Skip to main content

2011 | OriginalPaper | Buchkapitel

7. Nanocellulose-Based Composites

verfasst von : Kelley Spence, Youssef Habibi, Alain Dufresne

Erschienen in: Cellulose Fibers: Bio- and Nano-Polymer Composites

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When subjected to acid hydrolysis or mechanical shearing, lignocellulosic fibers yield defect-free, rod-like, or elongated fibrillar nanoparticles. These nanoparticles have particularly received great attention as reinforcing fillers in nanocomposite materials due to their low cost, availability, renewability, light weight, nanoscale dimension, and unique morphology. Preparation, morphological features, and physical properties of nanocelluloses are discussed in this chapter. Their incorporation in nanocomposite materials including processing methods and ensuing properties such as microstructure, thermal properties, mechanical performances, swelling behavior, and barrier properties are also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353 Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353
Zurück zum Zitat Anglès MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34:2921–2931 Anglès MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34:2921–2931
Zurück zum Zitat Araki J, Wada M, Kuga S et al (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82 Araki J, Wada M, Kuga S et al (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82
Zurück zum Zitat Araki J, Wada M, Kuga S et al (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261 Araki J, Wada M, Kuga S et al (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261
Zurück zum Zitat Araki J, Wada M, Kuga S et al (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16:2413–2415 Araki J, Wada M, Kuga S et al (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16:2413–2415
Zurück zum Zitat Araki J, Wada M, Kuga S (2001) Steric stabilization of cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27 Araki J, Wada M, Kuga S (2001) Steric stabilization of cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27
Zurück zum Zitat Aulin C, Varga I, Claesson PM et al (2008) Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation. Langmuir 24:2509–2518 Aulin C, Varga I, Claesson PM et al (2008) Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation. Langmuir 24:2509–2518
Zurück zum Zitat Aulin C, Johansson E, Wågberg L et al (2010) Self-organized films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules 11:872–882 Aulin C, Johansson E, Wågberg L et al (2010) Self-organized films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules 11:872–882
Zurück zum Zitat Azeredo H, Henrique C, Mattoso L, Wood D et al (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:N31–N35 Azeredo H, Henrique C, Mattoso L, Wood D et al (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:N31–N35
Zurück zum Zitat Azeredo HMC, Mattoso HLC, Avena-Bustillos RJ et al (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7 Azeredo HMC, Mattoso HLC, Avena-Bustillos RJ et al (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7
Zurück zum Zitat Azizi Samir MAS, Alloin F, Gorecki W et al (2004a) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852 Azizi Samir MAS, Alloin F, Gorecki W et al (2004a) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852
Zurück zum Zitat Azizi Samir MAS, Alloin F, Paillet M et al (2004b) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316 Azizi Samir MAS, Alloin F, Paillet M et al (2004b) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316
Zurück zum Zitat Azizi Samir MAS, Alloin F, Sanchez J-Y et al (2004c) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157 Azizi Samir MAS, Alloin F, Sanchez J-Y et al (2004c) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157
Zurück zum Zitat Azizi Samir MAS, Alloin F, Sanchez J-Y et al (2004d) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37:4839–4844 Azizi Samir MAS, Alloin F, Sanchez J-Y et al (2004d) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37:4839–4844
Zurück zum Zitat Azizi Samir MAS, Alloin F, Sanchez J-Y et al (2004e) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37:1386–1393 Azizi Samir MAS, Alloin F, Sanchez J-Y et al (2004e) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37:1386–1393
Zurück zum Zitat Azizi Samir MAS, Mateos AM, Alloin F et al (2004f) Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochim Acta 49:4667–4677 Azizi Samir MAS, Mateos AM, Alloin F et al (2004f) Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochim Acta 49:4667–4677
Zurück zum Zitat Azizi Samir MAS, Alloin F, Dufresne A (2005a) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626 Azizi Samir MAS, Alloin F, Dufresne A (2005a) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626
Zurück zum Zitat Azizi Samir MAS, Chazeau L, Alloin F et al (2005b) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim Acta 50:3897–3903 Azizi Samir MAS, Chazeau L, Alloin F et al (2005b) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim Acta 50:3897–3903
Zurück zum Zitat Azizi Samir MAS, Alloin F, Dufresne A (2006) High performance nanocomposite polymer electrolytes. Compos Interfaces 13:545–559 Azizi Samir MAS, Alloin F, Dufresne A (2006) High performance nanocomposite polymer electrolytes. Compos Interfaces 13:545–559
Zurück zum Zitat Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054 Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054
Zurück zum Zitat Ben Elmabrouk A, Wim T, Dufresne A et al (2009) Preparation of poly(styrene-co-hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization. J Appl Polym Sci 114:2946–2955 Ben Elmabrouk A, Wim T, Dufresne A et al (2009) Preparation of poly(styrene-co-hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization. J Appl Polym Sci 114:2946–2955
Zurück zum Zitat Bendahou A, Habibi Y, Kaddami H et al (2009) Physico-chemical characterization of palm from Phoenix dactylifera-L, preparation of cellulose whiskers and natural rubber-based nanocomposites. J Biobased Mater Bioenergy 3:81–90 Bendahou A, Habibi Y, Kaddami H et al (2009) Physico-chemical characterization of palm from Phoenix dactylifera-L, preparation of cellulose whiskers and natural rubber-based nanocomposites. J Biobased Mater Bioenergy 3:81–90
Zurück zum Zitat Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620 Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620
Zurück zum Zitat Bondeson D, Oksman K (2007) Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos Part A 38A:2486–2492 Bondeson D, Oksman K (2007) Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos Part A 38A:2486–2492
Zurück zum Zitat Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180 Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180
Zurück zum Zitat Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341 Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341
Zurück zum Zitat Braun B, Dorgan JR, Chandler JP (2008) Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh−Gans−Debye regime. Biomacromolecules 9:1255–1263 Braun B, Dorgan JR, Chandler JP (2008) Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh−Gans−Debye regime. Biomacromolecules 9:1255–1263
Zurück zum Zitat Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904 Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904
Zurück zum Zitat Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane–cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145 Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane–cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145
Zurück zum Zitat Chang PR, Jian R, Zheng P et al (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79:301–305 Chang PR, Jian R, Zheng P et al (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79:301–305
Zurück zum Zitat Chauve G, Heux L, Arouini R et al (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6:2025–2031 Chauve G, Heux L, Arouini R et al (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6:2025–2031
Zurück zum Zitat Chazeau L, Cavaillé JY, Canova G et al (1999a) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71:1797–1808 Chazeau L, Cavaillé JY, Canova G et al (1999a) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71:1797–1808
Zurück zum Zitat Chazeau L, Cavaillé JY, Terech P (1999b) Mechanical behaviour above Tg of a plasticised PVC reinforced with cellulose whiskers; a SANS structural study. Polymer 40:5333–5344 Chazeau L, Cavaillé JY, Terech P (1999b) Mechanical behaviour above Tg of a plasticised PVC reinforced with cellulose whiskers; a SANS structural study. Polymer 40:5333–5344
Zurück zum Zitat Chazeau L, Paillet M, Cavaillé JY (1999c) Plasticized PVC reinforced with cellulose whiskers. I. Linear viscoelastic behavior analyzed through the quasi-point defect theory. J Polym Sci Part B: Polym Phys 37:2151–2164 Chazeau L, Paillet M, Cavaillé JY (1999c) Plasticized PVC reinforced with cellulose whiskers. I. Linear viscoelastic behavior analyzed through the quasi-point defect theory. J Polym Sci Part B: Polym Phys 37:2151–2164
Zurück zum Zitat Chazeau L, Cavaille JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior. J Polym Sci Part B: Polym Phys 38:383–392 Chazeau L, Cavaille JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior. J Polym Sci Part B: Polym Phys 38:383–392
Zurück zum Zitat Chen G, Dufresne A, Huang J et al (2009) A novel thermoformable bionanocomposite based on cellulose nanocrystal-graft-poly(e-caprolactone). Macromol Mater Eng 294:59–67 Chen G, Dufresne A, Huang J et al (2009) A novel thermoformable bionanocomposite based on cellulose nanocrystal-graft-poly(e-caprolactone). Macromol Mater Eng 294:59–67
Zurück zum Zitat Choi Y, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6:633–639 Choi Y, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6:633–639
Zurück zum Zitat Cranston ED, Gray DG (2006a) Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci Technol Adv Mater 7:319–321 Cranston ED, Gray DG (2006a) Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci Technol Adv Mater 7:319–321
Zurück zum Zitat Cranston ED, Gray DG (2006b) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7:2522–2530 Cranston ED, Gray DG (2006b) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7:2522–2530
Zurück zum Zitat Dalmas F, Chazeau L, Gauthier C et al (2006) Large deformation mechanical behavior of flexible nanofiber filled polymer nanocomposites. Polymer 47:2802–2812 Dalmas F, Chazeau L, Gauthier C et al (2006) Large deformation mechanical behavior of flexible nanofiber filled polymer nanocomposites. Polymer 47:2802–2812
Zurück zum Zitat de Menezes JA, Siqueira G, Curvelo AAS et al (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563 de Menezes JA, Siqueira G, Curvelo AAS et al (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563
Zurück zum Zitat de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480 de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480
Zurück zum Zitat de Souza Lima MM, Wong JT, Paillet M et al (2003) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19:24–29 de Souza Lima MM, Wong JT, Paillet M et al (2003) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19:24–29
Zurück zum Zitat Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188 Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188
Zurück zum Zitat Dinand E, Chanzy H, Vignon R (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13:275–283 Dinand E, Chanzy H, Vignon R (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13:275–283
Zurück zum Zitat Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32 Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32
Zurück zum Zitat Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(beta-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771 Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(beta-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771
Zurück zum Zitat Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7:53–67 Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7:53–67
Zurück zum Zitat Dufresne A (2006) Comparing the mechanical properties of high performance polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330 Dufresne A (2006) Comparing the mechanical properties of high performance polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330
Zurück zum Zitat Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696 Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696
Zurück zum Zitat Dufresne A, Cavaille JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:199 Dufresne A, Cavaille JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:199
Zurück zum Zitat Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32:7396–7401 Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32:7396–7401
Zurück zum Zitat Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092 Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092
Zurück zum Zitat Ebeling T, Paillet M, Borsali R et al (1999) Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15:6123–6126 Ebeling T, Paillet M, Borsali R et al (1999) Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15:6123–6126
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65 Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65
Zurück zum Zitat Eyholzer C, Bordeanu N, Lopez-Suevos F et al (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30 Eyholzer C, Bordeanu N, Lopez-Suevos F et al (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30
Zurück zum Zitat Favier V, Canova GR, Cavaillé JY et al (1995a) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355 Favier V, Canova GR, Cavaillé JY et al (1995a) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355
Zurück zum Zitat Favier V, Chanzy H, Cavaillé JY (1995b) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367 Favier V, Chanzy H, Cavaillé JY (1995b) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367
Zurück zum Zitat Favier V, Canova GR, Shrivastavas C et al (1997a) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739 Favier V, Canova GR, Shrivastavas C et al (1997a) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739
Zurück zum Zitat Favier V, Dendievel R, Canova G et al (1997b) Simulation and modeling of three-dimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Mater 45:1557–1565 Favier V, Dendievel R, Canova G et al (1997b) Simulation and modeling of three-dimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Mater 45:1557–1565
Zurück zum Zitat Fengel D, Wegener G (1983) Wood, chemistry, ultrastructure, reactions. Walter de Gruyter, New York Fengel D, Wegener G (1983) Wood, chemistry, ultrastructure, reactions. Walter de Gruyter, New York
Zurück zum Zitat Fleming K, Gray DG, Prasannan S et al (2000) Cellulose nanocrystals: a new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J Am Chem Soc 122:5224–5225 Fleming K, Gray DG, Prasannan S et al (2000) Cellulose nanocrystals: a new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J Am Chem Soc 122:5224–5225
Zurück zum Zitat Fukuzumi H, Saito T, Iwata T et al (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165 Fukuzumi H, Saito T, Iwata T et al (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165
Zurück zum Zitat Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270 Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270
Zurück zum Zitat Goussé C, Chanzy H, Excoffier G et al (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651 Goussé C, Chanzy H, Excoffier G et al (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651
Zurück zum Zitat Gray DG (2008) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15:297–301 Gray DG (2008) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15:297–301
Zurück zum Zitat Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703 Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703
Zurück zum Zitat Grunnert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30 Grunnert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30
Zurück zum Zitat Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980 Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980
Zurück zum Zitat Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687 Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687
Zurück zum Zitat Habibi Y, Foulon L, Aguié-Béghin V et al (2007) Langmuir–Blodgett films of cellulose nanocrystals: preparation and characterization. J Colloid Interface Sci 316:388–397 Habibi Y, Foulon L, Aguié-Béghin V et al (2007) Langmuir–Blodgett films of cellulose nanocrystals: preparation and characterization. J Colloid Interface Sci 316:388–397
Zurück zum Zitat Habibi Y, Goffin A-L, Schiltz N et al (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring opening polymerization. J Mater Chem 18:5002–5010 Habibi Y, Goffin A-L, Schiltz N et al (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring opening polymerization. J Mater Chem 18:5002–5010
Zurück zum Zitat Habibi Y, Mahrouz M, Vignon M (2009) Microfibrillated cellulose from the peel of prickly pear fruits. Food Chem 115:423–429 Habibi Y, Mahrouz M, Vignon M (2009) Microfibrillated cellulose from the peel of prickly pear fruits. Food Chem 115:423–429
Zurück zum Zitat Hajji P, Cavaillé JY, Favier V et al (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17:612–619 Hajji P, Cavaillé JY, Favier V et al (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17:612–619
Zurück zum Zitat Hanley SJ, Giasson J, Revol JF et al (1992) Atomic force microscopy of cellulose microfibrils – comparison with transmission electron-microscopy. Polymer 33:4639–4642 Hanley SJ, Giasson J, Revol JF et al (1992) Atomic force microscopy of cellulose microfibrils – comparison with transmission electron-microscopy. Polymer 33:4639–4642
Zurück zum Zitat Helbert W, Cavaille JY, Dufresne A (1996a) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polym Compos 17:604–611 Helbert W, Cavaille JY, Dufresne A (1996a) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polym Compos 17:604–611
Zurück zum Zitat Helbert W, Cavaillé JY, Dufresne A (1996b) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611 Helbert W, Cavaillé JY, Dufresne A (1996b) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611
Zurück zum Zitat Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824 Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824
Zurück zum Zitat Henriksson M, Henriksson G, Berglund LA et al (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441 Henriksson M, Henriksson G, Berglund LA et al (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441
Zurück zum Zitat Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212 Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212
Zurück zum Zitat Huang ZM, Zhang YZ, Kotaki M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253 Huang ZM, Zhang YZ, Kotaki M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253
Zurück zum Zitat Ifuku S, Nogi M, Abe K et al (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978 Ifuku S, Nogi M, Abe K et al (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978
Zurück zum Zitat Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026 Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026
Zurück zum Zitat Iwamoto S, Kai W, Isogai A et al (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576 Iwamoto S, Kai W, Isogai A et al (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576
Zurück zum Zitat Jean B, Dubreuil F, Heux L et al (2008) Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 24:3452–3458 Jean B, Dubreuil F, Heux L et al (2008) Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 24:3452–3458
Zurück zum Zitat Jean B, Heux L, Dubreuil F et al (2009) Non-electrostatic building of biomimetic cellulose–xyloglucan multilayers. Langmuir 25:3920–3923 Jean B, Heux L, Dubreuil F et al (2009) Non-electrostatic building of biomimetic cellulose–xyloglucan multilayers. Langmuir 25:3920–3923
Zurück zum Zitat Kim UJ, Kuga S, Wada M et al (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492 Kim UJ, Kuga S, Wada M et al (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492
Zurück zum Zitat Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393 Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393
Zurück zum Zitat Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165 Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165
Zurück zum Zitat Kvien I, Sugiyama J, Votrubec M et al (2007) Characterization of starch based nanocomposites. J Mater Sci 42:8163–8171 Kvien I, Sugiyama J, Votrubec M et al (2007) Characterization of starch based nanocomposites. J Mater Sci 42:8163–8171
Zurück zum Zitat Li R, Fei J, Cai Y et al (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99 Li R, Fei J, Cai Y et al (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99
Zurück zum Zitat Li Z, Renneckar S, Barone JR (2010) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17:57–68 Li Z, Renneckar S, Barone JR (2010) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17:57–68
Zurück zum Zitat Lin N, Chen G, Huang J et al (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425 Lin N, Chen G, Huang J et al (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425
Zurück zum Zitat Lindström T, Ankerfors M and Henriksson G (2007) Method for treating chemical pulp for manufacturing microfibrillated cellulose. WO Patent, STFI-Packforsk AB: p 14 Lindström T, Ankerfors M and Henriksson G (2007) Method for treating chemical pulp for manufacturing microfibrillated cellulose. WO Patent, STFI-Packforsk AB: p 14
Zurück zum Zitat Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739 Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739
Zurück zum Zitat Ljungberg N, Cavaillé J-Y, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292 Ljungberg N, Cavaillé J-Y, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292
Zurück zum Zitat Lu Y, Weng L, Cao X (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromol Biosci 5:1101–1107 Lu Y, Weng L, Cao X (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromol Biosci 5:1101–1107
Zurück zum Zitat Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A 39A:738–746 Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A 39A:738–746
Zurück zum Zitat Magalhaes WLE, Cao X, Lucia LA (2009) Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. Langmuir. doi:10.1021/la901928j Magalhaes WLE, Cao X, Lucia LA (2009) Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. Langmuir. doi:10.​1021/​la901928j
Zurück zum Zitat Malainine ME, Mahrouz M, Dufresne A (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526 Malainine ME, Mahrouz M, Dufresne A (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526
Zurück zum Zitat Marchessault RH, Sundararajan PR (1983) Cellulose. In: Aspinall GO (ed) The polysaccharides. Academic, New York Marchessault RH, Sundararajan PR (1983) Cellulose. In: Aspinall GO (ed) The polysaccharides. Academic, New York
Zurück zum Zitat Marchessault RH, Morehead FF, Koch MJ (1961) Hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344 Marchessault RH, Morehead FF, Koch MJ (1961) Hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344
Zurück zum Zitat Marcovich NE, Auad ML, Bellesi NE et al (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870–881 Marcovich NE, Auad ML, Bellesi NE et al (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870–881
Zurück zum Zitat Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617 Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617
Zurück zum Zitat Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074 Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074
Zurück zum Zitat Matos Ruiz M, Cavaillé JY, Dufresne A et al (2001) New waterborne epoxy coatings based on cellulose nanofillers. Macromol Symp 169:211–222 Matos Ruiz M, Cavaillé JY, Dufresne A et al (2001) New waterborne epoxy coatings based on cellulose nanofillers. Macromol Symp 169:211–222
Zurück zum Zitat Medeiros ES, Mattoso LHC, Ito EN et al (2008) Electrospun nanofibers of poly(vinyl alcohol) reinforced with cellulose nanofibrils. J Biobased Mater Bioenergy 2:1–12 Medeiros ES, Mattoso LHC, Ito EN et al (2008) Electrospun nanofibers of poly(vinyl alcohol) reinforced with cellulose nanofibrils. J Biobased Mater Bioenergy 2:1–12
Zurück zum Zitat Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Process 78:547–552 Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Process 78:547–552
Zurück zum Zitat Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331 Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331
Zurück zum Zitat Nakagaito AN, Iwamoto S, Yano H (2004) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80:93–97 Nakagaito AN, Iwamoto S, Yano H (2004) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80:93–97
Zurück zum Zitat Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:243110–243112 Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:243110–243112
Zurück zum Zitat Nogi M, Abe K, Handa K et al (2006a) Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett 89:233123/233121–233123/233123 Nogi M, Abe K, Handa K et al (2006a) Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett 89:233123/233121–233123/233123
Zurück zum Zitat Nogi M, Ifuku S, Abe K et al (2006b) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88:133124/133121–133124/133123 Nogi M, Ifuku S, Abe K et al (2006b) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88:133124/133121–133124/133123
Zurück zum Zitat Noishiki Y, Nishiyama Y, Wada M et al (2002) Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci 86:3425–3429 Noishiki Y, Nishiyama Y, Wada M et al (2002) Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci 86:3425–3429
Zurück zum Zitat O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207 O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207
Zurück zum Zitat Oksman K, Mathew AP, Bondeson D et al (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784 Oksman K, Mathew AP, Bondeson D et al (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784
Zurück zum Zitat Orts WJ, Godbout L, Marchessault RH et al (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small-angle neutron scattering study. Macromolecules 31:5717–5725 Orts WJ, Godbout L, Marchessault RH et al (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small-angle neutron scattering study. Macromolecules 31:5717–5725
Zurück zum Zitat Orts WJ, Shey J, Imam SH et al (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306 Orts WJ, Shey J, Imam SH et al (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306
Zurück zum Zitat Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941 Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941
Zurück zum Zitat Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258 Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258
Zurück zum Zitat Park W-I, Kang M, Kim H-S et al (2007) Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. Macromol Symp 249(250):289–294 Park W-I, Kang M, Kim H-S et al (2007) Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. Macromol Symp 249(250):289–294
Zurück zum Zitat Payen A (1838) Mémoire sur la composition du tissu propre des plantes et du ligneux. C R Hebd Seances Acad Sci 7:1052–1056 Payen A (1838) Mémoire sur la composition du tissu propre des plantes et du ligneux. C R Hebd Seances Acad Sci 7:1052–1056
Zurück zum Zitat Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681 Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681
Zurück zum Zitat Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196 Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196
Zurück zum Zitat Podsiadlo P, Choi S-Y, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918 Podsiadlo P, Choi S-Y, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918
Zurück zum Zitat Revol JF (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2:123–134 Revol JF (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2:123–134
Zurück zum Zitat Revol JF, Bradford H, Giasson J et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172 Revol JF, Bradford H, Giasson J et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172
Zurück zum Zitat Revol JF, Godbout L, Dong XM et al (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134 Revol JF, Godbout L, Dong XM et al (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134
Zurück zum Zitat Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935 Rojas OJ, Montero GA, Habibi Y (2009) Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. J Appl Polym Sci 113:927–935
Zurück zum Zitat Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677 Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677
Zurück zum Zitat Roohani M, Habibi Y, Belgacem NM et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498 Roohani M, Habibi Y, Belgacem NM et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498
Zurück zum Zitat Saito T, Nishiyama Y, Putaux J et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691 Saito T, Nishiyama Y, Putaux J et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y et al (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491 Saito T, Kimura S, Nishiyama Y et al (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491
Zurück zum Zitat Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions oriented polymers. J Polym Sci 57:651–660 Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions oriented polymers. J Polym Sci 57:651–660
Zurück zum Zitat Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8:2976–2978 Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8:2976–2978
Zurück zum Zitat Seydibeyoğlu ÖM, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68:908–914 Seydibeyoğlu ÖM, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68:908–914
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432 Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432
Zurück zum Zitat Siqueira G, Abdillahi H, Bras J et al (2010a) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17:289–298 Siqueira G, Abdillahi H, Bras J et al (2010a) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17:289–298
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010b) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411 Siqueira G, Bras J, Dufresne A (2010b) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010c) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystals. BioResources 5:0727–0740 Siqueira G, Bras J, Dufresne A (2010c) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystals. BioResources 5:0727–0740
Zurück zum Zitat Sjöström E (1981) Wood chemistry: fundamentals and applications. Academic, New York Sjöström E (1981) Wood chemistry: fundamentals and applications. Academic, New York
Zurück zum Zitat Spence K, Venditti RA, Rojas OJ et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848 Spence K, Venditti RA, Rojas OJ et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848
Zurück zum Zitat Spence K, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Submitted Cellulose Spence K, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Submitted Cellulose
Zurück zum Zitat Stenstad P, Andresen M, Tanem BS et al (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45 Stenstad P, Andresen M, Tanem BS et al (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45
Zurück zum Zitat Šturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061 Šturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061
Zurück zum Zitat Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506 Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506
Zurück zum Zitat Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85 Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85
Zurück zum Zitat Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526 Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526
Zurück zum Zitat Tokoh C, Takabe K, Fujita M et al (1998) Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261 Tokoh C, Takabe K, Fujita M et al (1998) Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261
Zurück zum Zitat Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose: a new cellulose product: properties, uses, and commercial potential. J Appl Poly Sci: Appl Polym Symp 37:815–827 Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose: a new cellulose product: properties, uses, and commercial potential. J Appl Poly Sci: Appl Polym Symp 37:815–827
Zurück zum Zitat van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8:1353–1357 van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8:1353–1357
Zurück zum Zitat Wågberg L, Decher G, Norgren M et al (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795 Wågberg L, Decher G, Norgren M et al (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795
Zurück zum Zitat Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531 Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531
Zurück zum Zitat Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103 Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103
Zurück zum Zitat Whistler RL, Richards EL (1970) The Carbohydrates. Academic, New York Whistler RL, Richards EL (1970) The Carbohydrates. Academic, New York
Zurück zum Zitat Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromolecules 13:1183–1187 Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromolecules 13:1183–1187
Zurück zum Zitat Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mat 17:153–155 Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mat 17:153–155
Zurück zum Zitat Yuan H, Nishiyama Y, Wada M et al (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700 Yuan H, Nishiyama Y, Wada M et al (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700
Zurück zum Zitat Zimmerman T, Poehler E, Geiger T (2004a) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761 Zimmerman T, Poehler E, Geiger T (2004a) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761
Zurück zum Zitat Zimmerman T, Pöhler E, Geiger T (2004b) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761 Zimmerman T, Pöhler E, Geiger T (2004b) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761
Zurück zum Zitat Zimmermann T, Pöhler E, Schwaller P (2005) Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv Eng Mater 7:1156–1161 Zimmermann T, Pöhler E, Schwaller P (2005) Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv Eng Mater 7:1156–1161
Zurück zum Zitat Zoppe JO, Peresin MS, Habibi Y et al (2009) Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl Mater Interfaces 1:1996–2004 Zoppe JO, Peresin MS, Habibi Y et al (2009) Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl Mater Interfaces 1:1996–2004
Metadaten
Titel
Nanocellulose-Based Composites
verfasst von
Kelley Spence
Youssef Habibi
Alain Dufresne
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-17370-7_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.