not common.
 
5
Grid stretching can be incorporated for certain cases. See Cain et al. [2] for details.
 
6
The term upwind is commonly used. However, the use of the term upstream may be more appropriate so that applications are not limited to air.
 
7
As in cases where fine grids are required near wall boundaries (e.g., near-wall turbulence).
 
8
Here, we have not specified a pressure boundary condition for p but utilized the zero-gradient boundary condition for \(\phi \). To determine the divergence-free (solenoidal) velocity field, the pressure boundary condition for p is not needed.
 
9
for three-dimensional flows, s is the discrete streamfunction vector (or vector potential); also see [3].
 
Literatur
1.
Zurück zum Zitat Amsden, A.A., Harlow, F.H.: A simplified MAC technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322–325 (1970)CrossRefMATH Amsden, A.A., Harlow, F.H.: A simplified MAC technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322–325 (1970)CrossRefMATH
2.
Zurück zum Zitat Cain, A.B., Ferziger, J.H., Reynolds, W.C.: Discrete orthogonal function expansions for non-uniform grids using the fast Fourier transform. J. Comput. Phys. 56, 272–286 (1984)MathSciNetCrossRefMATH Cain, A.B., Ferziger, J.H., Reynolds, W.C.: Discrete orthogonal function expansions for non-uniform grids using the fast Fourier transform. J. Comput. Phys. 56, 272–286 (1984)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Chang, W., Giraldo, F., Perot, B.: Analysis of an exact fractional step method. J. Comput. Phys. 180, 183–199 (2002)CrossRefMATH Chang, W., Giraldo, F., Perot, B.: Analysis of an exact fractional step method. J. Comput. Phys. 180, 183–199 (2002)CrossRefMATH
5.
Zurück zum Zitat Doering, C.R., Gibbon, J.D.: Applied Analysis of the Navier-Stokes Equations. Cambridge Univ. Press (1995) Doering, C.R., Gibbon, J.D.: Applied Analysis of the Navier-Stokes Equations. Cambridge Univ. Press (1995)
6.
Zurück zum Zitat Dukowicz, J.K., Dvinsky, A.S.: Approximate factorization as a high order splitting for the implicit incompressible flow equations. J. Comput. Phys. 102(2), 336–347 (1992)MathSciNetCrossRefMATH Dukowicz, J.K., Dvinsky, A.S.: Approximate factorization as a high order splitting for the implicit incompressible flow equations. J. Comput. Phys. 102(2), 336–347 (1992)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. Johns Hopkins Univ. Press (1996) Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. Johns Hopkins Univ. Press (1996)
8.
Zurück zum Zitat Gresho, P.M.: Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech. 23, 413–453 (1991)MathSciNetCrossRefMATH Gresho, P.M.: Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech. 23, 413–453 (1991)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Gresho, P.M.: Some current CFD issures related to the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 87, 201–252 (1991)MathSciNetCrossRefMATH Gresho, P.M.: Some current CFD issures related to the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 87, 201–252 (1991)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressibel flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)CrossRefMATH Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressibel flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)CrossRefMATH
11.
Zurück zum Zitat Hirt, C.W., Cook, J.L.: Calculating three-dimensional flows around structures and over rough terrain. J. Comput. Phys. 10(2), 324–340 (1972)MathSciNetCrossRefMATH Hirt, C.W., Cook, J.L.: Calculating three-dimensional flows around structures and over rough terrain. J. Comput. Phys. 10(2), 324–340 (1972)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Kajishima, T.: Conservation properties of finite difference method for convection. Trans. Japan Soc. Mech. Eng. B 60(574), 2058–2063 (1994)CrossRef Kajishima, T.: Conservation properties of finite difference method for convection. Trans. Japan Soc. Mech. Eng. B 60(574), 2058–2063 (1994)CrossRef
13.
Zurück zum Zitat Kajishima, T.: Upstream-shifted interpolation method for numerical simulation of incompressible flows. Trans. Japan Soc. Mech. Eng. B 60(578), 3319–3326 (1994)CrossRef Kajishima, T.: Upstream-shifted interpolation method for numerical simulation of incompressible flows. Trans. Japan Soc. Mech. Eng. B 60(578), 3319–3326 (1994)CrossRef
14.
Zurück zum Zitat Kajishima, T.: Finite-difference method for convective terms using non-uniform grid. Trans. Japan Soc. Mech. Eng. B 65(633), 1607–1612 (1999)CrossRef Kajishima, T.: Finite-difference method for convective terms using non-uniform grid. Trans. Japan Soc. Mech. Eng. B 65(633), 1607–1612 (1999)CrossRef
15.
Zurück zum Zitat Kawamura, T., Kuwahara, K.: Computation of high Reynolds number flow around circular cylinder with surface roughness. AIAA Paper 84-0340 (1984) Kawamura, T., Kuwahara, K.: Computation of high Reynolds number flow around circular cylinder with surface roughness. AIAA Paper 84-0340 (1984)
16.
Zurück zum Zitat Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)MathSciNetCrossRefMATH Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, London (1973) Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, London (1973)
18.
Zurück zum Zitat Leonard, B.P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19(1), 59–98 (1979)CrossRefMATH Leonard, B.P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19(1), 59–98 (1979)CrossRefMATH
19.
Zurück zum Zitat LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM (2007) LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM (2007)
20.
Zurück zum Zitat Miyauchi, T., Tanahashi, M., Suzuki, M.: Inflow and outflow boundary conditions for direct numerical simulations. JSME Int. J. B 39(2), 305–314 (1996)CrossRef Miyauchi, T., Tanahashi, M., Suzuki, M.: Inflow and outflow boundary conditions for direct numerical simulations. JSME Int. J. B 39(2), 305–314 (1996)CrossRef
21.
Zurück zum Zitat Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90–124 (1998)MathSciNetCrossRefMATH Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90–124 (1998)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Patankar, S.: Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington (1980) Patankar, S.: Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington (1980)
23.
Zurück zum Zitat Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Trans. 15(10), 1787–1806 (1972)CrossRefMATH Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Trans. 15(10), 1787–1806 (1972)CrossRefMATH
25.
Zurück zum Zitat Piacsek, S.A., Williams, G.P.: Conservation properties of convection difference schemes. J. Comput. Phys. 6(3), 392–405 (1970)CrossRefMATH Piacsek, S.A., Williams, G.P.: Conservation properties of convection difference schemes. J. Comput. Phys. 6(3), 392–405 (1970)CrossRefMATH
26.
Zurück zum Zitat Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Springer (2006) Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Springer (2006)
27.
Zurück zum Zitat Rai, M.M., Moin, P.: Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys. 91(1), 15–53 (1991)MATH Rai, M.M., Moin, P.: Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys. 91(1), 15–53 (1991)MATH
28.
Zurück zum Zitat Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM (2003) Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM (2003)
29.
Zurück zum Zitat Schlichting, H.: Boundary-Layer Theory. McGraw-Hill (1979) Schlichting, H.: Boundary-Layer Theory. McGraw-Hill (1979)
30.
Zurück zum Zitat Tamura, A., Kikuchi, K., Takahashi, T.: Residual cutting method for elliptic boundary value problems: application to Poisson’s equation. J. Comput. Phys. 137, 247–264 (1997)MathSciNetCrossRefMATH Tamura, A., Kikuchi, K., Takahashi, T.: Residual cutting method for elliptic boundary value problems: application to Poisson’s equation. J. Comput. Phys. 137, 247–264 (1997)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Tomiyama, A., Hirano, M.: An improvement of the computational efficiency of the SOLA method. JSME Int. J. B 37(4), 821–826 (1994)CrossRef Tomiyama, A., Hirano, M.: An improvement of the computational efficiency of the SOLA method. JSME Int. J. B 37(4), 821–826 (1994)CrossRef
32.
Zurück zum Zitat van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant Bi-CG for the solution of nonsymmetric linear systems. SIAM. J. Sci. Stat. Comput. 13(2), 631–644 (1992)MathSciNetCrossRefMATH van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant Bi-CG for the solution of nonsymmetric linear systems. SIAM. J. Sci. Stat. Comput. 13(2), 631–644 (1992)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Yoshida, T., Watanabe, T., Nakamura, I.: Numerical study of outflow boundary conditions for time-dependent incompressible flows. Trans. Japan Soc. Mech. Eng. B 61(588), 123–131 (1995)CrossRef Yoshida, T., Watanabe, T., Nakamura, I.: Numerical study of outflow boundary conditions for time-dependent incompressible flows. Trans. Japan Soc. Mech. Eng. B 61(588), 123–131 (1995)CrossRef
Metadaten
Titel
Numerical Simulation of Incompressible Flows
verfasst von
Takeo Kajishima
Kunihiko Taira
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-45304-0_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.