Skip to main content

2018 | OriginalPaper | Buchkapitel

A Computational Approach to the Design of Scaffolds for Bone Tissue Engineering

verfasst von : Antonio Boccaccio, Antonio Emmanuele Uva, Michele Fiorentino, Vitoantonio Bevilacqua, Carmine Pappalettere, Giuseppe Monno

Erschienen in: Advances in Bionanomaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Design of scaffolds for tissue engineering entails multi-disciplinary and multi-scale aspects. Since in vivo analysis of the tissue regeneration process is quite difficult in terms of selecting experimental protocols and requires considerable amount of time, a variety of numerical models have been developed to simulate mechanisms of tissue differentiation. The tremendous enhancement in computing power led researchers to develop more and more sophisticated models mostly based on finite element techniques and mechano-regulation computational models. In this article, we present an algorithm that combines the finite element model of an open-porous scaffold, a numerical optimization routine and a mechanobiological model. This algorithm has been utilized to determine both, the best scaffold geometry and the best load value (to apply on the scaffold) that allow the bone formation to be maximized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O’Brien, F.: Biomaterials & scaffolds for tissue engineering. Mater. today 14, 88–95 (2011)CrossRef O’Brien, F.: Biomaterials & scaffolds for tissue engineering. Mater. today 14, 88–95 (2011)CrossRef
2.
Zurück zum Zitat Lacroix, D., Planell, J.A., Prendergast, P.J.: Computer-aided design and finite element modelling of biomaterial scaffolds for bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1993–2009 (2009)CrossRefMATH Lacroix, D., Planell, J.A., Prendergast, P.J.: Computer-aided design and finite element modelling of biomaterial scaffolds for bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1993–2009 (2009)CrossRefMATH
3.
Zurück zum Zitat Sanz-Herrera, J.A., García-Aznar, J.M., Doblaré, M.: A mathematical approach to bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci. 367, 2055–2078 (2009)MathSciNetCrossRefMATH Sanz-Herrera, J.A., García-Aznar, J.M., Doblaré, M.: A mathematical approach to bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci. 367, 2055–2078 (2009)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Karageorgiou, V., Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005)CrossRef Karageorgiou, V., Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005)CrossRef
5.
Zurück zum Zitat Sun, W., Lal, P.: Recent development on computer aided tissue engineering—a review. Comput. Methods Programs Biomed. 67, 85–103 (2002)CrossRef Sun, W., Lal, P.: Recent development on computer aided tissue engineering—a review. Comput. Methods Programs Biomed. 67, 85–103 (2002)CrossRef
6.
Zurück zum Zitat Sun, W., Darling, A., Starly, B., Nam, J.: Computer aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem. 39, 29–47 (2004)CrossRef Sun, W., Darling, A., Starly, B., Nam, J.: Computer aided tissue engineering: overview, scope and challenges. Biotechnol. Appl. Biochem. 39, 29–47 (2004)CrossRef
7.
Zurück zum Zitat Sun, W., Starly, B., Darling, A., Gomez, C.: Computer aided tissue engineering: biomimetic modelling and design of tissue engineering. Biotechnol. Appl. Biochem. 39, 49–58 (2004)CrossRef Sun, W., Starly, B., Darling, A., Gomez, C.: Computer aided tissue engineering: biomimetic modelling and design of tissue engineering. Biotechnol. Appl. Biochem. 39, 49–58 (2004)CrossRef
8.
Zurück zum Zitat Zadpoor, A.A.: Bone tissue regeneration: the role of scaffold geometry. Biomater. Sci. 3, 231–245 (2015)CrossRef Zadpoor, A.A.: Bone tissue regeneration: the role of scaffold geometry. Biomater. Sci. 3, 231–245 (2015)CrossRef
9.
Zurück zum Zitat Rumpler, M., Woesz, A., Dunlop, J.W., van Dongen, J.T., Fratzl, P.: The effect of geometry on three-dimensional tissue growth. J. R. Soc. Interface 5, 1173–1180 (2008)CrossRef Rumpler, M., Woesz, A., Dunlop, J.W., van Dongen, J.T., Fratzl, P.: The effect of geometry on three-dimensional tissue growth. J. R. Soc. Interface 5, 1173–1180 (2008)CrossRef
10.
Zurück zum Zitat Bidan, C.M., Kommareddy, K.P., Rumpler, M., Kollmannsberger, P., Bréchet, Y.J., Fratzl, P., Dunlop, J.W.: How linear tension converts to curvature: geometric control of bone tissue growth. PLoS ONE 7, e36336 (2012)CrossRef Bidan, C.M., Kommareddy, K.P., Rumpler, M., Kollmannsberger, P., Bréchet, Y.J., Fratzl, P., Dunlop, J.W.: How linear tension converts to curvature: geometric control of bone tissue growth. PLoS ONE 7, e36336 (2012)CrossRef
11.
Zurück zum Zitat Boccaccio, A., Ballini, A., Pappalettere, C., Tullo, D., Cantore, S., Desiate, A.: Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int. J. Biol. Sci. 7, 112–132 (2011)CrossRef Boccaccio, A., Ballini, A., Pappalettere, C., Tullo, D., Cantore, S., Desiate, A.: Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int. J. Biol. Sci. 7, 112–132 (2011)CrossRef
12.
Zurück zum Zitat Boccaccio, A., Messina, A., Pappalettere, C., Scaraggi, M.: Finite element modelling of bone tissue scaffolds. In: Zhongmin, J. (ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, pp. 485–511 (2014) Boccaccio, A., Messina, A., Pappalettere, C., Scaraggi, M.: Finite element modelling of bone tissue scaffolds. In: Zhongmin, J. (ed.) Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, pp. 485–511 (2014)
13.
Zurück zum Zitat Guyot, Y., Papantoniou, I., Chai, Y.C., Van Bael, S., Schrooten, J., Geris, L.: A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study. Biomech. Model. Mechanobiol. 13, 1361–1371 (2014)CrossRef Guyot, Y., Papantoniou, I., Chai, Y.C., Van Bael, S., Schrooten, J., Geris, L.: A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study. Biomech. Model. Mechanobiol. 13, 1361–1371 (2014)CrossRef
14.
Zurück zum Zitat Menolascina, F., Bellomo, D., Maiwald, T., Bevilacqua, V., Ciminelli, C., Paradiso, A., Tommasi, S.: Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinformatics. 10(S-12) pp. 4, (2009) Menolascina, F., Bellomo, D., Maiwald, T., Bevilacqua, V., Ciminelli, C., Paradiso, A., Tommasi, S.: Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinformatics. 10(S-12) pp. 4, (2009)
15.
Zurück zum Zitat Bevilacqua, V., Ivona, F., Cafarchia, D., Marino, F.: An evolutionary optimization method for parameter search in 3d points cloud reconstruction. In: Intelligent Computing Theories. Lecture Notes in Computer Science, vol. 7995 pp. 601–611. Springer (2013) Bevilacqua, V., Ivona, F., Cafarchia, D., Marino, F.: An evolutionary optimization method for parameter search in 3d points cloud reconstruction. In: Intelligent Computing Theories. Lecture Notes in Computer Science, vol. 7995 pp. 601–611. Springer (2013)
16.
Zurück zum Zitat Byrne, D.P., Lacroix, D., Planell, J.A., Kelly, D.J., Prendergast, P.J.: Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28, 5544–5554 (2007)CrossRef Byrne, D.P., Lacroix, D., Planell, J.A., Kelly, D.J., Prendergast, P.J.: Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28, 5544–5554 (2007)CrossRef
17.
Zurück zum Zitat Boccaccio, A., Prendergast, P.J., Pappalettere, C., Kelly, D.J.: Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med. Biol. Eng. Comput. 46, 283–298 (2008)CrossRef Boccaccio, A., Prendergast, P.J., Pappalettere, C., Kelly, D.J.: Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med. Biol. Eng. Comput. 46, 283–298 (2008)CrossRef
18.
Zurück zum Zitat Boccaccio, A., Pappalettere, C., Kelly, D.J.: The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann. Biomed. Eng. 35, 1940–1960 (2007)CrossRef Boccaccio, A., Pappalettere, C., Kelly, D.J.: The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Ann. Biomed. Eng. 35, 1940–1960 (2007)CrossRef
19.
Zurück zum Zitat Boccaccio, A., Lamberti, L., Pappalettere, C.: Effects of aging on the latency period in mandibular distraction osteogenesis: a computational mechano-biological analysis. J. Mech. Med. Biol. 8, 203–225 (2008)CrossRef Boccaccio, A., Lamberti, L., Pappalettere, C.: Effects of aging on the latency period in mandibular distraction osteogenesis: a computational mechano-biological analysis. J. Mech. Med. Biol. 8, 203–225 (2008)CrossRef
20.
Zurück zum Zitat Boccaccio, A., Kelly, D.J., Pappalettere, C.: A Mechano-Regulation Model of Fracture Repair in Vertebral Bodies. J. Orthop. Res. 29, 433–443 (2011)CrossRef Boccaccio, A., Kelly, D.J., Pappalettere, C.: A Mechano-Regulation Model of Fracture Repair in Vertebral Bodies. J. Orthop. Res. 29, 433–443 (2011)CrossRef
21.
Zurück zum Zitat Boccaccio, A., Kelly, D.J., Pappalettere, C.: A model of tissue differentiation and bone remodelling in fractured vertebrae treated with minimally invasive percutaneous fixation. Med. Biol. Eng. Comput. 50, 947–959 (2012)CrossRef Boccaccio, A., Kelly, D.J., Pappalettere, C.: A model of tissue differentiation and bone remodelling in fractured vertebrae treated with minimally invasive percutaneous fixation. Med. Biol. Eng. Comput. 50, 947–959 (2012)CrossRef
22.
Zurück zum Zitat Boccaccio, A., Uva, A.E., Fiorentino, M., Lamberti, L., Monno, G.: A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds. Int. J. Biol. Sci. 12, 1–17 (2016)CrossRef Boccaccio, A., Uva, A.E., Fiorentino, M., Lamberti, L., Monno, G.: A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds. Int. J. Biol. Sci. 12, 1–17 (2016)CrossRef
23.
Zurück zum Zitat Bevilacqua, V., Filograno, G., Fiorentino, M., Uva, A.E. Early diagnosis of lung tumors by genetically optimized 3d-metaball malignancy metric. In Genetic and Evolutionary Computation Conference, GECCO ’12, pages 531–538. ACM (2012) Bevilacqua, V., Filograno, G., Fiorentino, M., Uva, A.E. Early diagnosis of lung tumors by genetically optimized 3d-metaball malignancy metric. In Genetic and Evolutionary Computation Conference, GECCO ’12, pages 531–538. ACM (2012)
24.
Zurück zum Zitat Fiorentino, M., Monno, G., Uva, A.E.: Interactive ‘touch and see’ FEM simulation using augmented reality. Int. J. Eng. Educ. 25, 1124–1128 (2009) Fiorentino, M., Monno, G., Uva, A.E.: Interactive ‘touch and see’ FEM simulation using augmented reality. Int. J. Eng. Educ. 25, 1124–1128 (2009)
25.
Zurück zum Zitat Boccaccio, A., Uva, A.E., Fiorentino, M., Mori, G., Monno, G.: Geometry design optimization of functionally graded scaffolds for bone tissue engineering: a mechanobiological approach. PLoS ONE 11, e0146935 (2016)CrossRef Boccaccio, A., Uva, A.E., Fiorentino, M., Mori, G., Monno, G.: Geometry design optimization of functionally graded scaffolds for bone tissue engineering: a mechanobiological approach. PLoS ONE 11, e0146935 (2016)CrossRef
26.
Zurück zum Zitat Prendergast, P.J., Huiskes, R., Søballe, K.: Biophisical stimuli on cells during tissue differentiation at implant interfaces. J. Biomec. 30, 539–548 (1997)CrossRef Prendergast, P.J., Huiskes, R., Søballe, K.: Biophisical stimuli on cells during tissue differentiation at implant interfaces. J. Biomec. 30, 539–548 (1997)CrossRef
27.
Zurück zum Zitat Huiskes, R., van Driel, W.D., Prendergast, P.J., Søballe, K.: A biomechanical regulatory model of periprosthetic tissue differentiation. J. Mater. Sci. Mater. Med. 8, 785–788 (1997)CrossRef Huiskes, R., van Driel, W.D., Prendergast, P.J., Søballe, K.: A biomechanical regulatory model of periprosthetic tissue differentiation. J. Mater. Sci. Mater. Med. 8, 785–788 (1997)CrossRef
28.
Zurück zum Zitat Mehdizadeh, H., Sumo, S., Bayrak, E.S., Brey, E.M., Cinar, A.: Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds. Biomaterials 34, 2875–2887 (2013)CrossRef Mehdizadeh, H., Sumo, S., Bayrak, E.S., Brey, E.M., Cinar, A.: Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds. Biomaterials 34, 2875–2887 (2013)CrossRef
Metadaten
Titel
A Computational Approach to the Design of Scaffolds for Bone Tissue Engineering
verfasst von
Antonio Boccaccio
Antonio Emmanuele Uva
Michele Fiorentino
Vitoantonio Bevilacqua
Carmine Pappalettere
Giuseppe Monno
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62027-5_10

Neuer Inhalt