Skip to main content

2016 | OriginalPaper | Buchkapitel

Modularity Reinforcement for Improving Brain Subnetwork Extraction

verfasst von : Chendi Wang, Bernard Ng, Rafeef Abugharbieh

Erschienen in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Functional subnetwork extraction is commonly employed to study the brain’s modular structure. However, reliable extraction from functional magnetic resonance imaging (fMRI) data remains challenging. As representations of brain networks, brain graph estimates are typically noisy due to the pronounced noise in fMRI data. Also, confounds, such as region size bias, motion artifacts, and signal dropout, introduce region-specific bias in connectivity, e.g. a node in a signal dropout area tends to display lower connectivity. The traditional approach of global thresholding might thus remove relevant edges that have low connectivity due to confounds, resulting in erroneous subnetwork extraction. In this paper, we present a modularity reinforcement strategy that deals with the above two challenges. Specifically, we propose a local thresholding scheme that accounts for region-specific connectivity bias when pruning noisy edges. From the resulting thresholded graph, we derive a node similarity measure by comparing the adjacency structure of each node, i.e. its connection fingerprint, with that of other nodes. Drawing on the intuition that nodes belonging to the same subnetwork should have similar connection fingerprints, we refine the brain graph with this similarity measure to reinforce its modularity structure. On synthetic data, our strategy achieves higher accuracy in subnetwork extraction compared to using standard brain graph estimates. On real data, subnetworks extracted with our strategy attain higher overlaps with well-established brain systems and higher subnetwork reproducibility across a range of graph densities. Our results thus demonstrate that modularity reinforcement with our strategy provides a clear gain in subnetwork extraction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fornito, A., Zalesky, A., Breakspear, M.: Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013)CrossRef Fornito, A., Zalesky, A., Breakspear, M.: Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013)CrossRef
2.
Zurück zum Zitat Achard, S., Coeurjolly, J.F., Marcillaud, R., Richiardi, J.: fMRI functional connectivity estimators robust to region size bias. In: Statistical Signal Processing Workshop, pp. 813–816. IEEE (2011) Achard, S., Coeurjolly, J.F., Marcillaud, R., Richiardi, J.: fMRI functional connectivity estimators robust to region size bias. In: Statistical Signal Processing Workshop, pp. 813–816. IEEE (2011)
3.
Zurück zum Zitat Spisák, T., Jakab, A., Kis, S.A., Opposits, G., Aranyi, C., Berényi, E., Emri, M.: Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state fMRI. PLoS ONE 9(9), e104947 (2014)CrossRef Spisák, T., Jakab, A., Kis, S.A., Opposits, G., Aranyi, C., Berényi, E., Emri, M.: Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state fMRI. PLoS ONE 9(9), e104947 (2014)CrossRef
4.
Zurück zum Zitat Weiskopf, N., Hutton, C., Josephs, O., Turner, R., Deichmann, R.: Optimized EPI for fMRI studies of the orbitofrontal cortex: compensation of susceptibility-induced gradients in the readout direction. Magn. Reson. Mater. Phys. Biol. Med. 20(1), 39–49 (2007)CrossRef Weiskopf, N., Hutton, C., Josephs, O., Turner, R., Deichmann, R.: Optimized EPI for fMRI studies of the orbitofrontal cortex: compensation of susceptibility-induced gradients in the readout direction. Magn. Reson. Mater. Phys. Biol. Med. 20(1), 39–49 (2007)CrossRef
5.
Zurück zum Zitat Alexander-Bloch, A.F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., Lenroot, R., Giedd, J., Bullmore, E.T.: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front. Syst. Neurosci. 4, 147 (2010)CrossRef Alexander-Bloch, A.F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., Lenroot, R., Giedd, J., Bullmore, E.T.: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front. Syst. Neurosci. 4, 147 (2010)CrossRef
6.
Zurück zum Zitat Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmonic Anal. 30(2), 129–150 (2011)MathSciNetCrossRefMATH Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmonic Anal. 30(2), 129–150 (2011)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Niu, J., Fan, J., Stojmenovic, I.: JLMC: a clustering method based on Jordan-Form of Laplacian-Matrix. In: Performance Computing and Communications Conference, pp. 1–8. IEEE (2014) Niu, J., Fan, J., Stojmenovic, I.: JLMC: a clustering method based on Jordan-Form of Laplacian-Matrix. In: Performance Computing and Communications Conference, pp. 1–8. IEEE (2014)
9.
Zurück zum Zitat Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Nat. Acad. Sci. 104(1), 36–41 (2007)CrossRef Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Nat. Acad. Sci. 104(1), 36–41 (2007)CrossRef
10.
Zurück zum Zitat Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)CrossRef Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)CrossRef
11.
Zurück zum Zitat Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)CrossRef Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)CrossRef
12.
Zurück zum Zitat Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1), 90–101 (2007)CrossRef Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1), 90–101 (2007)CrossRef
13.
Zurück zum Zitat Shirer, W., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22(1), 158–165 (2012)CrossRef Shirer, W., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22(1), 158–165 (2012)CrossRef
14.
Zurück zum Zitat Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)CrossRef Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)CrossRef
15.
Zurück zum Zitat Skudlarski, P., Jagannathan, K., Calhoun, V.D., Hampson, M., Skudlarska, B.A., Pearlson, G.: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43(3), 554–561 (2008)CrossRef Skudlarski, P., Jagannathan, K., Calhoun, V.D., Hampson, M., Skudlarska, B.A., Pearlson, G.: Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43(3), 554–561 (2008)CrossRef
16.
Metadaten
Titel
Modularity Reinforcement for Improving Brain Subnetwork Extraction
verfasst von
Chendi Wang
Bernard Ng
Rafeef Abugharbieh
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-46720-7_16