Skip to main content

2009 | OriginalPaper | Buchkapitel

Euler Tour Lock-In Problem in the Rotor-Router Model

I Choose Pointers and You Choose Port Numbers

verfasst von : Evangelos Bampas, Leszek Gąsieniec, Nicolas Hanusse, David Ilcinkas, Ralf Klasing, Adrian Kosowski

Erschienen in: Distributed Computing

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

The

rotor-router model

, also called the

Propp machine

, was first considered as a deterministic alternative to the random walk. It is known that the route in an undirected graph

G

 = (

V

,

E

), where |

V

| = 

n

and |

E

| = 

m

, adopted by an agent controlled by the rotor-router mechanism forms eventually an Euler tour based on arcs obtained via replacing each edge in

G

by two arcs with opposite direction. The process of ushering the agent to an Euler tour is referred to as the

lock-in problem

. In recent work [11] Yanovski et al. proved that independently of the initial configuration of the rotor-router mechanism in

G

the agent locks-in in time bounded by 2

mD

, where

D

is the diameter of

G

.

In this paper we examine the dependence of the lock-in time on the initial configuration of the rotor-router mechanism. The case study is performed in the form of a game between a player

$\cal P$

intending to lock-in the agent in an Euler tour as quickly as possible and its adversary

$\cal A$

with the counter objective. First, we observe that in certain (easy) cases the lock-in can be achieved in time

O

(

m

). On the other hand we show that if adversary

$\cal A$

is solely responsible for the assignment of ports and pointers, the lock-in time Ω(

m

·

D

) can be enforced in any graph with

m

edges and diameter

D

. Furthermore, we show that if

$\cal A$

provides its own port numbering after the initial setup of pointers by

$\cal P$

, the complexity of the lock-in problem is bounded by

O

(

m

· min {log

m

,

D

}). We also propose a class of graphs in which the lock-in requires time Ω(

m

·log

m

). In the remaining two cases we show that the lock-in requires time Ω(

m

·

D

) in graphs with the worst-case topology. In addition, however, we present non-trivial classes of graphs with a large diameter in which the lock-in time is

O

(

m

).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadaten
Titel
Euler Tour Lock-In Problem in the Rotor-Router Model
verfasst von
Evangelos Bampas
Leszek Gąsieniec
Nicolas Hanusse
David Ilcinkas
Ralf Klasing
Adrian Kosowski
Copyright-Jahr
2009
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-04355-0_44