Skip to main content

2013 | OriginalPaper | Buchkapitel

3. Elements of Stochastic Analysis

verfasst von : Prof. Stéphane Crépey

Erschienen in: Financial Modeling

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Our purpose in this chapter is to give an overview of the basics of stochastic calculus, an important mathematical tool that is used in control engineering, in modern finance and insurance, and in modern management science, among other fields. The chain rule of stochastic calculus, the so-called Itô formula, is one of the most used mathematical (or probabilistic) formulas in the world, since it implicitly sits under every trader’s screen. At least the Itô formula gives rise to one of the mostly posed mathematical exercises, as follows. Let dS t =S t σdW t , starting from today’s observed value for S 0, model the returns of a stock price, where W t is a Brownian motion and σ is the so-called volatility parameter (the “temperature” on financial markets). What are the dynamics for X t =ln(S t )? But this is the celebrated Black–Scholes model! Then we will add jumps, to make it more spicy and because in this book the Brownian motion W t and the Poisson process N t are equally treated on a fair basis, as the prototype and the fundamental driver of continuous and jump processes, respectively. Now, as opposed to the above forward SDE, endowed with an initial condition for S 0 at time 0, it’s now time to consider our first backward SDE. That’s because derivative contracts are defined in terms of a payoff ξ at a future maturity T. This payoff ξ is random and defined in terms of an underlying such as S T , but what we are looking for is the price and the hedge of the derivative at the current pricing time t<T. These price Π t and hedge Δ t are obtained as the solution of a backward SDE such as t t dS t , Π T =ξ. The solution of a BSDE has therefore two components, Π and Δ. In case of American options with early exercise clauses, there is a third component A, intended to maintain the value process Π above the payoff. Otherwise isn’t a BSDE too simple and directly solved by the application of a suitable martingale representation theorem? But that’s only because we forgot the issue of funding our position. Funding costs give rise to an additional term g t (Π t t ) dt in the BSDE. Moreover, since the crisis, in nowadays market environments, funding costs involve some nonlinearities (such as two different rates for lending and borrowing, if you are a risky bank). Dealing with such nonlinearities is precisely what BSDEs were invented for.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Kiyoshi Itô (1915–2008) was awarded the Wolf Prize in Mathematics for his contributions to stochastic analysis in 1987. He was also awarded the first Carl Friedrich Gauss Prize in 2006.
 
2
For the convenience of readers, we signal advanced sections with an asterisk (∗) or even with a double asterisk (∗∗) for the more difficult parts.
 
3
In particular, with almost all trajectories bounded and a bit more than that since locally bounded actually means “locally uniformly bounded”.
 
4
See Sect. 2.​3.​8.
 
5
“Squared-field operators” in English; see Sects. XV.20–26 of Dellacherie and Meyer [95].
 
6
See Remark 3.3.9 regarding the concept of a weak solution.
 
7
Weak solutions are closely related to solutions of the “martingale problem with the data b and σ”, see the comment following Proposition 12.2.2.
 
8
Or of X t , in the case of b and σ, which in view of (3.7) makes no difference in (3.24), by the continuity of t and W t .
 
9
In the strong sense.
 
Literatur
71.
Zurück zum Zitat Cont, R., & Tankov, P. (2003). Financial modelling with jump processes. London: Chapman & Hall. CrossRef Cont, R., & Tankov, P. (2003). Financial modelling with jump processes. London: Chapman & Hall. CrossRef
94.
Zurück zum Zitat Delbaen, F., & Schachermayer, W. (2005). The mathematics of arbitrage. Berlin: Springer. Delbaen, F., & Schachermayer, W. (2005). The mathematics of arbitrage. Berlin: Springer.
95.
Zurück zum Zitat Dellacherie, C., & Meyer, P.-A. (1982). Probabilities and potential. Amsterdam: North-Holland. MATH Dellacherie, C., & Meyer, P.-A. (1982). Probabilities and potential. Amsterdam: North-Holland. MATH
135.
Zurück zum Zitat Guyon, J., & Henry-Labordère, P. (2012). Nonlinear pricing methods in quantitative finance. London: Chapman & Hall. Guyon, J., & Henry-Labordère, P. (2012). Nonlinear pricing methods in quantitative finance. London: Chapman & Hall.
149.
Zurück zum Zitat Ikeda, N., & Watanabe, S. (1989). Stochastic differential equations and diffusion processes (2nd ed.). Amsterdam: North-Holland. MATH Ikeda, N., & Watanabe, S. (1989). Stochastic differential equations and diffusion processes (2nd ed.). Amsterdam: North-Holland. MATH
151.
Zurück zum Zitat Itô, K. (1944). Stochastic integral. Proceedings of the Imperial Academy, 20, 519–524. MATHCrossRef Itô, K. (1944). Stochastic integral. Proceedings of the Imperial Academy, 20, 519–524. MATHCrossRef
153.
Zurück zum Zitat Jacod, J., & Shiryaev, A. (2003). Limit theorems for stochastic processes. Berlin: Springer. MATHCrossRef Jacod, J., & Shiryaev, A. (2003). Limit theorems for stochastic processes. Berlin: Springer. MATHCrossRef
167.
Zurück zum Zitat Kunita, H. (2010). Itô’s stochastic calculus: its surprising power for applications. Stochastic Processes and Their Applications, 120, 622–652. MathSciNetMATHCrossRef Kunita, H. (2010). Itô’s stochastic calculus: its surprising power for applications. Stochastic Processes and Their Applications, 120, 622–652. MathSciNetMATHCrossRef
180.
Zurück zum Zitat Lawler, G. (2004). Introduction to stochastic processes (2nd ed.). London: Chapman & Hall. Lawler, G. (2004). Introduction to stochastic processes (2nd ed.). London: Chapman & Hall.
205.
Zurück zum Zitat Mikosch, T. (1998). Elementary stochastic calculus with finance in view. Singapore: World Scientific. MATH Mikosch, T. (1998). Elementary stochastic calculus with finance in view. Singapore: World Scientific. MATH
228.
Zurück zum Zitat Protter, P. E. (2004). Stochastic integration and differential equations (2nd ed.). Berlin: Springer. MATH Protter, P. E. (2004). Stochastic integration and differential equations (2nd ed.). Berlin: Springer. MATH
Metadaten
Titel
Elements of Stochastic Analysis
verfasst von
Prof. Stéphane Crépey
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37113-4_3

Premium Partner