Skip to main content

2015 | OriginalPaper | Buchkapitel

Scalable Synthesis of Noble Metal Nanoparticles

verfasst von : Venugopal Santhanam

Erschienen in: Nanoscale and Microscale Phenomena

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Noble metal nanoparticles possess unique size-dependent electronic and optical characteristics and are one of the foremost ‘building blocks’ for nanostructured device fabrication. As such, there is considerable interest in developing continuous-flow processes for large-scale synthesis of noble metal nanoparticles. In this chapter, we describe the results of our work aimed at understanding key process variables that determine particle size distribution in two popular protocols used for lab-scale synthesis of gold and silver colloids. Our understanding of the importance of aggregation and role of the pH of precursor solutions in determining the kinetics and stability of colloidal sols enabled us to propose suitable modifications in process conditions that enabled scalable synthesis of gold and silver nanoparticles. These insights also led to the development of a novel route for low-cost fabrication of silver nanostructures on paper using an inkjet printer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pitkethly MJ (2004) Nanomaterials–the driving force. Mater Today 7:20–29CrossRef Pitkethly MJ (2004) Nanomaterials–the driving force. Mater Today 7:20–29CrossRef
2.
Zurück zum Zitat Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315CrossRef Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315CrossRef
3.
Zurück zum Zitat Muralidharan G, Bhat N, Santhanam V (2011) Scalable processes for fabricating non-volatile memory devices using self-assembled 2D arrays of gold nanoparticles as charge storage nodes. Nanoscale 3:4575–4579CrossRef Muralidharan G, Bhat N, Santhanam V (2011) Scalable processes for fabricating non-volatile memory devices using self-assembled 2D arrays of gold nanoparticles as charge storage nodes. Nanoscale 3:4575–4579CrossRef
4.
Zurück zum Zitat Brown C, Bushell G, Whitehouse M, Agrawal DS, Tupe SG, Paknikar KM, Tiekink E (2007) Nanogoldpharmaceutics. Gold Bull 40:245–250CrossRef Brown C, Bushell G, Whitehouse M, Agrawal DS, Tupe SG, Paknikar KM, Tiekink E (2007) Nanogoldpharmaceutics. Gold Bull 40:245–250CrossRef
5.
Zurück zum Zitat Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045CrossRef Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045CrossRef
6.
Zurück zum Zitat Santhanam V, Andres RP (2009) Metal nanoparticles: self-assembly into electronic nanostructures. In: Contescu CI, Putyera K (eds) Dekker encyclopedia of nanoscience and nanotechnology, 2nd edn. CRC Press, Boca Raton, pp 2079–2090 Santhanam V, Andres RP (2009) Metal nanoparticles: self-assembly into electronic nanostructures. In: Contescu CI, Putyera K (eds) Dekker encyclopedia of nanoscience and nanotechnology, 2nd edn. CRC Press, Boca Raton, pp 2079–2090
7.
Zurück zum Zitat Feldheim DL, Colby AF Jr (2001) Metal nanoparticles: synthesis, characterization, and applications. CRC Press, New York Feldheim DL, Colby AF Jr (2001) Metal nanoparticles: synthesis, characterization, and applications. CRC Press, New York
8.
Zurück zum Zitat Thompson D (2007) Michael Faraday’s recognition of ruby gold: the birth of modern nanotechnology. Gold Bull 40:267–269CrossRef Thompson D (2007) Michael Faraday’s recognition of ruby gold: the birth of modern nanotechnology. Gold Bull 40:267–269CrossRef
9.
Zurück zum Zitat Weiser HB (1933) Inorganic colloid chemistry. Wiley, New York Weiser HB (1933) Inorganic colloid chemistry. Wiley, New York
10.
Zurück zum Zitat Slot JW, Geuze HJ (1985) A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol 38:87–93 Slot JW, Geuze HJ (1985) A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol 38:87–93
11.
Zurück zum Zitat Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRef Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRef
12.
Zurück zum Zitat Turkevich J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef Turkevich J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef
13.
Zurück zum Zitat Perala SRK, Kumar S (2013) On the mechanism of nanoparticle synthesis in Brust-Schiffrin method. Langmuir 29:9863–9873CrossRef Perala SRK, Kumar S (2013) On the mechanism of nanoparticle synthesis in Brust-Schiffrin method. Langmuir 29:9863–9873CrossRef
14.
Zurück zum Zitat Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402CrossRef Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402CrossRef
15.
Zurück zum Zitat Dykman LA, Bogatyrev VA (2007) Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry. Russ Chem Rev 76:181–194CrossRef Dykman LA, Bogatyrev VA (2007) Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry. Russ Chem Rev 76:181–194CrossRef
16.
Zurück zum Zitat Ostwald CWW (1917) An introduction to theoretical and applied colloid chemistry. Wiley, New York Ostwald CWW (1917) An introduction to theoretical and applied colloid chemistry. Wiley, New York
17.
Zurück zum Zitat Mühlpfordt H (1982) The preparation of colloidal gold particles using tannic acid as an additional reducing agent. Experientia 38:1127–1128CrossRef Mühlpfordt H (1982) The preparation of colloidal gold particles using tannic acid as an additional reducing agent. Experientia 38:1127–1128CrossRef
18.
Zurück zum Zitat Bulut E, Özacar M (2009) Rapid, facile synthesis of silver nanostructure using hydrolyzable tannin. Ind Eng Chem Res 48:5686–5690CrossRef Bulut E, Özacar M (2009) Rapid, facile synthesis of silver nanostructure using hydrolyzable tannin. Ind Eng Chem Res 48:5686–5690CrossRef
19.
Zurück zum Zitat Tian X, Wang W, Cao G (2007) A facile aqueous-phase route for the synthesis of silver nanoplates. Mater Lett 61:130–133CrossRef Tian X, Wang W, Cao G (2007) A facile aqueous-phase route for the synthesis of silver nanoplates. Mater Lett 61:130–133CrossRef
20.
Zurück zum Zitat Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr Sci India 97:1055–1059 Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr Sci India 97:1055–1059
21.
Zurück zum Zitat Cruz BH, Díaz‐Cruz JM, Ariño C, Esteban M (2000) Heavy metal binding by tannic acid: a voltammetric study. Electroanalysis 12:1130–1137CrossRef Cruz BH, Díaz‐Cruz JM, Ariño C, Esteban M (2000) Heavy metal binding by tannic acid: a voltammetric study. Electroanalysis 12:1130–1137CrossRef
22.
Zurück zum Zitat Bors W, Foo LY, Hertkorn N, Michel C, Stettmaier K (2001) Chemical studies of proanthocyanidins and hydrolyzable tannins. Antioxid Redox Signal 3:995–1008CrossRef Bors W, Foo LY, Hertkorn N, Michel C, Stettmaier K (2001) Chemical studies of proanthocyanidins and hydrolyzable tannins. Antioxid Redox Signal 3:995–1008CrossRef
23.
Zurück zum Zitat Martinez-Castanon G, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348CrossRef Martinez-Castanon G, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348CrossRef
24.
Zurück zum Zitat Liu J, Qin G, Raveendran P, Ikushima Y (2006) Facile “green” synthesis, characterization, and catalytic function of β‐D‐glucose‐stabilized au nanocrystals. Chem Eur J 12:2131–2138CrossRef Liu J, Qin G, Raveendran P, Ikushima Y (2006) Facile “green” synthesis, characterization, and catalytic function of β‐D‐glucose‐stabilized au nanocrystals. Chem Eur J 12:2131–2138CrossRef
25.
Zurück zum Zitat Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal Today 113:141–156CrossRef Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal Today 113:141–156CrossRef
26.
Zurück zum Zitat Sivaraman SK, Kumar S, Santhanam V (2010) A room temperature synthesis of gold nanoparticles: size control by slow addition. Gold Bull 43:275–286CrossRef Sivaraman SK, Kumar S, Santhanam V (2010) A room temperature synthesis of gold nanoparticles: size control by slow addition. Gold Bull 43:275–286CrossRef
27.
Zurück zum Zitat Sivaraman SK, Kumar S, Santhanam V (2011) Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method – the role of chloroauric acid. J Colloid Interface Sci 361:543–547CrossRef Sivaraman SK, Kumar S, Santhanam V (2011) Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method – the role of chloroauric acid. J Colloid Interface Sci 361:543–547CrossRef
28.
Zurück zum Zitat Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46:3128–3136CrossRef Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46:3128–3136CrossRef
29.
Zurück zum Zitat Kumar S, Bhat V, Vinoy KJ, Santhanam V (2013) Using an office inkjet printer to define the formation of copper films on paper. IEEE Trans Nanotechnol 13:160–164CrossRef Kumar S, Bhat V, Vinoy KJ, Santhanam V (2013) Using an office inkjet printer to define the formation of copper films on paper. IEEE Trans Nanotechnol 13:160–164CrossRef
Metadaten
Titel
Scalable Synthesis of Noble Metal Nanoparticles
verfasst von
Venugopal Santhanam
Copyright-Jahr
2015
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-2289-7_4

Neuer Inhalt