Skip to main content

2012 | OriginalPaper | Buchkapitel

2. Lotus Versus Rose: Biomimetic Surface Effects

verfasst von : Michael Nosonovsky, Bharat Bhushan

Erschienen in: Green Tribology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Lotus and rose petal effects have become a subject of active investigation by scientists, as they involve different modes of the interaction of wetting with roughness. The contact angle (CA) and CA hysteresis are two parameters, which characterize the hydrophobicity/philicity of a solid surface. Lotus-effect surfaces have a high CA and low CA hysteresis. However, it was found recently that a high CA can coexist with strong adhesion between water and a solid surface (and high CA hysteresis) in the case of the so-called “rose petal effect.” It is clear now that wetting cannot be characterized by only the CA, since several modes or regimes of wetting of a rough surface can exist, including the Wenzel, Cassie, Lotus, and Petal regimes. This is due to the hierarchical structure of rough surfaces built of micro- and nanoscale roughness, so that a composite interface can exist at the microscale, while a homogeneous interface can exist at the nanoscale or vice versa. The understanding of the wetting of rough surfaces is important in order to design non-adhesive surfaces for various applications, including environmental.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 1999) B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 1999)
2.
Zurück zum Zitat B. Bhushan, Introduction to Tribology (Wiley, New York, 2002) B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)
3.
Zurück zum Zitat B. Bhushan, Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)CrossRef B. Bhushan, Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)CrossRef
4.
Zurück zum Zitat B. Bhushan, E.K. Her, Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 26, 8207–8217 (2010)CrossRef B. Bhushan, E.K. Her, Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 26, 8207–8217 (2010)CrossRef
5.
Zurück zum Zitat B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)CrossRef B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)CrossRef
6.
Zurück zum Zitat B. Bhushan, M. Nosonovsky, The rose petal effect and the modes of superhydrophobicity. Phil. Trans R. Soc. A 368, 4713–4728 (2010)MathSciNetMATHCrossRef B. Bhushan, M. Nosonovsky, The rose petal effect and the modes of superhydrophobicity. Phil. Trans R. Soc. A 368, 4713–4728 (2010)MathSciNetMATHCrossRef
7.
Zurück zum Zitat E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, Z. Barkay, Environmental scanning electron microscope study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates. Langmuir 23, 4378–4382 (2007)CrossRef E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, Z. Barkay, Environmental scanning electron microscope study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates. Langmuir 23, 4378–4382 (2007)CrossRef
8.
Zurück zum Zitat E. Bormashenko, T. Stein, R. Pogreb, D. Aurbach, “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J. Phys. Chem. C 113, 5568–5572 (2009)CrossRef E. Bormashenko, T. Stein, R. Pogreb, D. Aurbach, “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J. Phys. Chem. C 113, 5568–5572 (2009)CrossRef
9.
Zurück zum Zitat A. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)CrossRef A. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)CrossRef
10.
Zurück zum Zitat F.M. Chang, S.J. Hong, Y.J. Sheng, H.K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects. Appl. Phys. Lett. 95, 064102 (2009)CrossRef F.M. Chang, S.J. Hong, Y.J. Sheng, H.K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects. Appl. Phys. Lett. 95, 064102 (2009)CrossRef
11.
Zurück zum Zitat M.K. Dawood, H. Zheng, T.H. Liew, K.C. Leong, Y.L. Foo, R. Rajagopalan, S.A. Khan, W.K. Choi, Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces. Langmuir 27, 4126–4133 (2011)CrossRef M.K. Dawood, H. Zheng, T.H. Liew, K.C. Leong, Y.L. Foo, R. Rajagopalan, S.A. Khan, W.K. Choi, Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces. Langmuir 27, 4126–4133 (2011)CrossRef
12.
Zurück zum Zitat L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114 (2008)CrossRef L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114 (2008)CrossRef
13.
Zurück zum Zitat L. Feng, Y.A. Zhang, Y.Z. Cao, X.X. Ye, L. Jiang, The effect of surface microstructures and surface compositions on the wettabilities of flower petals. Soft Matter 7, 2977–2980 (2011)CrossRef L. Feng, Y.A. Zhang, Y.Z. Cao, X.X. Ye, L. Jiang, The effect of surface microstructures and surface compositions on the wettabilities of flower petals. Soft Matter 7, 2977–2980 (2011)CrossRef
14.
Zurück zum Zitat L. Gao, T.J. McCarthy, Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24, 9184–9188 (2008) L. Gao, T.J. McCarthy, Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24, 9184–9188 (2008)
15.
Zurück zum Zitat M.H. Jin, X.L. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang, Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater. 17, 1977–1981 (2005)CrossRef M.H. Jin, X.L. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang, Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater. 17, 1977–1981 (2005)CrossRef
16.
Zurück zum Zitat Y.C. Jung, B. Bhushan, Contact angle, adhesion, and friction properties of micro- and nanopatterned polymers for superhydrophobicity. Nanotechnology 17, 4970–4980 (2006)CrossRef Y.C. Jung, B. Bhushan, Contact angle, adhesion, and friction properties of micro- and nanopatterned polymers for superhydrophobicity. Nanotechnology 17, 4970–4980 (2006)CrossRef
17.
Zurück zum Zitat B. Krasovitski, A. Marmur, Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir 21, 3881–3885 (2004)CrossRef B. Krasovitski, A. Marmur, Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir 21, 3881–3885 (2004)CrossRef
18.
Zurück zum Zitat H. Kusumaatmaja, J.M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23, 6019–6032 (2007)CrossRef H. Kusumaatmaja, J.M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23, 6019–6032 (2007)CrossRef
19.
Zurück zum Zitat W. Li, A. Amirfazli, Superhydrophobic surfaces: adhesive strongly to water? Adv. Mater. 19, 3421–3422 (2007)CrossRef W. Li, A. Amirfazli, Superhydrophobic surfaces: adhesive strongly to water? Adv. Mater. 19, 3421–3422 (2007)CrossRef
20.
21.
Zurück zum Zitat M.J. Liu, Y.M. Zheng, J. Zhai, L. Jiang, Bioinspired super-antiwetting interfaces with special liquid–solid adhesion. Acc. Chem. Res. 43, 368–377 (2010)CrossRef M.J. Liu, Y.M. Zheng, J. Zhai, L. Jiang, Bioinspired super-antiwetting interfaces with special liquid–solid adhesion. Acc. Chem. Res. 43, 368–377 (2010)CrossRef
22.
Zurück zum Zitat G. McHale, All solids, including Teflon, are hydrophilic (to some extent), but some have roughness induced hydrophobic tendencies. Langmuir 25, 7185–7187 (2009)CrossRef G. McHale, All solids, including Teflon, are hydrophilic (to some extent), but some have roughness induced hydrophobic tendencies. Langmuir 25, 7185–7187 (2009)CrossRef
23.
Zurück zum Zitat M. Nosonovsky, Model for solid–liquid and solid–solid friction for rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007)CrossRef M. Nosonovsky, Model for solid–liquid and solid–solid friction for rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007)CrossRef
24.
Zurück zum Zitat M. Nosonovsky, On the range of applicability of the wenzel and cassie equations. Langmuir 23, 9919–9920 (2007)CrossRef M. Nosonovsky, On the range of applicability of the wenzel and cassie equations. Langmuir 23, 9919–9920 (2007)CrossRef
25.
Zurück zum Zitat M. Nosonovsky, Entropy in tribology: in search of applications. Entropy 12, 1345–1390 (2010)CrossRef M. Nosonovsky, Entropy in tribology: in search of applications. Entropy 12, 1345–1390 (2010)CrossRef
26.
Zurück zum Zitat M. Nosonovsky, B. Bhushan, Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7, 2633–2637 (2007)CrossRef M. Nosonovsky, B. Bhushan, Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7, 2633–2637 (2007)CrossRef
27.
Zurück zum Zitat M. Nosonovsky, B. Bhushan, Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007)CrossRef M. Nosonovsky, B. Bhushan, Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007)CrossRef
28.
Zurück zum Zitat M. Nosonovsky, B. Bhushan, Hierarchical roughness makes superhydrophobic surfaces stable. Microelectron. Eng. 84, 382–386 (2007)CrossRef M. Nosonovsky, B. Bhushan, Hierarchical roughness makes superhydrophobic surfaces stable. Microelectron. Eng. 84, 382–386 (2007)CrossRef
29.
Zurück zum Zitat M. Nosonovsky, B. Bhushan, Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy 107, 969–979 (2007)CrossRef M. Nosonovsky, B. Bhushan, Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy 107, 969–979 (2007)CrossRef
30.
Zurück zum Zitat M. Nosonovsky, B. Bhushan, Biologically-inspired surfaces: broadening the scope of roughness. Adv. Func. Mater. 18, 843–855 (2008)CrossRef M. Nosonovsky, B. Bhushan, Biologically-inspired surfaces: broadening the scope of roughness. Adv. Func. Mater. 18, 843–855 (2008)CrossRef
31.
Zurück zum Zitat M. Nosonovsky, B. Bhushan, Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J. Phys. Condens. Matter 20, 395005 (2008)CrossRef M. Nosonovsky, B. Bhushan, Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J. Phys. Condens. Matter 20, 395005 (2008)CrossRef
32.
Zurück zum Zitat M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics (Springer, Heidelberg, 2008)MATH M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics (Springer, Heidelberg, 2008)MATH
33.
Zurück zum Zitat M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 14, 270–280 (2010)CrossRef M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 14, 270–280 (2010)CrossRef
34.
Zurück zum Zitat A. Tonosaki, T. Nishide, Novel petal effect of hafnia films prepared in an aqueous solution and containing hydroxy acids. Appl. Phys. Express 3, 125801 (2010)CrossRef A. Tonosaki, T. Nishide, Novel petal effect of hafnia films prepared in an aqueous solution and containing hydroxy acids. Appl. Phys. Express 3, 125801 (2010)CrossRef
35.
Zurück zum Zitat S. Vedantam, M.V. Panchagnula, Phase field modeling of hysteresis in sessile drops. Phys. Rev. Lett. 99, 176102 (2007)CrossRef S. Vedantam, M.V. Panchagnula, Phase field modeling of hysteresis in sessile drops. Phys. Rev. Lett. 99, 176102 (2007)CrossRef
36.
Zurück zum Zitat S. Wang, L. Jiang, Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007)CrossRef S. Wang, L. Jiang, Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007)CrossRef
37.
Zurück zum Zitat R.N. Wenzel, Resistance of solid surfaces to wetting by water. Indust. Eng. Chem. 28, 988–994 (1936)CrossRef R.N. Wenzel, Resistance of solid surfaces to wetting by water. Indust. Eng. Chem. 28, 988–994 (1936)CrossRef
38.
Zurück zum Zitat G. Whyman, E. Bormashenko, T. Stein, The rigorous derivation of young, cassie–baxter and wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008)CrossRef G. Whyman, E. Bormashenko, T. Stein, The rigorous derivation of young, cassie–baxter and wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008)CrossRef
39.
Zurück zum Zitat F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008)CrossRef F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008)CrossRef
Metadaten
Titel
Lotus Versus Rose: Biomimetic Surface Effects
verfasst von
Michael Nosonovsky
Bharat Bhushan
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-23681-5_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.