Skip to main content

2017 | OriginalPaper | Buchkapitel

10. Energy Harvesting Smart Textiles

verfasst von : Derman Vatansever Bayramol, Navneet Soin, Tahir Shah, Elias Siores, Dimitroula Matsouka, Savvas Vassiliadis

Erschienen in: Smart Textiles

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ever-increasing population of the world is putting a significant demand on the need for multifunctional electronic devices and electricity to power them. This growing demand has led to an enhanced focus on the development of energy harvesting techniques based on renewable and ambient sources. Although materials having unique properties such as photovoltaic, piezoelectric and triboelectric have been known for a long time and have been utilized usually in the form of thin-film structures, their utilization in the form of textile structures for energy harvesting is a relatively new area of research. This chapter will focus on the recent advances in the area of photovoltaic, piezoelectric and triboelectric energy-generating textile structures and the fundamentals of these unique properties, production methods and textile-based energy storage. Finally, expected future trends in the fabrication and application of textile-based energy harvesting and storage will be discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Warner, S.B.: Fiber Science. Prentice Hall Englewood Cliffs, New Jersey (1995) Warner, S.B.: Fiber Science. Prentice Hall Englewood Cliffs, New Jersey (1995)
2.
Zurück zum Zitat Singh, M.K.: Flexible Photovoltaic Textiles for Smart Applications. INTECH Open Access Publisher, Rijeka (2011) Singh, M.K.: Flexible Photovoltaic Textiles for Smart Applications. INTECH Open Access Publisher, Rijeka (2011)
3.
Zurück zum Zitat Reuter, M., Brendle, W., Tobail, O., Werner, J.H.: 50\(\upmu \)m thin solar cells with 17.0% efficiency. Sol. Energy Mater. Sol. Cells 93(6), 704–706 (2009)CrossRef Reuter, M., Brendle, W., Tobail, O., Werner, J.H.: 50\(\upmu \)m thin solar cells with 17.0% efficiency. Sol. Energy Mater. Sol. Cells 93(6), 704–706 (2009)CrossRef
4.
Zurück zum Zitat Wang, A., Zhao, J., Wenham, S., Green, M.: 21.5% efficient thin silicon solar cell. Prog. Photovoltaics Res. Appl. 4(1), 55–58 (1996)CrossRef Wang, A., Zhao, J., Wenham, S., Green, M.: 21.5% efficient thin silicon solar cell. Prog. Photovoltaics Res. Appl. 4(1), 55–58 (1996)CrossRef
5.
Zurück zum Zitat Chopra, K., Paulson, P., Dutta, V.: Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12(2–3), 69–92 (2004)CrossRef Chopra, K., Paulson, P., Dutta, V.: Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12(2–3), 69–92 (2004)CrossRef
6.
Zurück zum Zitat Günes, S., Neugebauer, H., Sariciftci, N.S.: Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007)CrossRef Günes, S., Neugebauer, H., Sariciftci, N.S.: Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007)CrossRef
7.
Zurück zum Zitat Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4(11), 864–868 (2005)CrossRef Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4(11), 864–868 (2005)CrossRef
8.
Zurück zum Zitat Sariciftci, N.S.: Polymeric photovoltaic materials. Curr. Opin Solid State Mater. Sci. 4(4), 373–378 (1999)CrossRef Sariciftci, N.S.: Polymeric photovoltaic materials. Curr. Opin Solid State Mater. Sci. 4(4), 373–378 (1999)CrossRef
9.
Zurück zum Zitat Ameri, T., Dennler, G., Waldauf, C., Denk, P., Forberich, K., Scharber, M.C., Brabec, C.J., Hingerl, K.: Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells. J. Appl. Phys. 103(8), 084506 (2008)CrossRef Ameri, T., Dennler, G., Waldauf, C., Denk, P., Forberich, K., Scharber, M.C., Brabec, C.J., Hingerl, K.: Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells. J. Appl. Phys. 103(8), 084506 (2008)CrossRef
10.
Zurück zum Zitat Liang, Y., Wu, Y., Feng, D., Tsai, S.T., Son, H.J., Li, G., Yu, L.: Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131(1), 56–57 (2008)CrossRef Liang, Y., Wu, Y., Feng, D., Tsai, S.T., Son, H.J., Li, G., Yu, L.: Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131(1), 56–57 (2008)CrossRef
11.
Zurück zum Zitat Gerischer, H., Michel-Beyerle, M., Rebentrost, F., Tributsch, H.: Sensitization of charge injection into semiconductors with large band gap. Electrochim. Acta 13(6), 1509–1515 (1968)CrossRef Gerischer, H., Michel-Beyerle, M., Rebentrost, F., Tributsch, H.: Sensitization of charge injection into semiconductors with large band gap. Electrochim. Acta 13(6), 1509–1515 (1968)CrossRef
12.
Zurück zum Zitat Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)CrossRef Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)CrossRef
13.
Zurück zum Zitat Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44(20), 6841–6851 (2005)CrossRef Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44(20), 6841–6851 (2005)CrossRef
14.
Zurück zum Zitat Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRef Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRef
15.
Zurück zum Zitat Calogero, G., Calandra, P., Irrera, A., Sinopoli, A., Citro, I., Di Marco, G.: A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 4(5), 1838–1844 (2011)CrossRef Calogero, G., Calandra, P., Irrera, A., Sinopoli, A., Citro, I., Di Marco, G.: A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 4(5), 1838–1844 (2011)CrossRef
16.
Zurück zum Zitat Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Grätzel, M.: Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125(5), 1166–1167 (2003)CrossRef Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Grätzel, M.: Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125(5), 1166–1167 (2003)CrossRef
17.
Zurück zum Zitat Bach, U., Lupo, D., Comte, P., Moser, J., Weissörtel, F., Salbeck, J., Spreitzer, H., Grätzel, M.: Solid-state dye-sensitized mesoporous tio2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702), 583–585 (1998)CrossRef Bach, U., Lupo, D., Comte, P., Moser, J., Weissörtel, F., Salbeck, J., Spreitzer, H., Grätzel, M.: Solid-state dye-sensitized mesoporous tio2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702), 583–585 (1998)CrossRef
18.
Zurück zum Zitat Han, L., Fukui, A., Chiba, Y., Islam, A., Komiya, R., Fuke, N., Koide, N., Yamanaka, R., Shimizu, M.: Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%. Appl. Phys. Lett. 94(1), 013305 (2009)CrossRef Han, L., Fukui, A., Chiba, Y., Islam, A., Komiya, R., Fuke, N., Koide, N., Yamanaka, R., Shimizu, M.: Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%. Appl. Phys. Lett. 94(1), 013305 (2009)CrossRef
19.
Zurück zum Zitat Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nature Mater. 4(6), 455–459 (2005)CrossRef Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nature Mater. 4(6), 455–459 (2005)CrossRef
20.
Zurück zum Zitat Horiuchi, T., Miura, H., Sumioka, K., Uchida, S.: High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126(39), 12218–12219 (2004)CrossRef Horiuchi, T., Miura, H., Sumioka, K., Uchida, S.: High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126(39), 12218–12219 (2004)CrossRef
21.
Zurück zum Zitat Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(7L), L638 (2006)CrossRef Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(7L), L638 (2006)CrossRef
22.
Zurück zum Zitat Brown, A.S., Green, M.A.: Detailed balance limit for the series constrained two terminal tandem solar cell. Phys. E 14(1), 96–100 (2002)CrossRef Brown, A.S., Green, M.A.: Detailed balance limit for the series constrained two terminal tandem solar cell. Phys. E 14(1), 96–100 (2002)CrossRef
23.
Zurück zum Zitat Bremner, S., Levy, M., Honsberg, C.B.: Analysis of tandem solar cell efficiencies under am 1.5g spectrum using a rapid flux calculation method. Prog. Photovolt. Res. Appl. 16(3), 225–233 (2008)CrossRef Bremner, S., Levy, M., Honsberg, C.B.: Analysis of tandem solar cell efficiencies under am 1.5g spectrum using a rapid flux calculation method. Prog. Photovolt. Res. Appl. 16(3), 225–233 (2008)CrossRef
24.
Zurück zum Zitat Bertness, K., Kurtz, S.R., Friedman, D., Kibbler, A., Kramer, C., Olson, J.: 29.5%-efficient gainp/gaas tandem solar cells. Appl. Phys. Lett. 65(8), 989–991 (1994)CrossRef Bertness, K., Kurtz, S.R., Friedman, D., Kibbler, A., Kramer, C., Olson, J.: 29.5%-efficient gainp/gaas tandem solar cells. Appl. Phys. Lett. 65(8), 989–991 (1994)CrossRef
25.
Zurück zum Zitat Gilot, J., Wienk, M.M., Janssen, R.A.: Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett. 90(14), 143512 (2007)CrossRef Gilot, J., Wienk, M.M., Janssen, R.A.: Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett. 90(14), 143512 (2007)CrossRef
26.
Zurück zum Zitat Kim, S.S., Na, S.I., Jo, J., Tae, G., Kim, D.Y.: Efficient polymer solar cells fabricated by simple brush painting. Adv. Mater. 19(24), 4410–4415 (2007)CrossRef Kim, S.S., Na, S.I., Jo, J., Tae, G., Kim, D.Y.: Efficient polymer solar cells fabricated by simple brush painting. Adv. Mater. 19(24), 4410–4415 (2007)CrossRef
27.
Zurück zum Zitat Dennler, G., Prall, H.J.R., Koeppe, R., Egginger, M., Autengruber, R., Sariciftci, N.S.: Enhanced spectral coverage in tandem organic solar cells. Appl. Phys. Lett. 89(7), 73502–73502 (2006)CrossRef Dennler, G., Prall, H.J.R., Koeppe, R., Egginger, M., Autengruber, R., Sariciftci, N.S.: Enhanced spectral coverage in tandem organic solar cells. Appl. Phys. Lett. 89(7), 73502–73502 (2006)CrossRef
28.
Zurück zum Zitat Wenger, S., Seyrling, S., Tiwari, A.N., Grätzel, M.: Fabrication and performance of a monolithic dye-sensitized tio2/cu (in, ga) se2 thin film tandem solar cell. Appl. Phys. Lett. 94(17), 173508 (2009)CrossRef Wenger, S., Seyrling, S., Tiwari, A.N., Grätzel, M.: Fabrication and performance of a monolithic dye-sensitized tio2/cu (in, ga) se2 thin film tandem solar cell. Appl. Phys. Lett. 94(17), 173508 (2009)CrossRef
29.
Zurück zum Zitat King, R., Law, D., Edmondson, K., Fetzer, C., Kinsey, G., Yoon, H., Sherif, R., Karam, N.: 40% efficient metamorphic gainp/gainas/ge multijunction solar cells. Applied physics letters 90(18), 183516–183900 (2007)CrossRef King, R., Law, D., Edmondson, K., Fetzer, C., Kinsey, G., Yoon, H., Sherif, R., Karam, N.: 40% efficient metamorphic gainp/gainas/ge multijunction solar cells. Applied physics letters 90(18), 183516–183900 (2007)CrossRef
30.
Zurück zum Zitat King, R., Karam, N., Ermer, J., Haddad, M., Colter, P., Isshiki, T., Yoon, H., Cotal, H., Joslin, D., Krut, D., et al.: Next-generation, high-efficiency iii-v multijunction solar cells. In: IEEE Conference Record of the Twenty-Eighth, Photovoltaic Specialists Conference, 2000, pp. 998–1001. IEEE (2000) King, R., Karam, N., Ermer, J., Haddad, M., Colter, P., Isshiki, T., Yoon, H., Cotal, H., Joslin, D., Krut, D., et al.: Next-generation, high-efficiency iii-v multijunction solar cells. In: IEEE Conference Record of the Twenty-Eighth, Photovoltaic Specialists Conference, 2000, pp. 998–1001. IEEE (2000)
31.
Zurück zum Zitat Günes, S., Sariciftci, N.S.: Hybrid solar cells. Inorg. Chim. Acta 361(3), 581–588 (2008)CrossRef Günes, S., Sariciftci, N.S.: Hybrid solar cells. Inorg. Chim. Acta 361(3), 581–588 (2008)CrossRef
32.
Zurück zum Zitat van Hal, P.A., Wienk, M.M., Kroon, J.M., Verhees, W.J., Slooff, L.H., van Gennip, W.J., Jonkheijm, P., Janssen, R.A.: Photoinduced electron transfer and photovoltaic response of a mdmo-ppv: Tio2 bulk-heterojunction. Adv. Mater. 15(2), 118–121 (2003)CrossRef van Hal, P.A., Wienk, M.M., Kroon, J.M., Verhees, W.J., Slooff, L.H., van Gennip, W.J., Jonkheijm, P., Janssen, R.A.: Photoinduced electron transfer and photovoltaic response of a mdmo-ppv: Tio2 bulk-heterojunction. Adv. Mater. 15(2), 118–121 (2003)CrossRef
33.
Zurück zum Zitat Mcdonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J., Levina, L., Sargent, E.H.: Solution-processed pbs quantum dot infrared photodetectors and photovoltaics. Adv. Mater. 4(2), 138–142 (2005) Mcdonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J., Levina, L., Sargent, E.H.: Solution-processed pbs quantum dot infrared photodetectors and photovoltaics. Adv. Mater. 4(2), 138–142 (2005)
34.
Zurück zum Zitat Zhang, S., Cyr, P., McDonald, S., Konstantatos, G., Sargent, E.: Enhanced infrared photovoltaic efficiency in pbs nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Appl. Phys. Lett. 87(23), 233101 (2005)CrossRef Zhang, S., Cyr, P., McDonald, S., Konstantatos, G., Sargent, E.: Enhanced infrared photovoltaic efficiency in pbs nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Appl. Phys. Lett. 87(23), 233101 (2005)CrossRef
35.
Zurück zum Zitat Beek, W.J., Wienk, M.M., Janssen, R.A.: Hybrid solar cells from regioregular polythiophene and zno nanoparticles. Adv. Funct. Mater. 16(8), 1112–1116 (2006)CrossRef Beek, W.J., Wienk, M.M., Janssen, R.A.: Hybrid solar cells from regioregular polythiophene and zno nanoparticles. Adv. Funct. Mater. 16(8), 1112–1116 (2006)CrossRef
36.
Zurück zum Zitat Olson, D.C., Piris, J., Collins, R.T., Shaheen, S.E., Ginley, D.S.: Hybrid photovoltaic devices of polymer and zno nanofiber composites. Thin Solid Films 496(1), 26–29 (2006)CrossRef Olson, D.C., Piris, J., Collins, R.T., Shaheen, S.E., Ginley, D.S.: Hybrid photovoltaic devices of polymer and zno nanofiber composites. Thin Solid Films 496(1), 26–29 (2006)CrossRef
37.
Zurück zum Zitat Greenham, N.C., Peng, X., Alivisatos, A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54(24), 17628 (1996)CrossRef Greenham, N.C., Peng, X., Alivisatos, A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54(24), 17628 (1996)CrossRef
38.
Zurück zum Zitat Ginger, D., Greenham, N.: Photoinduced electron transfer from conjugated polymers to cdse nanocrystals. Phys. Rev. B 59(16), 10622 (1999)CrossRef Ginger, D., Greenham, N.: Photoinduced electron transfer from conjugated polymers to cdse nanocrystals. Phys. Rev. B 59(16), 10622 (1999)CrossRef
39.
Zurück zum Zitat Huynh, W.U., Dittmer, J.J., Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)CrossRef Huynh, W.U., Dittmer, J.J., Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)CrossRef
40.
Zurück zum Zitat Gur, I., Fromer, N.A., Geier, M.L., Alivisatos, A.P.: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462–465 (2005)CrossRef Gur, I., Fromer, N.A., Geier, M.L., Alivisatos, A.P.: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462–465 (2005)CrossRef
41.
Zurück zum Zitat Arici, E., Sariciftci, N.S., Meissner, D.: Hybrid solar cells based on nanoparticles of cuins2 in organic matrices. Adv. Funct. Mater. 13(2), 165–171 (2003)CrossRef Arici, E., Sariciftci, N.S., Meissner, D.: Hybrid solar cells based on nanoparticles of cuins2 in organic matrices. Adv. Funct. Mater. 13(2), 165–171 (2003)CrossRef
42.
Zurück zum Zitat Curie, J., Curie, P.: Development par compression de lelectricite pollaire dans les cristaux hemledres a faces inclinees. Bulletin (4) (1880) Curie, J., Curie, P.: Development par compression de lelectricite pollaire dans les cristaux hemledres a faces inclinees. Bulletin (4) (1880)
43.
Zurück zum Zitat Lippman, G.: Principe de la conservation de l’électricité. Ann. de chimie et de Phys. 24, 381–394 (1881)MATH Lippman, G.: Principe de la conservation de l’électricité. Ann. de chimie et de Phys. 24, 381–394 (1881)MATH
44.
Zurück zum Zitat Nicolson, A.M.: The piezo electric effect in the composite rochelle salt crystal. Trans. Am. Inst. Electr. Eng. 38(2), 1467–1493 (1919)CrossRef Nicolson, A.M.: The piezo electric effect in the composite rochelle salt crystal. Trans. Am. Inst. Electr. Eng. 38(2), 1467–1493 (1919)CrossRef
45.
Zurück zum Zitat Yamaguchi, S.: Surface electric fields of tourmaline. Appl. Phys. A 31(4), 183–185 (1983)CrossRef Yamaguchi, S.: Surface electric fields of tourmaline. Appl. Phys. A 31(4), 183–185 (1983)CrossRef
46.
Zurück zum Zitat Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Jpn. 10(2), 149–154 (1955)CrossRef Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Jpn. 10(2), 149–154 (1955)CrossRef
47.
Zurück zum Zitat Bazhenov, V.: Piezoelectric properties of wood Bazhenov, V.: Piezoelectric properties of wood
48.
Zurück zum Zitat Fukada, E.: On the piezoelectric effect of silk fibers. J. Phys. Soc. Jpn. 11, 1301 (1956)CrossRef Fukada, E.: On the piezoelectric effect of silk fibers. J. Phys. Soc. Jpn. 11, 1301 (1956)CrossRef
49.
Zurück zum Zitat Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12(10), 1158–1162 (1957)CrossRef Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12(10), 1158–1162 (1957)CrossRef
50.
Zurück zum Zitat Duchesne, J., Depireux, J., Bertinchamps, A., Cornet, N., Van der Kaa, J.: Thermal and electrical properties of nucleic acids and proteins. Nature 188, 405–406 (1960)CrossRef Duchesne, J., Depireux, J., Bertinchamps, A., Cornet, N., Van der Kaa, J.: Thermal and electrical properties of nucleic acids and proteins. Nature 188, 405–406 (1960)CrossRef
51.
Zurück zum Zitat Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3(2), 117 (1964)CrossRef Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3(2), 117 (1964)CrossRef
52.
Zurück zum Zitat Fukada, E., Ando, Y.: Piezoelectricity in oriented dna films. J. Polym. Sci. Part A-2 Polym. Phys. 10(3), 565–567 (1972)CrossRef Fukada, E., Ando, Y.: Piezoelectricity in oriented dna films. J. Polym. Sci. Part A-2 Polym. Phys. 10(3), 565–567 (1972)CrossRef
53.
Zurück zum Zitat Adachi, M., Kimura, T., Miyamoto, W., Chen, Z., Kawabata, A.: Dielectric, elastic and piezoelectric properties of La\(_3\)Ga\(_{5}\)SiO\(_{14}\) (langasite) single crystals. J. Korean Phys. Soc. 32, S1274–S1277 (1998) Adachi, M., Kimura, T., Miyamoto, W., Chen, Z., Kawabata, A.: Dielectric, elastic and piezoelectric properties of La\(_3\)Ga\(_{5}\)SiO\(_{14}\) (langasite) single crystals. J. Korean Phys. Soc. 32, S1274–S1277 (1998)
54.
Zurück zum Zitat Shirane, G., Hoshino, S., Suzuki, K.: X-ray study of the phase transition in lead titanate. Phys. Rev. 80(6), 1105 (1950)CrossRef Shirane, G., Hoshino, S., Suzuki, K.: X-ray study of the phase transition in lead titanate. Phys. Rev. 80(6), 1105 (1950)CrossRef
55.
Zurück zum Zitat Edelman, S., Jones, E., Smith, E.R.: Some developments in vibration measurement. J. Acoust. Soc. Am. 27(4), 728–734 (1955)CrossRef Edelman, S., Jones, E., Smith, E.R.: Some developments in vibration measurement. J. Acoust. Soc. Am. 27(4), 728–734 (1955)CrossRef
56.
Zurück zum Zitat Shirane, G., Suzuki, K.: Crystal structure of pb (zr-ti) o_3. J. Phys. Soc. Jpn. 7(3), 333 (1952)CrossRef Shirane, G., Suzuki, K.: Crystal structure of pb (zr-ti) o_3. J. Phys. Soc. Jpn. 7(3), 333 (1952)CrossRef
57.
Zurück zum Zitat Sawaguchi, E.: Ferroelectricity versus antiferroelectricity in the solid solutions of pbzro3 and pbtio3. J. Phys. Soc. Jpn. 8(5), 615–629 (1953)CrossRef Sawaguchi, E.: Ferroelectricity versus antiferroelectricity in the solid solutions of pbzro3 and pbtio3. J. Phys. Soc. Jpn. 8(5), 615–629 (1953)CrossRef
58.
Zurück zum Zitat Jaffe, B., Roth, R., Marzullo, S.: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25(6), 809–810 (1954)CrossRef Jaffe, B., Roth, R., Marzullo, S.: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25(6), 809–810 (1954)CrossRef
59.
Zurück zum Zitat Egerton, L., Dillon, D.M.: Piezoelectric and dielectric properties of ceramics in the system potassiumsodium niobate. J. Am. Ceram. Soc. 42(9), 438–442 (1959)CrossRef Egerton, L., Dillon, D.M.: Piezoelectric and dielectric properties of ceramics in the system potassiumsodium niobate. J. Am. Ceram. Soc. 42(9), 438–442 (1959)CrossRef
60.
Zurück zum Zitat Weis, R., Gaylord, T.: Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37(4), 191–203 (1985)CrossRef Weis, R., Gaylord, T.: Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37(4), 191–203 (1985)CrossRef
61.
Zurück zum Zitat Smith, R., Welsh, F.: Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)CrossRef Smith, R., Welsh, F.: Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)CrossRef
62.
Zurück zum Zitat Kawai, H.: The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8(7), 975 (1969)CrossRef Kawai, H.: The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8(7), 975 (1969)CrossRef
63.
Zurück zum Zitat Nalwa, H.S.: Ferroelectric Polymers: Chemistry: Physics, and Applications. CRC Press, Boca Raton (1995) Nalwa, H.S.: Ferroelectric Polymers: Chemistry: Physics, and Applications. CRC Press, Boca Raton (1995)
64.
Zurück zum Zitat Harrison, J., Ounaies, Z.: Piezoelectric Polymers. Wiley Online Library, New York (2002) Harrison, J., Ounaies, Z.: Piezoelectric Polymers. Wiley Online Library, New York (2002)
65.
Zurück zum Zitat Qi, Y., McAlpine, M.C.: Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3(9), 1275–1285 (2010)CrossRef Qi, Y., McAlpine, M.C.: Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3(9), 1275–1285 (2010)CrossRef
66.
Zurück zum Zitat Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26(11), 1131–1144 (2003)CrossRef Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26(11), 1131–1144 (2003)CrossRef
67.
Zurück zum Zitat Swallow, L., Luo, J., Siores, E., Patel, I., Dodds, D.: A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 17(2), 025017 (2008)CrossRef Swallow, L., Luo, J., Siores, E., Patel, I., Dodds, D.: A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 17(2), 025017 (2008)CrossRef
68.
Zurück zum Zitat Patel, I., Siores, E., Shah, T.: Utilisation of smart polymers and ceramic based piezoelectric materials for scavenging wasted energy. Sens. Actuators Phys. 159(2), 213–218 (2010)CrossRef Patel, I., Siores, E., Shah, T.: Utilisation of smart polymers and ceramic based piezoelectric materials for scavenging wasted energy. Sens. Actuators Phys. 159(2), 213–218 (2010)CrossRef
69.
Zurück zum Zitat Berlincourt, D.: Piezoelectric ceramics characteristics and applications. J. Acoust. Soc. Am. 68(S1), S40 (1980)CrossRef Berlincourt, D.: Piezoelectric ceramics characteristics and applications. J. Acoust. Soc. Am. 68(S1), S40 (1980)CrossRef
70.
Zurück zum Zitat Tanaka, T.: Piezoelectric devices in Japan. Ferroelectrics 40(1), 167–187 (1982)CrossRef Tanaka, T.: Piezoelectric devices in Japan. Ferroelectrics 40(1), 167–187 (1982)CrossRef
71.
Zurück zum Zitat Tressler, J.F., Newnham, R.E., Hughes, W.J.: Capped ceramic underwater sound projector: the cymbal transducer. J. Acoust. Soc. Am. 105(2), 591–600 (1999)CrossRef Tressler, J.F., Newnham, R.E., Hughes, W.J.: Capped ceramic underwater sound projector: the cymbal transducer. J. Acoust. Soc. Am. 105(2), 591–600 (1999)CrossRef
72.
Zurück zum Zitat Woollett, R.: Basic problems caused by depth and size constraints in low-frequency underwater transducers. J. Acoust. Soc. Am. 65(S1), S126–S126 (1979)CrossRef Woollett, R.: Basic problems caused by depth and size constraints in low-frequency underwater transducers. J. Acoust. Soc. Am. 65(S1), S126–S126 (1979)CrossRef
73.
Zurück zum Zitat Conley, J.K., Kokonaski, W., Parrella, M.J., Machacek, S.L.: Piezo speaker and installation method for laptop personal computer and other multimedia applications (June 10 1997) US Patent 5,638,456 Conley, J.K., Kokonaski, W., Parrella, M.J., Machacek, S.L.: Piezo speaker and installation method for laptop personal computer and other multimedia applications (June 10 1997) US Patent 5,638,456
74.
Zurück zum Zitat Sinelnikov, Y.: Dual-mode piezocomposite ultrasonic transducer (Nov 2011) WO Patent App. PCT/US2011/000,910 Sinelnikov, Y.: Dual-mode piezocomposite ultrasonic transducer (Nov 2011) WO Patent App. PCT/US2011/000,910
75.
Zurück zum Zitat Grzybowski, B.A., Winkleman, A., Wiles, J.A., Brumer, Y., Whitesides, G.M.: Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2(4), 241–245 (2003)CrossRef Grzybowski, B.A., Winkleman, A., Wiles, J.A., Brumer, Y., Whitesides, G.M.: Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2(4), 241–245 (2003)CrossRef
76.
Zurück zum Zitat Pai, D.M., Springett, B.E.: Physics of electrophotography. Rev. Mod. Phys. 65(1), 163 (1993)CrossRef Pai, D.M., Springett, B.E.: Physics of electrophotography. Rev. Mod. Phys. 65(1), 163 (1993)CrossRef
77.
Zurück zum Zitat Zhu, G., Peng, B., Chen, J., Jing, Q., Wang, Z.L.: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)CrossRef Zhu, G., Peng, B., Chen, J., Jing, Q., Wang, Z.L.: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)CrossRef
78.
Zurück zum Zitat Wang, Z.L.: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013)CrossRef Wang, Z.L.: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013)CrossRef
79.
Zurück zum Zitat LináWang, Z.: Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discus. 176, 447–458 (2014)CrossRef LináWang, Z.: Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discus. 176, 447–458 (2014)CrossRef
80.
Zurück zum Zitat Chittibabu, K., Eckert, R., Gaudiana, R., Li, L., Montello, A., Montello, E., Wormser, P.: A flexible fiber core having an outer surface, a photosensitized nanomatrix particle applied to the outer surface, a protective layer, an electroconductive metal and a counter electrode (July 5 2005) US Patent 6,913,713 Chittibabu, K., Eckert, R., Gaudiana, R., Li, L., Montello, A., Montello, E., Wormser, P.: A flexible fiber core having an outer surface, a photosensitized nanomatrix particle applied to the outer surface, a protective layer, an electroconductive metal and a counter electrode (July 5 2005) US Patent 6,913,713
81.
Zurück zum Zitat Kuraseko, H., Nakamura, T., Toda, S., Koaizawa, H., Jia, H., Kondo, M.: Development of flexible fiber-type poly-si solar cell. In: IEEE 4th World Conference on Photovoltaic Energy Conversion, Conference Record of the 2006, vol. 2, pp. 1380–1383. IEEE (2006) Kuraseko, H., Nakamura, T., Toda, S., Koaizawa, H., Jia, H., Kondo, M.: Development of flexible fiber-type poly-si solar cell. In: IEEE 4th World Conference on Photovoltaic Energy Conversion, Conference Record of the 2006, vol. 2, pp. 1380–1383. IEEE (2006)
82.
Zurück zum Zitat OConnor, B., Pipe, K.P., Shtein, M.: Fiber based organic photovoltaic devices. Appl. Phys. Lett. 92(19), 193306 (2008)CrossRef OConnor, B., Pipe, K.P., Shtein, M.: Fiber based organic photovoltaic devices. Appl. Phys. Lett. 92(19), 193306 (2008)CrossRef
83.
Zurück zum Zitat Liu, J., Namboothiry, M.A., Carroll, D.L.: Fiber-based architectures for organic photovoltaics. Appl. Phys. Lett. 90(6), 063501 (2007)CrossRef Liu, J., Namboothiry, M.A., Carroll, D.L.: Fiber-based architectures for organic photovoltaics. Appl. Phys. Lett. 90(6), 063501 (2007)CrossRef
84.
Zurück zum Zitat Bedeloglu, A.C., Demir, A., Bozkurt, Y., Sariciftci, N.S.: A photovoltaic fiber design for smart textiles. Text. Res. J. 80(11), 1065–1074 (2010)CrossRef Bedeloglu, A.C., Demir, A., Bozkurt, Y., Sariciftci, N.S.: A photovoltaic fiber design for smart textiles. Text. Res. J. 80(11), 1065–1074 (2010)CrossRef
85.
Zurück zum Zitat Toivola, M., Ferenets, M., Lund, P., Harlin, A.: Photovoltaic fiber. Thin Solid Films 517(8), 2799–2802 (2009)CrossRef Toivola, M., Ferenets, M., Lund, P., Harlin, A.: Photovoltaic fiber. Thin Solid Films 517(8), 2799–2802 (2009)CrossRef
86.
Zurück zum Zitat Ramier, J., Plummer, C., Leterrier, Y., Månson, J.A., Eckert, B., Gaudiana, R.: Mechanical integrity of dye-sensitized photovoltaic fibers. Renew. Energy 33(2), 314–319 (2008)CrossRef Ramier, J., Plummer, C., Leterrier, Y., Månson, J.A., Eckert, B., Gaudiana, R.: Mechanical integrity of dye-sensitized photovoltaic fibers. Renew. Energy 33(2), 314–319 (2008)CrossRef
87.
Zurück zum Zitat Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C 4(2), 145–153 (2003)CrossRef Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C 4(2), 145–153 (2003)CrossRef
88.
Zurück zum Zitat Li, B., Wang, L., Kang, B., Wang, P., Qiu, Y.: Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006)CrossRef Li, B., Wang, L., Kang, B., Wang, P., Qiu, Y.: Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006)CrossRef
89.
Zurück zum Zitat Fukada, E.: Piezoelectric properties of organic polymers. Ann. N. Y. Acad. Sci. 238(1), 7–25 (1974)CrossRef Fukada, E.: Piezoelectric properties of organic polymers. Ann. N. Y. Acad. Sci. 238(1), 7–25 (1974)CrossRef
90.
Zurück zum Zitat Kepler, R., Anderson, R.: Piezoelectricity in polymers. Crit. Rev. Solid State Mater. Sci. 9(4), 399–447 (1980)CrossRef Kepler, R., Anderson, R.: Piezoelectricity in polymers. Crit. Rev. Solid State Mater. Sci. 9(4), 399–447 (1980)CrossRef
91.
Zurück zum Zitat Wang, T.T., Herbert, J.M., Glass, A.M.: The applications of ferroelectric polymers. Blackie and Son, Bishopbriggs, Glasgow G 64 2 NZ, UK (1988) Wang, T.T., Herbert, J.M., Glass, A.M.: The applications of ferroelectric polymers. Blackie and Son, Bishopbriggs, Glasgow G 64 2 NZ, UK (1988)
92.
Zurück zum Zitat Fukada, E.: History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1277–1290 (2000)CrossRef Fukada, E.: History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1277–1290 (2000)CrossRef
93.
Zurück zum Zitat Broadhurst, M., Davis, G., McKinney, J., Collins, R.: Piezoelectricity and pyroelectricity in polyvinylidene fluoridea model. J. Appl. Phys. 49(10), 4992–4997 (1978)CrossRef Broadhurst, M., Davis, G., McKinney, J., Collins, R.: Piezoelectricity and pyroelectricity in polyvinylidene fluoridea model. J. Appl. Phys. 49(10), 4992–4997 (1978)CrossRef
94.
Zurück zum Zitat Lovinger, A.J.: Poly (vinylidene fluoride). In: Developments in Crystalline Polymers-1, pp. 195–273. Springer (1982) Lovinger, A.J.: Poly (vinylidene fluoride). In: Developments in Crystalline Polymers-1, pp. 195–273. Springer (1982)
95.
Zurück zum Zitat Gallantree, H.: Review of transducer applications of polyvinylidene fluoride. IEE Proc. I (Solid-State and Electron Devices) 130(5), 219–224 (1983)CrossRef Gallantree, H.: Review of transducer applications of polyvinylidene fluoride. IEE Proc. I (Solid-State and Electron Devices) 130(5), 219–224 (1983)CrossRef
96.
Zurück zum Zitat Tashiro, K.: Crystal structure and phase transition of pvdf and related copolymers. Plast. Eng. New York 28, 63 (1995) Tashiro, K.: Crystal structure and phase transition of pvdf and related copolymers. Plast. Eng. New York 28, 63 (1995)
97.
Zurück zum Zitat Martins, P., Lopes, A., Lanceros-Mendez, S.: Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014)CrossRef Martins, P., Lopes, A., Lanceros-Mendez, S.: Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014)CrossRef
98.
Zurück zum Zitat Soin, N., Boyer, D., Prashanthi, K., Sharma, S., Narasimulu, A., Luo, J., Shah, T., Siores, E., Thundat, T.: Exclusive self-aligned \(\beta \)-phase pvdf films with abnormal piezoelectric coefficient prepared via phase inversion. Chem. Commun. 51(39), 8257–8260 (2015)CrossRef Soin, N., Boyer, D., Prashanthi, K., Sharma, S., Narasimulu, A., Luo, J., Shah, T., Siores, E., Thundat, T.: Exclusive self-aligned \(\beta \)-phase pvdf films with abnormal piezoelectric coefficient prepared via phase inversion. Chem. Commun. 51(39), 8257–8260 (2015)CrossRef
99.
Zurück zum Zitat Ambrosy, A., Holdik, K.: Piezoelectric pvdf films as ultrasonic transducers. J. Phys. E: Sci. Instrum. 17(10), 856 (1984)CrossRef Ambrosy, A., Holdik, K.: Piezoelectric pvdf films as ultrasonic transducers. J. Phys. E: Sci. Instrum. 17(10), 856 (1984)CrossRef
100.
Zurück zum Zitat Ramos, M.M., Correia, H.M., Lanceros-Mendez, S.: Atomistic modelling of processes involved in poling of pvdf. Comput. Mater. Sci. 33(1), 230–236 (2005)CrossRef Ramos, M.M., Correia, H.M., Lanceros-Mendez, S.: Atomistic modelling of processes involved in poling of pvdf. Comput. Mater. Sci. 33(1), 230–236 (2005)CrossRef
101.
Zurück zum Zitat Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotech. Adv. 28(3), 325–347 (2010)CrossRef Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotech. Adv. 28(3), 325–347 (2010)CrossRef
102.
Zurück zum Zitat Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 v nanogenerator for mechanical energy harvesting using pzt nanofibers. Nano Lett. 10(6), 2133–2137 (2010)CrossRef Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 v nanogenerator for mechanical energy harvesting using pzt nanofibers. Nano Lett. 10(6), 2133–2137 (2010)CrossRef
103.
Zurück zum Zitat Chang, J., Dommer, M., Chang, C., Lin, L.: Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3), 356–371 (2012)CrossRef Chang, J., Dommer, M., Chang, C., Lin, L.: Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3), 356–371 (2012)CrossRef
104.
Zurück zum Zitat Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges, D., Ma, Y., Hu, A.: Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 2015, 122 (2015) Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges, D., Ma, Y., Hu, A.: Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 2015, 122 (2015)
105.
Zurück zum Zitat Qin, X.H., Wang, S.Y.: Filtration properties of electrospinning nanofibers. J. Appl. Polym. Sci. 102(2), 1285–1290 (2006)CrossRef Qin, X.H., Wang, S.Y.: Filtration properties of electrospinning nanofibers. J. Appl. Polym. Sci. 102(2), 1285–1290 (2006)CrossRef
106.
Zurück zum Zitat Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., Matsuura, T.: Electrospun nanofibrous filtration membrane. J. Membr. Sci. 281(1), 581–586 (2006)CrossRef Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., Matsuura, T.: Electrospun nanofibrous filtration membrane. J. Membr. Sci. 281(1), 581–586 (2006)CrossRef
107.
Zurück zum Zitat Heikkilä, P., Taipale, A., Lehtimäki, M., Harlin, A.: Electrospinning of polyamides with different chain compositions for filtration application. Polym. Eng. Sci. 48(6), 1168–1176 (2008)CrossRef Heikkilä, P., Taipale, A., Lehtimäki, M., Harlin, A.: Electrospinning of polyamides with different chain compositions for filtration application. Polym. Eng. Sci. 48(6), 1168–1176 (2008)CrossRef
108.
Zurück zum Zitat Yoshimoto, H., Shin, Y., Terai, H., Vacanti, J.: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12), 2077–2082 (2003)CrossRef Yoshimoto, H., Shin, Y., Terai, H., Vacanti, J.: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12), 2077–2082 (2003)CrossRef
109.
Zurück zum Zitat Yang, F., Murugan, R., Wang, S., Ramakrishna, S.: Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15), 2603–2610 (2005)CrossRef Yang, F., Murugan, R., Wang, S., Ramakrishna, S.: Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15), 2603–2610 (2005)CrossRef
110.
Zurück zum Zitat Lannutti, J., Reneker, D., Ma, T., Tomasko, D., Farson, D.: Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 27(3), 504–509 (2007)CrossRef Lannutti, J., Reneker, D., Ma, T., Tomasko, D., Farson, D.: Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 27(3), 504–509 (2007)CrossRef
111.
Zurück zum Zitat Sill, T.J., von Recum, H.A.: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008)CrossRef Sill, T.J., von Recum, H.A.: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008)CrossRef
112.
Zurück zum Zitat Chang, C., Tran, V.H., Wang, J., Fuh, Y.K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010)CrossRef Chang, C., Tran, V.H., Wang, J., Fuh, Y.K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010)CrossRef
113.
Zurück zum Zitat Laudenslager, M.J., Scheffler, R.H., Sigmund, W.M.: Electrospun materials for energy harvesting, conversion, and storage: a review. Pure Appl. Chem. 82(11), 2137–2156 (2010)CrossRef Laudenslager, M.J., Scheffler, R.H., Sigmund, W.M.: Electrospun materials for energy harvesting, conversion, and storage: a review. Pure Appl. Chem. 82(11), 2137–2156 (2010)CrossRef
114.
Zurück zum Zitat Wu, W., Bai, S., Yuan, M., Qin, Y., Wang, Z.L., Jing, T.: Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6(7), 6231–6235 (2012)CrossRef Wu, W., Bai, S., Yuan, M., Qin, Y., Wang, Z.L., Jing, T.: Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6(7), 6231–6235 (2012)CrossRef
115.
Zurück zum Zitat Fang, J., Niu, H., Wang, H., Wang, X., Lin, T.: Enhanced mechanical energy harvesting using needleless electrospun poly (vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 6(7), 2196–2202 (2013)CrossRef Fang, J., Niu, H., Wang, H., Wang, X., Lin, T.: Enhanced mechanical energy harvesting using needleless electrospun poly (vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 6(7), 2196–2202 (2013)CrossRef
116.
Zurück zum Zitat Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007)CrossRef Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007)CrossRef
117.
Zurück zum Zitat Qin, Y., Wang, X., Wang, Z.L.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451(7180), 809–813 (2008)CrossRef Qin, Y., Wang, X., Wang, Z.L.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451(7180), 809–813 (2008)CrossRef
118.
Zurück zum Zitat Yang, R., Qin, Y., Li, C., Zhu, G., Wang, Z.L.: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9(3), 1201–1205 (2009)CrossRef Yang, R., Qin, Y., Li, C., Zhu, G., Wang, Z.L.: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9(3), 1201–1205 (2009)CrossRef
119.
Zurück zum Zitat Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4(1), 34–39 (2009)CrossRef Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4(1), 34–39 (2009)CrossRef
120.
Zurück zum Zitat Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self-powered nanowire devices. Nat. Nanotechnol. 5(5), 366–373 (2010)CrossRef Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self-powered nanowire devices. Nat. Nanotechnol. 5(5), 366–373 (2010)CrossRef
121.
Zurück zum Zitat Chang, J., Lin, L.: Large array electrospun pvdf nanogenerators on a flexible substrate. In: 2011 16th International, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 747–750. IEEE (2011) Chang, J., Lin, L.: Large array electrospun pvdf nanogenerators on a flexible substrate. In: 2011 16th International, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 747–750. IEEE (2011)
122.
Zurück zum Zitat Fuh, Y.K., Ye, J.C., Chen, P.C., Huang, Z.M.: A highly flexible and substrate-independent self-powered deformation sensor based on massively aligned piezoelectric nano-/microfibers. J. Mater. Chem. A 2(38), 16101–16106 (2014)CrossRef Fuh, Y.K., Ye, J.C., Chen, P.C., Huang, Z.M.: A highly flexible and substrate-independent self-powered deformation sensor based on massively aligned piezoelectric nano-/microfibers. J. Mater. Chem. A 2(38), 16101–16106 (2014)CrossRef
123.
Zurück zum Zitat Fang, J., Wang, X., Lin, T.: Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 21(30), 11088–11091 (2011)CrossRef Fang, J., Wang, X., Lin, T.: Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 21(30), 11088–11091 (2011)CrossRef
124.
Zurück zum Zitat Zheng, J., He, A., Li, J., Han, C.C.: Polymorphism control of poly (vinylidene fluoride) through electrospinning. Macromol. Rapid Commun. 28(22), 2159–2162 (2007)CrossRef Zheng, J., He, A., Li, J., Han, C.C.: Polymorphism control of poly (vinylidene fluoride) through electrospinning. Macromol. Rapid Commun. 28(22), 2159–2162 (2007)CrossRef
125.
Zurück zum Zitat Ribeiro, C., Sencadas, V., Ribelles, J.L.G., Lanceros-Méndez, S.: Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes. Soft Mater. 8(3), 274–287 (2010)CrossRef Ribeiro, C., Sencadas, V., Ribelles, J.L.G., Lanceros-Méndez, S.: Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes. Soft Mater. 8(3), 274–287 (2010)CrossRef
126.
Zurück zum Zitat Cui, N., Wu, W., Zhao, Y., Bai, S., Meng, L., Qin, Y., Wang, Z.L.: Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 12(7), 3701–3705 (2012)CrossRef Cui, N., Wu, W., Zhao, Y., Bai, S., Meng, L., Qin, Y., Wang, Z.L.: Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 12(7), 3701–3705 (2012)CrossRef
127.
Zurück zum Zitat Magniez, K., Krajewski, A., Neuenhofer, M., Helmer, R.: Effect of drawing on the molecular orientation and polymorphism of melt-spun polyvinylidene fluoride fibers: Toward the development of piezoelectric force sensors. J. Appl. Polym. Sci. 129(5), 2699–2706 (2013)CrossRef Magniez, K., Krajewski, A., Neuenhofer, M., Helmer, R.: Effect of drawing on the molecular orientation and polymorphism of melt-spun polyvinylidene fluoride fibers: Toward the development of piezoelectric force sensors. J. Appl. Polym. Sci. 129(5), 2699–2706 (2013)CrossRef
128.
Zurück zum Zitat Nilsson, E., Lund, A., Jonasson, C., Johansson, C., Hagström, B.: Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sens. Actuators A Phys. 201, 477–486 (2013)CrossRef Nilsson, E., Lund, A., Jonasson, C., Johansson, C., Hagström, B.: Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sens. Actuators A Phys. 201, 477–486 (2013)CrossRef
129.
Zurück zum Zitat Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., et al.: Novel 3-d spacer all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7(5), 1670–1679 (2014)CrossRef Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., et al.: Novel 3-d spacer all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7(5), 1670–1679 (2014)CrossRef
130.
Zurück zum Zitat Hadimani, R.L., Bayramol, D.V., Sion, N., Shah, T., Qian, L., Shi, S., Siores, E.: Continuous production of piezoelectric pvdf fibre for e-textile applications. Smart Mater. Struct. 22(7), 075017 (2013)CrossRef Hadimani, R.L., Bayramol, D.V., Sion, N., Shah, T., Qian, L., Shi, S., Siores, E.: Continuous production of piezoelectric pvdf fibre for e-textile applications. Smart Mater. Struct. 22(7), 075017 (2013)CrossRef
131.
Zurück zum Zitat Zeng, W., Tao, X.M., Chen, S., Shang, S., Chan, H.L.W., Choy, S.H.: Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 6(9), 2631–2638 (2013)CrossRef Zeng, W., Tao, X.M., Chen, S., Shang, S., Chan, H.L.W., Choy, S.H.: Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 6(9), 2631–2638 (2013)CrossRef
132.
Zurück zum Zitat Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)CrossRef Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)CrossRef
133.
Zurück zum Zitat Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, G.: Zno nanostructures for dye-sensitized solar cells. Adv. Mater. 21(41), 4087–4108 (2009)CrossRef Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, G.: Zno nanostructures for dye-sensitized solar cells. Adv. Mater. 21(41), 4087–4108 (2009)CrossRef
134.
Zurück zum Zitat Ko, Y.H., Yu, J.S.: Tunable growth of urchin-shaped zno nanostructures on patterned transparent substrates. Cryst. Eng. Commun. 14(18), 5824–5829 (2012)CrossRef Ko, Y.H., Yu, J.S.: Tunable growth of urchin-shaped zno nanostructures on patterned transparent substrates. Cryst. Eng. Commun. 14(18), 5824–5829 (2012)CrossRef
135.
Zurück zum Zitat Ko, Y.H., Kim, M.S., Park, W., Yu, J.S.: Well-integrated zno nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties. Nanoscale Res. Lett. 8(1), 1–8 (2013)CrossRef Ko, Y.H., Kim, M.S., Park, W., Yu, J.S.: Well-integrated zno nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties. Nanoscale Res. Lett. 8(1), 1–8 (2013)CrossRef
136.
Zurück zum Zitat Gullapalli, H., Vemuru, V.S., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., Nagarajaiah, S., Ajayan, P.M.: Flexible piezoelectric zno-paper nanocomposite strain sensor. Small 6(15), 1641–1646 (2010)CrossRef Gullapalli, H., Vemuru, V.S., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., Nagarajaiah, S., Ajayan, P.M.: Flexible piezoelectric zno-paper nanocomposite strain sensor. Small 6(15), 1641–1646 (2010)CrossRef
137.
Zurück zum Zitat Khan, A., Hussain, M., Nur, O., Willander, M., Broitman, E.: Analysis of direct and converse piezoelectric responses from zinc oxide nanowires grown on a conductive fabric. Physica Status Solidi (a) 212(3), 579–584 (2015)CrossRef Khan, A., Hussain, M., Nur, O., Willander, M., Broitman, E.: Analysis of direct and converse piezoelectric responses from zinc oxide nanowires grown on a conductive fabric. Physica Status Solidi (a) 212(3), 579–584 (2015)CrossRef
138.
Zurück zum Zitat Cui, N., Liu, J., Gu, L., Bai, S., Chen, X., Qin, Y.: Wearable triboelectric generator for powering the portable electronic devices. ACS Appl. Mater. Interf. 7(33), 18225–18230 (2015)CrossRef Cui, N., Liu, J., Gu, L., Bai, S., Chen, X., Qin, Y.: Wearable triboelectric generator for powering the portable electronic devices. ACS Appl. Mater. Interf. 7(33), 18225–18230 (2015)CrossRef
139.
Zurück zum Zitat Ko, Y.H., Nagaraju, G., Yu, J.S.: Multi-stacked pdms-based triboelectric generators with conductive textile for efficient energy harvesting. RSC Adv. 5(9), 6437–6442 (2015)CrossRef Ko, Y.H., Nagaraju, G., Yu, J.S.: Multi-stacked pdms-based triboelectric generators with conductive textile for efficient energy harvesting. RSC Adv. 5(9), 6437–6442 (2015)CrossRef
140.
Zurück zum Zitat Seung, W., Gupta, M.K., Lee, K.Y., Shin, K.S., Lee, J.H., Kim, T.Y., Kim, S., Lin, J., Kim, J.H., Kim, S.W.: Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9(4), 3501–3509 (2015)CrossRef Seung, W., Gupta, M.K., Lee, K.Y., Shin, K.S., Lee, J.H., Kim, T.Y., Kim, S., Lin, J., Kim, J.H., Kim, S.W.: Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9(4), 3501–3509 (2015)CrossRef
141.
Zurück zum Zitat Lee, S., Ko, W., Oh, Y., Lee, J., Baek, G., Lee, Y., Sohn, J., Cha, S., Kim, J., Park, J., et al.: Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 12, 410–418 (2015)CrossRef Lee, S., Ko, W., Oh, Y., Lee, J., Baek, G., Lee, Y., Sohn, J., Cha, S., Kim, J., Park, J., et al.: Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 12, 410–418 (2015)CrossRef
142.
Zurück zum Zitat Kim, K.N., Chun, J., Kim, J.W., Lee, K.Y., Park, J.U., Kim, S.W., Wang, Z.L., Baik, J.M.: Highly stretchable 2d fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9(6), 6394–6400 (2015)CrossRef Kim, K.N., Chun, J., Kim, J.W., Lee, K.Y., Park, J.U., Kim, S.W., Wang, Z.L., Baik, J.M.: Highly stretchable 2d fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9(6), 6394–6400 (2015)CrossRef
143.
Zurück zum Zitat Hu, L., Wu, H., La Mantia, F., Yang, Y., Cui, Y.: Thin, flexible secondary li-ion paper batteries. Acs Nano 4(10), 5843–5848 (2010)CrossRef Hu, L., Wu, H., La Mantia, F., Yang, Y., Cui, Y.: Thin, flexible secondary li-ion paper batteries. Acs Nano 4(10), 5843–5848 (2010)CrossRef
144.
Zurück zum Zitat Yu, G., Hu, L., Vosgueritchian, M., Wang, H., Xie, X., McDonough, J.R., Cui, X., Cui, Y., Bao, Z.: Solution-processed graphene/mno2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11(7), 2905–2911 (2011)CrossRef Yu, G., Hu, L., Vosgueritchian, M., Wang, H., Xie, X., McDonough, J.R., Cui, X., Cui, Y., Bao, Z.: Solution-processed graphene/mno2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11(7), 2905–2911 (2011)CrossRef
145.
Zurück zum Zitat Kwon, Y.H., Woo, S.W., Jung, H.R., Yu, H.K., Kim, K., Oh, B.H., Ahn, S., Lee, S.Y., Song, S.W., Cho, J., et al.: Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 24(38), 5192–5197 (2012)CrossRef Kwon, Y.H., Woo, S.W., Jung, H.R., Yu, H.K., Kim, K., Oh, B.H., Ahn, S., Lee, S.Y., Song, S.W., Cho, J., et al.: Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 24(38), 5192–5197 (2012)CrossRef
146.
Zurück zum Zitat Pu, X., Li, L., Song, H., Du, C., Zhao, Z., Jiang, C., Cao, G., Hu, W., Wang, Z.L.: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27(15), 2472–2478 (2015)CrossRef Pu, X., Li, L., Song, H., Du, C., Zhao, Z., Jiang, C., Cao, G., Hu, W., Wang, Z.L.: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27(15), 2472–2478 (2015)CrossRef
Metadaten
Titel
Energy Harvesting Smart Textiles
verfasst von
Derman Vatansever Bayramol
Navneet Soin
Tahir Shah
Elias Siores
Dimitroula Matsouka
Savvas Vassiliadis
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50124-6_10

Neuer Inhalt