Skip to main content

2012 | OriginalPaper | Buchkapitel

6. Tables

verfasst von : Manfred Reichenbächer, Jürgen Popp

Erschienen in: Challenges in Molecular Structure Determination

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Table 6.1
Table of natural isotopes of the important elements of organic compounds
 
X
X + 1
X + 2
Element
m
%
m
%
m
%
H
1
100
2
0.015
   
C
12
100
13
1.1
   
N
14
100
15
0.37
   
O
16
100
17
0.04
18
0.20
F
19
100
       
Si
28
100
29
5.1
30
3.35
P
31
100
       
S
34
100
32
0.79
34
4.44
Cl
35
100
   
37
32.40
Br
79
100
   
81
97.94
Table 6.2
Normalized relative abundance of ions with chlorine and bromine atoms
 
X
X + 2
X + 4
X + 6
X + 8
 
X
X + 2
X + 4
X + 6
Cl
100
32
     
ClBr
77
100
25
 
Cl2
100
64
10
   
Cl2Br
61
100
45
7
Cl3
100
96
31
3
 
ClBr2
44
1ßß
70
14
Cl4
78
100
48
10
0.8
         
Br
100
98
               
Br2
51
100
49
             
Br3
34
100
98
32
           
Br4
17
68
100
65
16
         
Table 6.3
Common fragments lost; [M-X] peaks
Mass X
Neutral molecules/radicals
Hints to
1
H
Unspecific; intense at Aryl–CHO
15
CH3
Intense if favorable for fragmentation
16
O
Aryl–NO2, N-oxide, Sulfoxide
NH2
Aryl–SO2NH2, R–CONH2
17
OH
O indicator, aryl–COOH
18
H2O
Alcohols, aldehyde, ketone
19
F
Fluorine compound
20
HF
Fluorine compound
26
C2H2
Aromatic hydrocarbons
27
HCN
Nitrile, N-heteroaromatic compounds
28
CO
Quinones, arylketones
C2H4
Arylethylether, -ester-, n-propylketones
29
CHO
Phenoles
C2H5
Ethylketones, n-propylketones
30
CH2O
Arylmethylethers
NO
Aryl–NO2
31
OCH3
Methylesters
32
HOCH3
o-Substituted arylmethylesters
32
S
S containing compounds
34
H2S
Thiols
36
HCl
Alkylchlorides
41
C3H5
Propylesters
42
CH2CO
Arylacetates, aryl–NHCOCH3, R–C(O)CH3
C3H6
Butylketones, aryl–O–propyl, aryl–n–butyl
43
C3H7
Propylketones, aryl–n–propyl compounds
CH3CO
Methylketones
44
CO2
Lactones, anhydrides, esters
45
COOH
Carboxylic acids
OC2H5
Ethylesters
46
HOC2H5
Ethylesters
46
NO2
Aryl–NO2
48
SO
Aryl–S=O
55
C4H7
Butylesters
56
C4H8
Arylpentyl, aryl–O–butyl, pentylketones
57
C4H9
Butylketones
C2H5CO
Ethylketone
60
CH3COOH
Acetates
61
CH3CH2S
Thiols, thioethers
64
SO2
Sulfonic acids and derivatives
Table 6.4
Common fragment ions
m/z
Possible ion
Hint to
19
F+
Fluorine compounds
29
CHO+
Aldehydes
C2H 5 +
Ethyl compounds
30
NO+
Nitro compounds
CH2 = NH 2 +
Amines
31
CH2 = OH+
Alcohols
33
HS+
Thiols
CH2F+
Fluorine compounds
39
C3H 3 +
Aromatic compounds
43
C3H 7 +
Alkyl groups
CH3CO+
Acetyl compounds
44
CO 2 +
Carboxylic acids
CH2CH–OH+
Aldehydes (McLafferty rearrangement)
C2H6N+
Amines
NH2C = O+
Amides
45
CHS+
Thiols, thioethers
COOH+
Carboxylic acids
CH3CHOH+
Alcohols
CH3–O = CH 2 +
Methylethers
46
NO 2 +
Nitro compounds
CH2S+
Thiols, thioethers
47
CH2SH+
Thiols, thioether
49/51
CH2Cl+
Alkylchloride
51
CHF 2 +
Fluorine compounds
C4H 3 +
Aromatic compounds
53
C4H 5 +
Aromatic compounds
55
C4H 7 +
Aromatic compounds
CH2 = CH–C ≡ O+
Cycloalkanones
57
C4H 9 +
Alkyl groups
C2H5C = O+
Ethylketones, Propionic acid esters
CH2 = CH–CH = OH+
Cycloalkanoles
58
CH2 = C(OH)CH 3 +
Alkanones
(CH3)2 N = CH 2 + ,
 
C2H5NH = CH 2 +
Amines
59
CH2 = C(OH)NH 2 +
Amides
CH3COO+
Methylesters
CH3C(CH3) = OH+
Alcohols, esters
60
CH2COOH+
Carboxylic acid with a γ-H
61
C2H5S+, CH3SCH 2 +
Thiols
65
C5H 5 +
Aromatic compounds (benzylic compounds)
66
H2S 2 +
RS–SR
69
CF 3 +
Trifluormethyl compounds
C5H 9 +
Alkenes, cycloalkanes
70
C5H 10 +
Alkenes
71
C5H 11 +
Alkyl groups
C3H7C = O+
Butyric acid esters, propylketones
72
C3H7CHNH 2 +
Amines
C2H5C(OH) = CH 2 +
Ethylketones
73
(CH3)3Si+
Trimethylsilyl compounds
74
CH2–C(OH)OCH 3 +
Methylesters
77
C6H 5 +
Aromatic compounds
79/81
Br+
Bromine compounds
80
C5H6N+
Pyrrol compounds
80/82
HBr+
Bromine compounds
81
C5H5O+
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-642-24390-5_6/MediaObjects/218327_1_En_6_Figa_HTML.gif
83
C4H3S+
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-642-24390-5_6/MediaObjects/218327_1_En_6_Figb_HTML.gif
85
C6H 13 +
Alkyl groups
C4H9C = O+
Butylketones
C5H9O+
Tetrahydropyranes
91
C7H 7 +
Benzyl compounds
91/93
C4H8Cl+
Alkylchlorides
92
C6H6N+
Alkylpyridines
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-642-24390-5_6/MediaObjects/218327_1_En_6_Figc_HTML.gif
93
C6H5O+
Phenolethers
93/95
CH2Br+
Alkylbromides
94
C6H5O+ + H
Phenol derivates
95
C5H3O 2 +
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-642-24390-5_6/MediaObjects/218327_1_En_6_Figd_HTML.gif
97
C5H5S+
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-642-24390-5_6/MediaObjects/218327_1_En_6_Fige_HTML.gif
99
C7H 15 +
Alkyl compounds
C5H8O 2 +
Ketales
105
C6H5C = O+
Benzoyl compounds
C6H5–CH2CH 2 +
Alkylbenzenes
106
C6H5NHCH 2 +
Alkylanilines
107
C7H7O+
Alkylphenoles
121
C8H 9 +
Alkylphenoles
149
C8H5O 3 +
Phthalic acid esters
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-642-24390-5_6/MediaObjects/218327_1_En_6_Figf_HTML.gif
Table 6.6
Important information from mass spectra of organic classes of compounds
Compound class
Information
Hydrocarbons
Saturated
M•+: mean intensity, but very weak at branched chain
Ion series: CnH2n+1; weaker: CnH2n and CnH2n−1
Maximum intensity at C3/C4, decreasing in a smooth curve
Branched chains show “unsteadiness” of the intensity curve
Alkenes
M•+: mean intensity
Ion series: CnH2n−1; weaker CnH2n and CnH2n+1
No recognition of the position of the double bond because of its migration
Cyclic alkenes: RDA fragmentations
Aromatic compounds
M•+: (very) intense
Characteristic ions: m/z = 39, 51, 65, 78, 79, 91
Monosubstitution: m/z = 77
Typical ion series: CnH n±1 +
Acetylides
M•+: frequently weak, [M-1] is more intense
Hydroxy compounds
Alcohols
M•+: weak at primary, very weak at secondary, not visible at tertiary alcohols; intense [M-1] peak
Primary alcohols: intense [M-2] and [M-3] peaks are also visible
α cleavage: intense m/z = 31 peak
Lost of H2O + CnH2n gives rise to ions [M-46], [M-74], etc.
Mass spectra of long-chain alcohols are similar to that of alkenes
Secondary, tertiary alcohols: m/z = 45, 59, etc.
α cleavage: m/z = 45, 59 etc.; m/z = 31 is only weak
M•+: weak, but always present
Alicyclic alcohols
Fragmentations: primary ring cleavage at the OH-bearing carbon atom, loss of H gives rise to CnH2n−1O+ ions
Ion series: CnH 2n−1 + and CnH 2n−3 +
Phenoles
M•+: high intensity; [M-1] peak is also visible
Loss of CO (m/z = 28) and CHO (m/z = 29) after rearrangement
Ethers
Aliphatic
M•+: weak
Fragmentations:
1. α cleavage, followed by a McLafferty rearrangement
2. Cleavage of the C–O bond followed by charge-induced cleavage to alkylcations CnH 2n+1 +
Aromatic
M•+: intense
Fragmentations: primary cleavage of the ArO–R bond followed by CO elimination to arylcations
Loss of alkenes by McLafferty rearrangement (alkyl-C ≥ 2)
Diarylethers: [M-H], [M-CO], [M-CHO]
Aldehydes
Aliphatic
M•+: present
Fragmentations: [M-1] peak; m/z = 29 (CHO+ or C2H 5 + ) in long chain (>C4); in long chains CnH 2n+1 + peaks dominate
McLafferty rearrangement for ≥ C4 compounds
Unbranched: [M-18], [M-28], [M-43], [M-44]
Aromatic
M•+: very intense
α cleavage: [M-1] peak followed by CO elimination and C2H2 lost from the arylcations
Ketones
Aliphatic
M•+: mean intensity
Fragmentations: α cleavage followed by CO loss
McLafferty rearrangement: elimination of alkenes
Alkylcations dominate at long-chain ketones
Cyclic: intense molecular peak
Fragmentation: α cleavage after ring opening, loss of CO and alkyl radicals to stable ions
Aromatic
M•+: high intensity
Fragmentation: Aryl-C ≡ O+ by α cleavage
Carboxylic acids
Aliphatic
M•+: unbranched mono-carboxylic: weak; also [M + H]+
Fragmentation: short chain: α cleavage; [M-17], [M-45]
Long chain: ion series: CnH2n−1O 2 + , CnH 2n±1 +
McLafferty rearrangement (n C  ≥ 4): m/z = 60 (base peak!)
Aromatic
M•+: intense
Fragmentation: α cleavage [M-17] (OH), [M-45] (CO2H)
Loss of CO2m = 44)
Ortho-effect: [M-H2O]
Carboxylic acid derivatives
Aliphatic esters
M•+: visible
R–C(O) –O–R′
Fragmentation: Recognition of the alcoholic and α substituent by McLafferty rearrangement
α cleavage: C(O)–OR′+, R–C(O)+
Intense R+ in short chain, but weak in long chain
Long-chain acid part: Ion series like carboxylic acids
Long-chain alcoholic part: Loss of CH3COOH and alkenes to R–C(OH) 2 + ions (m/z = 61, 75, etc.)
Benzyl-, phenyl-, heterocyclic acetates eliminate ketene ⇒ [M-42] peak
Aromatic esters
M•+: intense, but the intensity decreases with the chain length rapidly
Aryl–COOR
Fragmentation: α cleavage to [M-OR], [M-COOR]
R ≥ C2: McLafferty rearrangement with elimination of CH2 = CH2–R′, ⇒ R+ ion series
Ortho-effect: Loss of ROH
Amides
M•+: present
R–CONH2
Fragmentation: McLafferty rearrangement (base peak!)
R–COONHR′
Primary: α cleavage: CONH 2 + (m/z = 44)
R–COONR′R″
Secondary, tertiary: McLafferty rearrangement if a γ-H is present
Aryl–COONRR′
Aryl–CONRR′: α cleavage dominates
N-compounds
Amines
M•+: very weak to invisible; [M-1] mostly present
Aliphatic
Fragmentations: α cleavage dominates
Secondary, tertiary: Loss of the largest α group
Primary: Ion series m/z = 30, 44, etc., CnH2n±1, CnH2n
Cycloalkylamines
M•+: present
Alkyl cleavage followed by primary ring opening at the N-containing carbon atom
Aromatic
Ion series: CnH2n
Aryl–NH2: Loss of N as HCN (m/z = 27)
Alkyl-C ≡ N
M•+: very weak or not present; [M-1] frequently strong
Fragmentations: McLafferty rearrangement: m/z = 41 (base peak!) ≥ C8 and higher: m/z = 97 (very intense)
Ion series: (CH2)nC ≡ N+ (m/z = 40, 54, etc.)
Aryl–NO2
M•+: very intense
Fragmentations: [M-46] (NO 2 ), followed by loss of C2H2 ⇒ [M-72]
After rearrangement: [M-30] (NO), followed by loss of CO ⇒ M-58
NO+ ion (m/z = 30)
Halogen compounds
Intense [M + 2n]+ peaks: Cl and/or Br (see halogen patterns)
Unusual mass differences: Δm: 19(F); 20(HF); 127(I); 128(HI)
Aliphatic
M•+: Decreasing with increasing molecular mass, branching and number of halogen atoms
Fragmentations: Loss of halogen radicals
Cn with n > 6: Very intense C4H8X+ peak with X = Cl, Br
Aromatic
M•+: Mean intensity
Fragmentations: Lost of halogen radicals
S-compounds
[M + 2] peak: Recognition of S and determination of the S number
Thiols, thioethers
M•+: Mean intensity
Fragmentations: Loss of SH·(Δm = 33); H2S (Δm = 34)
Fragment ions: CH2SH+ (m/z = 47), CS•+ (m/z = 44), CHS+ (m/z = 45)
Sulfonic acids, esters
Loss of SO (Δm = 48), SO2m = 64)

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pretsch E, Bühlmann P, Affolter C, Badertscher M (2009) Structure determination of organic compounds. Springer, Berlin/New York Pretsch E, Bühlmann P, Affolter C, Badertscher M (2009) Structure determination of organic compounds. Springer, Berlin/New York
2.
Zurück zum Zitat Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds. Wiley, Hoboken Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds. Wiley, Hoboken
Metadaten
Titel
Tables
verfasst von
Manfred Reichenbächer
Jürgen Popp
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-24390-5_6

Neuer Inhalt