Skip to main content

2020 | OriginalPaper | Buchkapitel

14. Numerische Feldverfahren, Navier-Stokes-Verfahren

verfasst von : Franz Joos

Erschienen in: Aerodynamik axialer Turbokompressoren

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Die Schaufelgitter, die als Zylinderschnitte durch Axialmaschinen aufzufassen sind, sollten so konzipiert sein, dass sie die gewünschten Strömungsumlenkungen optimal erreichen. Ihre Geometrie ist entsprechend zu gestalten. Da die Strömungsumlenkung durch Druckkräfte über die Schaufeln bewirkt wird, ist es naheliegend, aus vorgegeben Drücken bzw. Druckverteilungen ein Schaufelprofil auszurechnen (direkte Methode, inverses Verfahren). Für diese Berechnungen müssen jedoch die Bilanzgleichungen nach ihren Randbedingungen, die ja die Berandungen definieren, aufgelöst werden. Dieser Weg führt aber neben mathematischen Problemen häufig zu konstruktiv nicht realisierbaren Konturen. Deshalb löst man die Aufgabe meist nach dem umgekehrten Verfahren (indirekte Methode). Man gibt eine Profilkontur vor und prüft nach, ob sie günstig genug ist. Wenn die Anforderungen nicht gut genug erfüllt werden, wird die Kontur geändert und nochmals überprüft. Dieser Vorgang wird solange wiederholt, bis das Ergebnis befriedigt.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Oertel H Jr, Laurien E (2003) Numerische Strömungsmechanik. Springer, Berlin/HeidelbergCrossRef Oertel H Jr, Laurien E (2003) Numerische Strömungsmechanik. Springer, Berlin/HeidelbergCrossRef
2.
Zurück zum Zitat Schlichting H (1968) Boundary-layer theory, 6. Aufl. McGraw-Hill Book Company, New YorkMATH Schlichting H (1968) Boundary-layer theory, 6. Aufl. McGraw-Hill Book Company, New YorkMATH
3.
Zurück zum Zitat Wu CH (1951) A general through flow theory of fluid flow with subsonic or supersonic velocities in turbomachines of arbitrary hub and casing shapes. NACA paper TN2302 Wu CH (1951) A general through flow theory of fluid flow with subsonic or supersonic velocities in turbomachines of arbitrary hub and casing shapes. NACA paper TN2302
4.
Zurück zum Zitat Fröhlich J (2006) Large Eddy Simulation turbulenter Strömungen. B. G. Teubner, Wiesbaden Fröhlich J (2006) Large Eddy Simulation turbulenter Strömungen. B. G. Teubner, Wiesbaden
5.
Zurück zum Zitat Moin P, Mahesch K (1998) Direct numerical simulation: a tool in turbulent research. Annu Rev Fluid Mech 30:539–578CrossRef Moin P, Mahesch K (1998) Direct numerical simulation: a tool in turbulent research. Annu Rev Fluid Mech 30:539–578CrossRef
6.
Zurück zum Zitat Leonard A (1974) Energy cascade in large eddy simulations of turbulent fluid flows. Adv Geophys 18(A):237–248 Leonard A (1974) Energy cascade in large eddy simulations of turbulent fluid flows. Adv Geophys 18(A):237–248
7.
Zurück zum Zitat Vasilyev O, Lund T, Moin P (1998) A general class of commutative filters for LES in complex geometries. J Comput Phys 146(1):82–104MathSciNetCrossRef Vasilyev O, Lund T, Moin P (1998) A general class of commutative filters for LES in complex geometries. J Comput Phys 146(1):82–104MathSciNetCrossRef
8.
Zurück zum Zitat Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid at high Reynolds number. CR Acad Sci URSS 30(1941):301 Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid at high Reynolds number. CR Acad Sci URSS 30(1941):301
9.
Zurück zum Zitat Williams FA (1984) Combustion theory. Benjamin/Cummings, Menlo Park Williams FA (1984) Combustion theory. Benjamin/Cummings, Menlo Park
10.
Zurück zum Zitat Libby PA, Williams FA (1994) Fundamental aspects and a review. In: Libby PA, Williams FA (Hrsg) Turbulent reacting flows. Academic Press, London/New York, S 1–61 Libby PA, Williams FA (1994) Fundamental aspects and a review. In: Libby PA, Williams FA (Hrsg) Turbulent reacting flows. Academic Press, London/New York, S 1–61
11.
Zurück zum Zitat Baldwin BS, Lomax H (1978) Thin layer – approximation and algebraic-model for separated turbulent flows. In: Proceedings of the 16th Aerospace Sciences Meeting, AIAA paper 78-257, Huntsville, January 16–18 Baldwin BS, Lomax H (1978) Thin layer – approximation and algebraic-model for separated turbulent flows. In: Proceedings of the 16th Aerospace Sciences Meeting, AIAA paper 78-257, Huntsville, January 16–18
12.
Zurück zum Zitat Prandtl L (1945) Über ein neues Formelsystem für die ausgebildete Turbulenz. Akad Wiss Göttingen, Math Phys Kl:6–19 Prandtl L (1945) Über ein neues Formelsystem für die ausgebildete Turbulenz. Akad Wiss Göttingen, Math Phys Kl:6–19
13.
Zurück zum Zitat Spalart PR, Allmaras SP (1992) A one-equation turbulence model for aerodynamic flows. In: Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, AIAA paper 92-0439, Reno, January 6–9. Spalart PR, Allmaras SP (1992) A one-equation turbulence model for aerodynamic flows. In: Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, AIAA paper 92-0439, Reno, January 6–9.
14.
Zurück zum Zitat Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289CrossRef Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289CrossRef
15.
Zurück zum Zitat Wilcox DC (1998) Turbulence modelling for CFD, 2nd. Aufl. DCW Industries, Inc., La Canada Wilcox DC (1998) Turbulence modelling for CFD, 2nd. Aufl. DCW Industries, Inc., La Canada
16.
Zurück zum Zitat Menter FR (1992) Improved two-equation k-ω turbulence models for aerodynamic flows. NASA technical memorandum 103975, NASA Ames Research Center Menter FR (1992) Improved two-equation k-ω turbulence models for aerodynamic flows. NASA technical memorandum 103975, NASA Ames Research Center
17.
Zurück zum Zitat Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering application. AIAA J 32(8):1598–1605CrossRef Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering application. AIAA J 32(8):1598–1605CrossRef
18.
Zurück zum Zitat Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. In: Hanjalic K, Nagano Y, Tummers M (Hrsg) Turbulence, heat and mass transfer, 4. Aufl. Begell House, Inc., New York, S 625–632 Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. In: Hanjalic K, Nagano Y, Tummers M (Hrsg) Turbulence, heat and mass transfer, 4. Aufl. Begell House, Inc., New York, S 625–632
19.
Zurück zum Zitat Johnson DA, King LS (1984) A mathematical simple turbulence closure model for attached and separated turbulent boundary layers. AIAA J 23(11):1684–1692CrossRef Johnson DA, King LS (1984) A mathematical simple turbulence closure model for attached and separated turbulent boundary layers. AIAA J 23(11):1684–1692CrossRef
20.
Zurück zum Zitat Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Weather Rev 91:99–164CrossRef Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Weather Rev 91:99–164CrossRef
21.
Zurück zum Zitat Germano M, Piomelli U, Moin P, Chabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765CrossRef Germano M, Piomelli U, Moin P, Chabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765CrossRef
22.
Zurück zum Zitat Lesieur M, Comte P, Dubieff Y, Lamballeis E, Metais O, Ossia S (1999) From two-point closures of isotropic turbulence to LES of shear flows. Flow. Flow Turbul Combust 63(1–4):247–267 Lesieur M, Comte P, Dubieff Y, Lamballeis E, Metais O, Ossia S (1999) From two-point closures of isotropic turbulence to LES of shear flows. Flow. Flow Turbul Combust 63(1–4):247–267
23.
Zurück zum Zitat Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES. In: Proceedings of 1st AFOSR international conference on DNS/LES, Greyden Press, Columbus H., August 4–8 Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES. In: Proceedings of 1st AFOSR international conference on DNS/LES, Greyden Press, Columbus H., August 4–8
24.
Zurück zum Zitat Shur M, Spalart PR, Strelets M, Travin A (1999) Detached eddy simulation of an airfoil at high angle of attack. In: Proceedings of the 4th international symposium on engineering turbulence modeling and measurements, Corsica, May 24–26, S 669–678 Shur M, Spalart PR, Strelets M, Travin A (1999) Detached eddy simulation of an airfoil at high angle of attack. In: Proceedings of the 4th international symposium on engineering turbulence modeling and measurements, Corsica, May 24–26, S 669–678
25.
Zurück zum Zitat Im HS, Zha GC (2014) Delayed detached eddy simulation of airfoil stall flows using high order schemes. ASME J Fluids Eng 136(11):111104-1CrossRef Im HS, Zha GC (2014) Delayed detached eddy simulation of airfoil stall flows using high order schemes. ASME J Fluids Eng 136(11):111104-1CrossRef
26.
Zurück zum Zitat Spalart PR, Deck S, Shur M, Squires KD (2006) A new version of detached eddy simulation, resistant to ambiguous grid densities. Theor. Comput Fluid Dyn 20:181–195CrossRef Spalart PR, Deck S, Shur M, Squires KD (2006) A new version of detached eddy simulation, resistant to ambiguous grid densities. Theor. Comput Fluid Dyn 20:181–195CrossRef
27.
Zurück zum Zitat Xia G, Medic G (2017) Hybrid RANS/LES simulation of corner stall in a linear compressor cascade. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2017-63454, Charlotte, June 26–30 Xia G, Medic G (2017) Hybrid RANS/LES simulation of corner stall in a linear compressor cascade. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2017-63454, Charlotte, June 26–30
28.
Zurück zum Zitat Liu Y, Yan H, Lu L (2015) Investigation of corner separation in a linear compressor cascade using DDES. In: Proceedings of ASME Turbo Expo 2015: turbine technical conference and exposition, Bd 2A: turbomachinery, paper GT2015-42902, Montreal, June 15–19 Liu Y, Yan H, Lu L (2015) Investigation of corner separation in a linear compressor cascade using DDES. In: Proceedings of ASME Turbo Expo 2015: turbine technical conference and exposition, Bd 2A: turbomachinery, paper GT2015-42902, Montreal, June 15–19
29.
Zurück zum Zitat Stiefel E (1970) Einführung in die numerische Mathematik. Teubner Stuttgart Stiefel E (1970) Einführung in die numerische Mathematik. Teubner Stuttgart
30.
Zurück zum Zitat Lapidius L, Pinder GF (1982) Numerical solution of partial differential equations in science and engineering. Wiley, New York/Chichester Lapidius L, Pinder GF (1982) Numerical solution of partial differential equations in science and engineering. Wiley, New York/Chichester
31.
Zurück zum Zitat Traupel W (1998) Thermische Turbomaschinen, Bd 1. Springer, Berlin/Heidelberg/New YorkMATH Traupel W (1998) Thermische Turbomaschinen, Bd 1. Springer, Berlin/Heidelberg/New YorkMATH
32.
Zurück zum Zitat Adamczyk, J.J. (1985) Model equation for simulation flows in multistage turbomachines. In: Proceedings of ASME 1985 international gas turbine conference and exhibit, Bd 3: heat transfer; electric power, paper 85-GT-226, Houston, March 18–21 Adamczyk, J.J. (1985) Model equation for simulation flows in multistage turbomachines. In: Proceedings of ASME 1985 international gas turbine conference and exhibit, Bd 3: heat transfer; electric power, paper 85-GT-226, Houston, March 18–21
33.
Zurück zum Zitat Dring RP, Oates GC (1990) Throughflow theory for non-axisymmetric turbomachinery flow: part I – formulation. ASME J Turbomach 112(3):320–327CrossRef Dring RP, Oates GC (1990) Throughflow theory for non-axisymmetric turbomachinery flow: part I – formulation. ASME J Turbomach 112(3):320–327CrossRef
34.
Zurück zum Zitat Prasad A (2004) Calculation of the mixed-out state in turbomachine flows. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-54021, Vienna, June 14–17 Prasad A (2004) Calculation of the mixed-out state in turbomachine flows. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-54021, Vienna, June 14–17
35.
Zurück zum Zitat Greitzer EM, Tan CS, Graf MB (2004) Internal flow: concepts and applications. Cambridge University Press Greitzer EM, Tan CS, Graf MB (2004) Internal flow: concepts and applications. Cambridge University Press
36.
Zurück zum Zitat Pianko M, Wazelt F (1983) Chapter 3: Suitable averaging techniques in non-uniform internal flows. Propulsion and energetic panel, working group 14. AGARD advisory report no 182 Pianko M, Wazelt F (1983) Chapter 3: Suitable averaging techniques in non-uniform internal flows. Propulsion and energetic panel, working group 14. AGARD advisory report no 182
37.
Zurück zum Zitat Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeMATH Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeMATH
38.
Zurück zum Zitat Stein P, Pfoster C, Sell M, Galpin P, Hansen H (2015) CFD modeling of low pressure steam turbine radial diffuser flow by using a novel multiple mixing plane based coupling – simulation and validation. In: Proceedings of ASME Turbo Expo 2015: turbine technical conference and exposition, Bd 8: microturbines, turbochargers and small turbomachines; steam turbines, paper GT2015-42632, Montreal, June 15–19 Stein P, Pfoster C, Sell M, Galpin P, Hansen H (2015) CFD modeling of low pressure steam turbine radial diffuser flow by using a novel multiple mixing plane based coupling – simulation and validation. In: Proceedings of ASME Turbo Expo 2015: turbine technical conference and exposition, Bd 8: microturbines, turbochargers and small turbomachines; steam turbines, paper GT2015-42632, Montreal, June 15–19
39.
Zurück zum Zitat Connell S, Braaten M, Zori L, Steed R, Hutchinson B, Cox G (2011) A comparison of advanced numerical techniques to model transient flow in turbomachinery blade rows. In: Proceedings of ASME 2011 Turbo Expo: turbine technical conference and exposition, Bd 7: turbomachinery, parts A, B, and C, paper GT2011-45820, Vancouver, June 6–10 Connell S, Braaten M, Zori L, Steed R, Hutchinson B, Cox G (2011) A comparison of advanced numerical techniques to model transient flow in turbomachinery blade rows. In: Proceedings of ASME 2011 Turbo Expo: turbine technical conference and exposition, Bd 7: turbomachinery, parts A, B, and C, paper GT2011-45820, Vancouver, June 6–10
40.
Zurück zum Zitat Connell S, Hutchinson B, Galpin P, Campregher R, Godin P (2012) The efficient computation of transient flow in turbine blade rows using transformation methods. In: Proceedings of ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 8: turbomachinery, parts A, B, and C, paper GT2012-69019, Copenhagen, June 11–15 Connell S, Hutchinson B, Galpin P, Campregher R, Godin P (2012) The efficient computation of transient flow in turbine blade rows using transformation methods. In: Proceedings of ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 8: turbomachinery, parts A, B, and C, paper GT2012-69019, Copenhagen, June 11–15
41.
Zurück zum Zitat Sharma G, Zori L, Connell S, Godin P (2013) Efficient computation of large pitch ratio transonic flow in a fan with inlet distortion. In: Proceedings of ASME Turbo Expo 2013: Turbine technical conference and exposition, Bd 6C: turbomachinery, GT2013-95059, San Antonio, June 3–7 Sharma G, Zori L, Connell S, Godin P (2013) Efficient computation of large pitch ratio transonic flow in a fan with inlet distortion. In: Proceedings of ASME Turbo Expo 2013: Turbine technical conference and exposition, Bd 6C: turbomachinery, GT2013-95059, San Antonio, June 3–7
42.
Zurück zum Zitat He L (1992) Method of simulation unsteady turbomachinery flows with multiple perturbations. AIAA J 30(11):2730–2735CrossRef He L (1992) Method of simulation unsteady turbomachinery flows with multiple perturbations. AIAA J 30(11):2730–2735CrossRef
43.
Zurück zum Zitat Li L, He L (2002) Single-passage analysis of unsteady flows around vibrating blades of a transonic fan under inlet distortion. ASME J Turbomach 124(2):285–292CrossRef Li L, He L (2002) Single-passage analysis of unsteady flows around vibrating blades of a transonic fan under inlet distortion. ASME J Turbomach 124(2):285–292CrossRef
44.
Zurück zum Zitat Gerolymos G, Michon G, Neubauer J (2002) Analysis and application of chorochronic periodicity in turbomachinery rotor/stator interaction computations. J Propuls Power 18(6):1139–1152CrossRef Gerolymos G, Michon G, Neubauer J (2002) Analysis and application of chorochronic periodicity in turbomachinery rotor/stator interaction computations. J Propuls Power 18(6):1139–1152CrossRef
45.
Zurück zum Zitat Ferziger JH, Peric MM (1999) Computational methods for fluid dynamics, 2. Aufl. Springer, Berlin/Heidelberg/New YorkCrossRef Ferziger JH, Peric MM (1999) Computational methods for fluid dynamics, 2. Aufl. Springer, Berlin/Heidelberg/New YorkCrossRef
46.
Zurück zum Zitat Peyret R, Taylor TD (1990) Computational methods for fluid flow. Springer series in computational physics. Springer, New YorkMATH Peyret R, Taylor TD (1990) Computational methods for fluid flow. Springer series in computational physics. Springer, New YorkMATH
47.
Zurück zum Zitat Telionis DP (1981) Unsteady viscous flows. Springer series in computational physics. Springer, New YorkCrossRef Telionis DP (1981) Unsteady viscous flows. Springer series in computational physics. Springer, New YorkCrossRef
48.
Zurück zum Zitat Kantha LH (2004) The length scale equation in turbulence models. Nonlinear Process Geophys 11(1):83CrossRef Kantha LH (2004) The length scale equation in turbulence models. Nonlinear Process Geophys 11(1):83CrossRef
49.
Zurück zum Zitat Alfredsson PH, Johansson AV (1988) The fluctuating wall – shear stress and the velocity field in the viscous sublayer. Phys Fluids 31:1026CrossRef Alfredsson PH, Johansson AV (1988) The fluctuating wall – shear stress and the velocity field in the viscous sublayer. Phys Fluids 31:1026CrossRef
50.
Zurück zum Zitat Zanoun ES, Durst F, Nagib H (2003) Evaluating the law of the wall in two-dimensional fully developed channel flows. Phys Fluids 15:3079CrossRef Zanoun ES, Durst F, Nagib H (2003) Evaluating the law of the wall in two-dimensional fully developed channel flows. Phys Fluids 15:3079CrossRef
51.
Zurück zum Zitat Wunderwald D, Fottner L (1996) Experimental investigation of the turbulence structures in the boundary layer of an highly loaded turbine cascade. In: Proceedings of ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, Bd 5: manufacturing materials and metallurgy; ceramics; structures and dynamics; controls, diagnostics and instrumentation; education; general, paper GT 96-GT-249, Birmingham, June 10–13 Wunderwald D, Fottner L (1996) Experimental investigation of the turbulence structures in the boundary layer of an highly loaded turbine cascade. In: Proceedings of ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, Bd 5: manufacturing materials and metallurgy; ceramics; structures and dynamics; controls, diagnostics and instrumentation; education; general, paper GT 96-GT-249, Birmingham, June 10–13
52.
Zurück zum Zitat Ho C-H, Zohar Y (1997) The PVC technique – a method to estimate the dissipation length scale in turbulent flows. J Fluid Mech 352:135–159CrossRef Ho C-H, Zohar Y (1997) The PVC technique – a method to estimate the dissipation length scale in turbulent flows. J Fluid Mech 352:135–159CrossRef
53.
Zurück zum Zitat Bruna D, Turner MG (2013) A rothalpy analysis for isothermal boundary condition at casing applied tothe rotor 37 transonic axial flow compressor. In: Proceedings of ASME Turbo Expo 2013: turbine technical conference and exposition, Bd 6B: turbomachinery, paper GT2013-94595, San Antonio, June 3–7 Bruna D, Turner MG (2013) A rothalpy analysis for isothermal boundary condition at casing applied tothe rotor 37 transonic axial flow compressor. In: Proceedings of ASME Turbo Expo 2013: turbine technical conference and exposition, Bd 6B: turbomachinery, paper GT2013-94595, San Antonio, June 3–7
54.
Zurück zum Zitat Moser RD, Kim J, Mansour NN (2001) Direct numerical simulation of turbulent channels up to Ret = 590°. Phys Fluids 11(4):943CrossRef Moser RD, Kim J, Mansour NN (2001) Direct numerical simulation of turbulent channels up to Ret = 590°. Phys Fluids 11(4):943CrossRef
55.
Zurück zum Zitat Abe H, Karamura H, Matsuo Y (2001) Direct numerical simulation of a fully developed turbulent channel flow with respect to the reynolds number dependence. ASME J Fluids Eng 123(2):382–393CrossRef Abe H, Karamura H, Matsuo Y (2001) Direct numerical simulation of a fully developed turbulent channel flow with respect to the reynolds number dependence. ASME J Fluids Eng 123(2):382–393CrossRef
56.
Zurück zum Zitat Lozano-Durán A, Jiménez J (2014) Effect of the computational domain on direct simulations of turbulent channels up to Ret = 4200. Phys Fluids 26:011702 Lozano-Durán A, Jiménez J (2014) Effect of the computational domain on direct simulations of turbulent channels up to Ret = 4200. Phys Fluids 26:011702
57.
Zurück zum Zitat Sillero JA, Jiménez J, Moser RD (2013) One-point statistics for turbulent wall-bounded flows after Reynolds numbers up to d+ 2000. Phys Fluids 25:105102CrossRef Sillero JA, Jiménez J, Moser RD (2013) One-point statistics for turbulent wall-bounded flows after Reynolds numbers up to d+ 2000. Phys Fluids 25:105102CrossRef
58.
Zurück zum Zitat Inoue M, Mathis R, Marusic I, Pullin DI (2012) Inner-layer intensities for flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy-simulations. Phys Fluids 24:075102CrossRef Inoue M, Mathis R, Marusic I, Pullin DI (2012) Inner-layer intensities for flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy-simulations. Phys Fluids 24:075102CrossRef
59.
Zurück zum Zitat Alfredsson PH, Segalini A, Örlü R (2011) A new scaling for the streamwise turbulence intensity in wall bounded turbulent flows and what it tells us about the outer peak. Phys Fluids 23:041702CrossRef Alfredsson PH, Segalini A, Örlü R (2011) A new scaling for the streamwise turbulence intensity in wall bounded turbulent flows and what it tells us about the outer peak. Phys Fluids 23:041702CrossRef
60.
Zurück zum Zitat Spalart PR, Rumsey CL (2007) Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J 45:2544CrossRef Spalart PR, Rumsey CL (2007) Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J 45:2544CrossRef
61.
Zurück zum Zitat Yangwei L, Xianjun Y, Baojie L (2008) Turbulence model assessment for a large-scale tip vortex in axial compressor rotor. J Propuls Power 24(1):15–25CrossRef Yangwei L, Xianjun Y, Baojie L (2008) Turbulence model assessment for a large-scale tip vortex in axial compressor rotor. J Propuls Power 24(1):15–25CrossRef
62.
Zurück zum Zitat Byrne CEI, Holdo AE (1994) The effect of choice of inlet boundary conditions for the k-ε turbulence model. Int J Comput Fluid Dyn 3(3–4):321–327CrossRef Byrne CEI, Holdo AE (1994) The effect of choice of inlet boundary conditions for the k-ε turbulence model. Int J Comput Fluid Dyn 3(3–4):321–327CrossRef
63.
Zurück zum Zitat Bode C, Aufderheide T, Friedrichs J, Kozulovic D (2014) Improved turbulence and transition prediction for turbomachinery flows. In: Proceedings of IMECE 2014: ASME International Mechanical Engineering Congress and Exposition, paper IMECE 2014-36866, Montreal, November 14–20 Bode C, Aufderheide T, Friedrichs J, Kozulovic D (2014) Improved turbulence and transition prediction for turbomachinery flows. In: Proceedings of IMECE 2014: ASME International Mechanical Engineering Congress and Exposition, paper IMECE 2014-36866, Montreal, November 14–20
64.
Zurück zum Zitat Busse P, Krug A, Lange M, Vogeler K, Mailach, R (2016) Effects of turbulent boundary conditions on the prediction of the secondary flow field in a linear compressor cascade. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-56455, Seoul, June 13–17 Busse P, Krug A, Lange M, Vogeler K, Mailach, R (2016) Effects of turbulent boundary conditions on the prediction of the secondary flow field in a linear compressor cascade. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-56455, Seoul, June 13–17
65.
Zurück zum Zitat Krug A, Busse P, Vogeler K (2014) Experimental investigation into the effects of the steady-wake-tip clearance vortex interaction in a compressor cascade. ASME J Turbomach 137(6):061006CrossRef Krug A, Busse P, Vogeler K (2014) Experimental investigation into the effects of the steady-wake-tip clearance vortex interaction in a compressor cascade. ASME J Turbomach 137(6):061006CrossRef
66.
Zurück zum Zitat Hah C, Hathaway M, Katz J, Tan D (2015) Investigation of unsteady tip clearance flow in a low-speed one and half stage axial compressor with LES and PIV. In: ASME/JSME/KSME 2015 joint fluids engineering conference, Bd 1: symposia, paper AJK2015-FED, Seoul, July 26–31 Hah C, Hathaway M, Katz J, Tan D (2015) Investigation of unsteady tip clearance flow in a low-speed one and half stage axial compressor with LES and PIV. In: ASME/JSME/KSME 2015 joint fluids engineering conference, Bd 1: symposia, paper AJK2015-FED, Seoul, July 26–31
67.
Zurück zum Zitat Zlatinov MB, Tan CS, Montgomery M, Islam T, Harris M (2012) Turbine hub and shroud sealing flow loss mechanisms. ASME J Turbomach 134(6):061027CrossRef Zlatinov MB, Tan CS, Montgomery M, Islam T, Harris M (2012) Turbine hub and shroud sealing flow loss mechanisms. ASME J Turbomach 134(6):061027CrossRef
68.
Zurück zum Zitat Gan J, Im H-S, Zha, G-C (2016) Delayed detached eddy simulation of rotating stall for a full annulus transonic axial compressor stage. In: Proceedings of ASME Turbo Expo 2016: Turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57985, Seoul, June 13–17 Gan J, Im H-S, Zha, G-C (2016) Delayed detached eddy simulation of rotating stall for a full annulus transonic axial compressor stage. In: Proceedings of ASME Turbo Expo 2016: Turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57985, Seoul, June 13–17
Metadaten
Titel
Numerische Feldverfahren, Navier-Stokes-Verfahren
verfasst von
Franz Joos
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-658-28937-9_14

    Premium Partner