Skip to main content

2016 | OriginalPaper | Buchkapitel

Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks and Structured Optimization in CT Images

verfasst von : Isabella Nogues, Le Lu, Xiaosong Wang, Holger Roth, Gedas Bertasius, Nathan Lay, Jianbo Shi, Yohannes Tsehay, Ronald M. Summers

Erschienen in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lymph node segmentation is an important yet challenging problem in medical image analysis. The presence of enlarged lymph nodes (LNs) signals the onset or progression of a malignant disease or infection. In the thoracoabdominal (TA) body region, neighboring enlarged LNs often spatially collapse into “swollen” lymph node clusters (LNCs) (up to 9 LNs in our dataset). Accurate segmentation of TA LNCs is complexified by the noticeably poor intensity and texture contrast among neighboring LNs and surrounding tissues, and has not been addressed in previous work. This paper presents a novel approach to TA LNC segmentation that combines holistically-nested neural networks (HNNs) and structured optimization (SO). Two HNNs, built upon recent fully convolutional networks (FCNs) and deeply supervised networks (DSNs), are trained to learn the LNC appearance (HNN-A) or contour (HNN-C) probabilistic output maps, respectively. HNN first produces the class label maps with the same resolution as the input image, like FCN. Afterwards, HNN predictions for LNC appearance and contour cues are formulated into the unary and pairwise terms of conditional random fields (CRFs), which are subsequently solved using one of three different SO methods: dense CRF, graph cuts, and boundary neural fields (BNF). BNF yields the highest quantitative results. Its mean Dice coefficient between segmented and ground truth LN volumes is 82.1 % ± 9.6 %, compared to 73.0 % ± 17.6 % for HNN-A alone. The LNC relative volume (\(cm^3\)) difference is 13.7 % ± 13.1 %, a promising result for the development of LN imaging biomarkers based on volumetric measurements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barbu, A., Suehling, M., Xu, X., Liu, D., Zhou, S.K., Comaniciu, D.: Automatic detection and segmentation of lymph nodes from CT data. IEEE Trans. Med. Imaging (2012) Barbu, A., Suehling, M., Xu, X., Liu, D., Zhou, S.K., Comaniciu, D.: Automatic detection and segmentation of lymph nodes from CT data. IEEE Trans. Med. Imaging (2012)
2.
Zurück zum Zitat Bertasius, G., Shi, J., Torresani, L.: Semantic segmentation with boundary neural fields. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) Bertasius, G., Shi, J., Torresani, L.: Semantic segmentation with boundary neural fields. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
3.
Zurück zum Zitat Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. IJCV (2006) Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. IJCV (2006)
4.
Zurück zum Zitat Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pat. Ana. Mach. Intel. (2004) Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pat. Ana. Mach. Intel. (2004)
5.
Zurück zum Zitat Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015) Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)
6.
Zurück zum Zitat Dornheim, J., Seim, H., Preim, B., Hertel, I., Strauss, G.: Segmentation of neck lymph nodes in CT datasets with stable 3D mass-spring models. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 904–911. Springer, Heidelberg (2006). doi:10.1007/11866763_111 CrossRef Dornheim, J., Seim, H., Preim, B., Hertel, I., Strauss, G.: Segmentation of neck lymph nodes in CT datasets with stable 3D mass-spring models. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 904–911. Springer, Heidelberg (2006). doi:10.​1007/​11866763_​111 CrossRef
7.
Zurück zum Zitat Feulnera, J., Zhou, S., Hammond, M., Horneggera, J., Comaniciu, D.: Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior. In: Medical Image Analysis, pp. 254–270 (2013) Feulnera, J., Zhou, S., Hammond, M., Horneggera, J., Comaniciu, D.: Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior. In: Medical Image Analysis, pp. 254–270 (2013)
9.
Zurück zum Zitat Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS (2012) Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS (2012)
10.
Zurück zum Zitat Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS (2015) Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS (2015)
11.
Zurück zum Zitat Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE CVPR, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE CVPR, pp. 3431–3440 (2015)
12.
Zurück zum Zitat Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pat. Ana. Mach. Intel. (2004) Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pat. Ana. Mach. Intel. (2004)
13.
Zurück zum Zitat Roth, H., Lu, L., Farag, A., Sohn, A., Summers, R.: Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Ourselin, S., Wells, W.M., Joskowicz, L., Sabuncu, M., Unal, G. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 451–459. Springer, Heidelberg (2016) Roth, H., Lu, L., Farag, A., Sohn, A., Summers, R.: Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Ourselin, S., Wells, W.M., Joskowicz, L., Sabuncu, M., Unal, G. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 451–459. Springer, Heidelberg (2016)
14.
Zurück zum Zitat Schwartz, L., Bogaerts, J., Ford, R., Shankar, L., Therasse, P., Gwyther, S., Eisenhauer, E.: Evaluation of lymph nodes with recist 1.1. Euro. J. Cancer 45(2), 261–267 (2009)CrossRef Schwartz, L., Bogaerts, J., Ford, R., Shankar, L., Therasse, P., Gwyther, S., Eisenhauer, E.: Evaluation of lymph nodes with recist 1.1. Euro. J. Cancer 45(2), 261–267 (2009)CrossRef
15.
Zurück zum Zitat Seff, A., Lu, L., Barbu, A., Roth, H., Shin, H.-C., Summers, R.M.: Leveraging mid-level semantic boundary cues for automated lymph node detection. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 53–61. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24571-3_7 CrossRef Seff, A., Lu, L., Barbu, A., Roth, H., Shin, H.-C., Summers, R.M.: Leveraging mid-level semantic boundary cues for automated lymph node detection. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 53–61. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-24571-3_​7 CrossRef
16.
Zurück zum Zitat Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2014)
17.
Zurück zum Zitat Stapleford, L., Lawson, J., et al.: Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer. Int. J. Rad. Onc. Bio. Phys. (2010) Stapleford, L., Lawson, J., et al.: Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer. Int. J. Rad. Onc. Bio. Phys. (2010)
18.
Zurück zum Zitat Xie, S., Tu, Z.: Holistically-nested edge detection. In: IEEE ICCV, pp. 1395–1403 (2015) Xie, S., Tu, Z.: Holistically-nested edge detection. In: IEEE ICCV, pp. 1395–1403 (2015)
Metadaten
Titel
Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks and Structured Optimization in CT Images
verfasst von
Isabella Nogues
Le Lu
Xiaosong Wang
Holger Roth
Gedas Bertasius
Nathan Lay
Jianbo Shi
Yohannes Tsehay
Ronald M. Summers
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-46723-8_45

Premium Partner