Skip to main content

2016 | OriginalPaper | Buchkapitel

Overview of Biogas Reforming Technologies for Hydrogen Production: Advantages and Challenges

verfasst von : Priyanshu Verma, Sujoy Kumar Samanta

Erschienen in: Proceedings of the First International Conference on Recent Advances in Bioenergy Research

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the past two decades, production of biogas from biomass degradation has drawn the attention of several researchers. Biogas is produced during anaerobic degradation of plant and animal wastes, basically consisting of higher concentrations of methane (CH4), carbon dioxide (CO2), and trace amounts of hydrogen sulfide (H2S). This biogas is an extremely potential and interesting source for the production of hydrogen gas (H2). Hydrogen gas finds tremendous quantum of applications as an essential raw material to meet the several H2 demands such as high temperature fuel cell, combustion engine, petrochemical and fertilizer industries, mostly ammonia production. Traditionally, large-scale production of H2 gas involves a thermal reforming process that uses light hydrocarbons, mainly natural gas. Biogas which is regarded as a renewable source of methane, reduces the excessive burden on natural gas. It can also help to reduce the greenhouse gas emissions. However, the present methods used for biogas reforming have several technological limitations, which may depend on the quality of biogas produced, the conversion efficiency of the process, and specific requirements for the integration of H2 production, purification, transportation, and application. This study reviews several biogas reforming methods, the types of catalyst used, the advantages and disadvantages offered by each route during the processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alves HJ, Junior CB, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araujo CH (2013) Overview of hydrogen production technologies from biogas and the application in fuel cells. Int J Hydrogen Energy 38:5215–5225CrossRef Alves HJ, Junior CB, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araujo CH (2013) Overview of hydrogen production technologies from biogas and the application in fuel cells. Int J Hydrogen Energy 38:5215–5225CrossRef
Zurück zum Zitat Amin AM, Croiset E, Constantinou C, Epling W (2012) Methane cracking using Ni supported on porous and non-porous alumina catalysts. Int J Hydrogen Energy 37:9038–9048CrossRef Amin AM, Croiset E, Constantinou C, Epling W (2012) Methane cracking using Ni supported on porous and non-porous alumina catalysts. Int J Hydrogen Energy 37:9038–9048CrossRef
Zurück zum Zitat Araki S, Hino N, Mori T, Hikazudani S (2009) Durability of a Ni based monolithic catalyst in autothermal reforming of biogas. Int J Hydrogen Energy 34:4727–4734CrossRef Araki S, Hino N, Mori T, Hikazudani S (2009) Durability of a Ni based monolithic catalyst in autothermal reforming of biogas. Int J Hydrogen Energy 34:4727–4734CrossRef
Zurück zum Zitat Araki S, Hino N, Mori T, Hikazudani S (2010) Autothermal reforming of biogas over a monolithic catalyst. J Nat Gas Chem 19:477–481CrossRef Araki S, Hino N, Mori T, Hikazudani S (2010) Autothermal reforming of biogas over a monolithic catalyst. J Nat Gas Chem 19:477–481CrossRef
Zurück zum Zitat Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A Gen 176:159–176CrossRef Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A Gen 176:159–176CrossRef
Zurück zum Zitat Avraam DG, Halkides TI, Liguras DK, Bereketidou AO, Goula MA (2010) An experimental and theoretical approach for the biogas steam reforming reaction. Int J Hydrogen Energy 35:9818–9827CrossRef Avraam DG, Halkides TI, Liguras DK, Bereketidou AO, Goula MA (2010) An experimental and theoretical approach for the biogas steam reforming reaction. Int J Hydrogen Energy 35:9818–9827CrossRef
Zurück zum Zitat Barrai F, Jackson T, Whitmore N, Castaldi MJ (2007) The role of carbon deposition on precious metal catalyst activity during dry reforming of biogas. Catal Today 129:391–396CrossRef Barrai F, Jackson T, Whitmore N, Castaldi MJ (2007) The role of carbon deposition on precious metal catalyst activity during dry reforming of biogas. Catal Today 129:391–396CrossRef
Zurück zum Zitat Bensaid S, Russo N, Fino D (2010) Power and hydrogen co-generation from biogas. Energy Fuels 24(9):4743–4747CrossRef Bensaid S, Russo N, Fino D (2010) Power and hydrogen co-generation from biogas. Energy Fuels 24(9):4743–4747CrossRef
Zurück zum Zitat Bereketidou OA, Goula MA (2012) Biogas reforming for syngas production over nickel supported on ceria-alumina catalysts. Catal Today 195(1):93–100CrossRef Bereketidou OA, Goula MA (2012) Biogas reforming for syngas production over nickel supported on ceria-alumina catalysts. Catal Today 195(1):93–100CrossRef
Zurück zum Zitat Cai X, Dong X, Lin W (2006) Auto-thermal reforming of methane over Ni catalysts supported on CuO–ZrO2–CeO2–Al2O3. J Nat Gas Chem 15:122–126CrossRef Cai X, Dong X, Lin W (2006) Auto-thermal reforming of methane over Ni catalysts supported on CuO–ZrO2–CeO2–Al2O3. J Nat Gas Chem 15:122–126CrossRef
Zurück zum Zitat Chang S, Li J, Liu F, Yu Z (2012) Effect of different gas releasing methods on anaerobic fermentative hydrogen production in batch cultures. Front Environ Sci Eng China 6(6):901–906CrossRef Chang S, Li J, Liu F, Yu Z (2012) Effect of different gas releasing methods on anaerobic fermentative hydrogen production in batch cultures. Front Environ Sci Eng China 6(6):901–906CrossRef
Zurück zum Zitat Chattanathan SA, Adhikari S, McVey M, Fasina O (2014) Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion. Int J Hydrogen Energy 39:19905–19911CrossRef Chattanathan SA, Adhikari S, McVey M, Fasina O (2014) Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion. Int J Hydrogen Energy 39:19905–19911CrossRef
Zurück zum Zitat Chen Z, Grace JR, Lim CJ, Li A (2007) Experimental studies of pure hydrogen production in a commercialized fluidized-bed membrane reactor with SMR and ATR catalysts. Int J Hydrogen Energy 32:2359–2366CrossRef Chen Z, Grace JR, Lim CJ, Li A (2007) Experimental studies of pure hydrogen production in a commercialized fluidized-bed membrane reactor with SMR and ATR catalysts. Int J Hydrogen Energy 32:2359–2366CrossRef
Zurück zum Zitat Chun YN, Song HW, Kim SC, Lim MS (2008) Hydrogen-rich gas production from biogas reforming using plasmatron. Energy Fuels 22(1):123–127CrossRef Chun YN, Song HW, Kim SC, Lim MS (2008) Hydrogen-rich gas production from biogas reforming using plasmatron. Energy Fuels 22(1):123–127CrossRef
Zurück zum Zitat Corbo P, Migliardini F (2007) Hydrogen production by catalytic partial oxidation of methane and propane on Ni and Pt catalysts. Int J Hydrogen Energy 32:55–66CrossRef Corbo P, Migliardini F (2007) Hydrogen production by catalytic partial oxidation of methane and propane on Ni and Pt catalysts. Int J Hydrogen Energy 32:55–66CrossRef
Zurück zum Zitat Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources. Wiley-VCH Verlag GmbH & Co, KGaA, WeinheimCrossRef Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources. Wiley-VCH Verlag GmbH & Co, KGaA, WeinheimCrossRef
Zurück zum Zitat Díaz I, Ramos I, Fdz-Polanco M (2015) Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters. Bioresour Technol 192:280–286CrossRef Díaz I, Ramos I, Fdz-Polanco M (2015) Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters. Bioresour Technol 192:280–286CrossRef
Zurück zum Zitat Effendi A, Hellgardt K, Zhang ZG, Yoshida T (2005) Optimising H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 84:869–874CrossRef Effendi A, Hellgardt K, Zhang ZG, Yoshida T (2005) Optimising H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 84:869–874CrossRef
Zurück zum Zitat Effendi A, Zhang ZG, Hellgardt K, Honda K, Yoshida T (2002) Steam reforming of a clean model biogas over Ni/Al2O3 in fluidized and fixed-bed reactors. Catal Today 77:181–189CrossRef Effendi A, Zhang ZG, Hellgardt K, Honda K, Yoshida T (2002) Steam reforming of a clean model biogas over Ni/Al2O3 in fluidized and fixed-bed reactors. Catal Today 77:181–189CrossRef
Zurück zum Zitat Eltejaei H, Bozorgzadeh HR, Towfighi J, Omidkhah MR, Rezaei M, Zanganeh R et al (2012) Methane dry reforming on Ni/Ce0.75Zr0.25O2–MgAl2O4 and Ni/Ce0.75Zr0.25O2−γ-alumina: effects of support composition and water addition. Int J Hydrogen Energy 37:4107–4118CrossRef Eltejaei H, Bozorgzadeh HR, Towfighi J, Omidkhah MR, Rezaei M, Zanganeh R et al (2012) Methane dry reforming on Ni/Ce0.75Zr0.25O2–MgAl2O4 and Ni/Ce0.75Zr0.25O2−γ-alumina: effects of support composition and water addition. Int J Hydrogen Energy 37:4107–4118CrossRef
Zurück zum Zitat Esquivel-Elizondo S, Chairez I, Salgado E, Aranda JS, Baquerizo G, Garcia-Peña EI (2014) Controlled continuous bio-hydrogen production using different biogas release strategies. Appl Biochem Biotechnol 173(7):1737–1751CrossRef Esquivel-Elizondo S, Chairez I, Salgado E, Aranda JS, Baquerizo G, Garcia-Peña EI (2014) Controlled continuous bio-hydrogen production using different biogas release strategies. Appl Biochem Biotechnol 173(7):1737–1751CrossRef
Zurück zum Zitat Faghri A, Guo Z (2005) Challenges and opportunities of thermal management issues related to fuel cell technology and modeling: review. Int J Heat Mass Transf 48:3891–3920CrossRef Faghri A, Guo Z (2005) Challenges and opportunities of thermal management issues related to fuel cell technology and modeling: review. Int J Heat Mass Transf 48:3891–3920CrossRef
Zurück zum Zitat Galvagno A, Chiodo V, Urbani F, Freni F (2013) Biogas as hydrogen source for fuel cell applications. Int J Hydrogen Energy 38:3913–3920CrossRef Galvagno A, Chiodo V, Urbani F, Freni F (2013) Biogas as hydrogen source for fuel cell applications. Int J Hydrogen Energy 38:3913–3920CrossRef
Zurück zum Zitat Goransson K, Soderlind U, He J, Zhang W (2011) Review of syngas production via biomass DFBGs. Renew Sust Energ Rev 15:482–492CrossRef Goransson K, Soderlind U, He J, Zhang W (2011) Review of syngas production via biomass DFBGs. Renew Sust Energ Rev 15:482–492CrossRef
Zurück zum Zitat Gupta RB (2009) Hydrogen Fuel: Production, transport and storage. CRC Press, Taylor and Francis Group, Boca Raton Gupta RB (2009) Hydrogen Fuel: Production, transport and storage. CRC Press, Taylor and Francis Group, Boca Raton
Zurück zum Zitat Halabi MH, De Croon MHJM, Van Der Schaaf J, Cobden PD, Schouten JC (2010) Intrinsic kinetics of low temperature catalytic methane-steam reforming and water-gas shift over Rh/CeαZr1−αO2 catalyst. Appl Catal A Gen 389(1–2):80–91CrossRef Halabi MH, De Croon MHJM, Van Der Schaaf J, Cobden PD, Schouten JC (2010) Intrinsic kinetics of low temperature catalytic methane-steam reforming and water-gas shift over Rh/CeαZr1−αO2 catalyst. Appl Catal A Gen 389(1–2):80–91CrossRef
Zurück zum Zitat Herle JV, Membrez Y, Bucheli O (2004) Biogas as a fuel source for SOFC co-generators. J Power Sources 127:300–312CrossRef Herle JV, Membrez Y, Bucheli O (2004) Biogas as a fuel source for SOFC co-generators. J Power Sources 127:300–312CrossRef
Zurück zum Zitat Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260CrossRef Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260CrossRef
Zurück zum Zitat Horikawa MS, Rossi F, Gimenes ML, Costa CMM, Silva MGC (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21(3):415–422CrossRef Horikawa MS, Rossi F, Gimenes ML, Costa CMM, Silva MGC (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21(3):415–422CrossRef
Zurück zum Zitat Hotza D, Da Costa JCD (2008) Fuel cells development and hydrogen production from renewable resources in Brazil. Int J Hydrogen Energy 33:4915–4935CrossRef Hotza D, Da Costa JCD (2008) Fuel cells development and hydrogen production from renewable resources in Brazil. Int J Hydrogen Energy 33:4915–4935CrossRef
Zurück zum Zitat Italiano C, Vita A, Fabiano C, Laganà M, Pino L (2015) Bio-hydrogen production by oxidative steam reforming of biogas over nanocrystalline Ni/CeO2 catalysts. Int J Hydrogen Energy, 1–8. (Article in press) Italiano C, Vita A, Fabiano C, Laganà M, Pino L (2015) Bio-hydrogen production by oxidative steam reforming of biogas over nanocrystalline Ni/CeO2 catalysts. Int J Hydrogen Energy, 1–8. (Article in press)
Zurück zum Zitat Iulianelli A, Manzolini G, Falco M, Campanari S, Longo T, Liguori S et al (2010) H2 production by low pressure methane steam reforming in a Pd-Ag membrane reactor over a Ni-based catalyst: experimental and modeling. Int J Hydrogen Energy 35:11514–11524CrossRef Iulianelli A, Manzolini G, Falco M, Campanari S, Longo T, Liguori S et al (2010) H2 production by low pressure methane steam reforming in a Pd-Ag membrane reactor over a Ni-based catalyst: experimental and modeling. Int J Hydrogen Energy 35:11514–11524CrossRef
Zurück zum Zitat Kolbitsch P, Pfeifer C, Hofbauer H (2008) Catalytic steam reforming of model biogas. Fuel 87:701–706CrossRef Kolbitsch P, Pfeifer C, Hofbauer H (2008) Catalytic steam reforming of model biogas. Fuel 87:701–706CrossRef
Zurück zum Zitat Kovács KL, Kovács ÁT, Maróti G et al (2004) Improvement of biohydrogen production and intensification of biogas formation. Rev Environ Sci Biotechnol 3(4):321–330CrossRef Kovács KL, Kovács ÁT, Maróti G et al (2004) Improvement of biohydrogen production and intensification of biogas formation. Rev Environ Sci Biotechnol 3(4):321–330CrossRef
Zurück zum Zitat Lau CS, Tsolankis A, Wyszynski ML (2011) Biogas upgrade to syngas (H2–CO) via dry and oxidative reforming. Int J Hydrogen Energy 36:397–404CrossRef Lau CS, Tsolankis A, Wyszynski ML (2011) Biogas upgrade to syngas (H2–CO) via dry and oxidative reforming. Int J Hydrogen Energy 36:397–404CrossRef
Zurück zum Zitat Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrogen Energy 35:4962–4969CrossRef Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrogen Energy 35:4962–4969CrossRef
Zurück zum Zitat Lin KH, Chang HF, Chang ACC (2012) Biogas reforming for hydrogen production over mesoporous Ni2xCe1−xO2 catalysts. Int J Hydrogen Energy 37(20):15696–15703CrossRef Lin KH, Chang HF, Chang ACC (2012) Biogas reforming for hydrogen production over mesoporous Ni2xCe1−xO2 catalysts. Int J Hydrogen Energy 37(20):15696–15703CrossRef
Zurück zum Zitat Lin Y, Liu S, Chuanga C, Chub Y (2003) Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming: experimental and modeling. Catal Today 82:127–139CrossRef Lin Y, Liu S, Chuanga C, Chub Y (2003) Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming: experimental and modeling. Catal Today 82:127–139CrossRef
Zurück zum Zitat Liu C, Zhang R, Wei S et al (2015) Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite. Fuel 157:183–190CrossRef Liu C, Zhang R, Wei S et al (2015) Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite. Fuel 157:183–190CrossRef
Zurück zum Zitat Lu GQ, Diniz-Costa JC, Dukec M, Giessler S, Socolowe R, Williams RH et al (2007) Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci 314:589–603CrossRef Lu GQ, Diniz-Costa JC, Dukec M, Giessler S, Socolowe R, Williams RH et al (2007) Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci 314:589–603CrossRef
Zurück zum Zitat Lucredio AF, Assaf JM, Assaf EM (2012) Reforming of a model biogas on Ni and Rh–Ni catalysts: effect of adding La. Fuel Process Tech. 102:124–131CrossRef Lucredio AF, Assaf JM, Assaf EM (2012) Reforming of a model biogas on Ni and Rh–Ni catalysts: effect of adding La. Fuel Process Tech. 102:124–131CrossRef
Zurück zum Zitat Mahecha-Botero A, Chen Z, Grace JR et al (2009) Comparison of fluidized bed flow regimes for steam methane reforming in membrane reactors: A simulation study. Chem Eng Sci 64(16):3598–3613CrossRef Mahecha-Botero A, Chen Z, Grace JR et al (2009) Comparison of fluidized bed flow regimes for steam methane reforming in membrane reactors: A simulation study. Chem Eng Sci 64(16):3598–3613CrossRef
Zurück zum Zitat Maluf SS, Assaf EM (2009) Ni catalysts with Mo promoter for methane steam reforming. Fuel 88:1547–1553 Maluf SS, Assaf EM (2009) Ni catalysts with Mo promoter for methane steam reforming. Fuel 88:1547–1553
Zurück zum Zitat Meyer J, Mastin J, Pinilla CS (2014) Sustainable hydrogen production from biogas using sorption-enhanced reforming. Energy Procedia 63(1876):6800–6814CrossRef Meyer J, Mastin J, Pinilla CS (2014) Sustainable hydrogen production from biogas using sorption-enhanced reforming. Energy Procedia 63(1876):6800–6814CrossRef
Zurück zum Zitat Micoli L, Bagnasco G, Turco M (2014) H2S removal from biogas for fuelling MCFCs: New adsorbing materials. Int J Hydrogen Energy 39(4):1783–1787CrossRef Micoli L, Bagnasco G, Turco M (2014) H2S removal from biogas for fuelling MCFCs: New adsorbing materials. Int J Hydrogen Energy 39(4):1783–1787CrossRef
Zurück zum Zitat Mosayebi Z, Rezaei M, Ravandi AB, Hadian N (2012) Auto-thermal reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area. Int J Hydrogen Energy 37:1236–1242CrossRef Mosayebi Z, Rezaei M, Ravandi AB, Hadian N (2012) Auto-thermal reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area. Int J Hydrogen Energy 37:1236–1242CrossRef
Zurück zum Zitat Muradov N, Smith F, T-Raissi A (2008) Hydrogen production by catalytic processing of renewable methane-rich gases. Int J Hydrogen Energy 33:2023–2035 Muradov N, Smith F, T-Raissi A (2008) Hydrogen production by catalytic processing of renewable methane-rich gases. Int J Hydrogen Energy 33:2023–2035
Zurück zum Zitat Ohkubo T, Hideshima Y, Shudo Y (2010) Estimation of hydrogen output from a full-scale plant for production of hydrogen from biogas. Int J Hydrogen Energy 35:13021–13027CrossRef Ohkubo T, Hideshima Y, Shudo Y (2010) Estimation of hydrogen output from a full-scale plant for production of hydrogen from biogas. Int J Hydrogen Energy 35:13021–13027CrossRef
Zurück zum Zitat Papadias DD, Ahmed S, Kumar R (2012) Fuel quality issues with biogas energy—an economic analysis for a stationary fuel cell system. Energy 44:257–277CrossRef Papadias DD, Ahmed S, Kumar R (2012) Fuel quality issues with biogas energy—an economic analysis for a stationary fuel cell system. Energy 44:257–277CrossRef
Zurück zum Zitat Purwanto H, Akiyama T (2006) Hydrogen production from biogas using hot slag. Int J Hydrogen Energy 31:491–495CrossRef Purwanto H, Akiyama T (2006) Hydrogen production from biogas using hot slag. Int J Hydrogen Energy 31:491–495CrossRef
Zurück zum Zitat Rand DAJ, Dell RM (2008) Hydrogen energy: challenges and prospects. RSC Press, Cambridge Rand DAJ, Dell RM (2008) Hydrogen energy: challenges and prospects. RSC Press, Cambridge
Zurück zum Zitat Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8(2):149–185CrossRef Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8(2):149–185CrossRef
Zurück zum Zitat Rogatis L, Montini T, Cognigni A, Olivi L, Fornasiero P (2009) Methane partial oxidation on NiCu-based catalysts. Catal Today 145:176–185CrossRef Rogatis L, Montini T, Cognigni A, Olivi L, Fornasiero P (2009) Methane partial oxidation on NiCu-based catalysts. Catal Today 145:176–185CrossRef
Zurück zum Zitat Roh HS, Eum IH, Jeong DW (2012) Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions. Renew Energy 42:212–216CrossRef Roh HS, Eum IH, Jeong DW (2012) Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions. Renew Energy 42:212–216CrossRef
Zurück zum Zitat Ruckenstein E, Hu YH (1999) Methane partial oxidation over NiO/MgO solid solution catalysts. Appl Catal A Gen 183:85–92CrossRef Ruckenstein E, Hu YH (1999) Methane partial oxidation over NiO/MgO solid solution catalysts. Appl Catal A Gen 183:85–92CrossRef
Zurück zum Zitat Rueangjitt N, Akarawitoo C, Chavadej S (2012) Production of hydrogen-rich syngas from biogas reforming with partial oxidation using a multi-stage AC gliding arc system. Plasma Chem Plasma Process 32(3):583–596CrossRef Rueangjitt N, Akarawitoo C, Chavadej S (2012) Production of hydrogen-rich syngas from biogas reforming with partial oxidation using a multi-stage AC gliding arc system. Plasma Chem Plasma Process 32(3):583–596CrossRef
Zurück zum Zitat San-José-Alonso D, Juan-Juan J, Illan-Gomes MJ, Roman-Martinez MC (2009) Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Appl Catal A Gen, 371:54–59 San-José-Alonso D, Juan-Juan J, Illan-Gomes MJ, Roman-Martinez MC (2009) Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Appl Catal A Gen, 371:54–59
Zurück zum Zitat Sato T, Suzuki T, Aketa M, Ishiyama Y, Mimura K, Itoh N (2010) Steam reforming of biogas mixtures with a palladium membrane reactor system. Chem Eng Sci 65:451–457CrossRef Sato T, Suzuki T, Aketa M, Ishiyama Y, Mimura K, Itoh N (2010) Steam reforming of biogas mixtures with a palladium membrane reactor system. Chem Eng Sci 65:451–457CrossRef
Zurück zum Zitat Serrano-Lotina A, Martin AJ, Folgado MA, Daza L (2012) Dry reforming of methane to syngas over La-promoted hydrotalcite clay-derived catalysts. Int J Hydrogen Energy 37:12342–12350CrossRef Serrano-Lotina A, Martin AJ, Folgado MA, Daza L (2012) Dry reforming of methane to syngas over La-promoted hydrotalcite clay-derived catalysts. Int J Hydrogen Energy 37:12342–12350CrossRef
Zurück zum Zitat Sharifi M, Haghighi M, Abdollahifar M (2014) Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance. Mater Res Bull 60:328–340CrossRef Sharifi M, Haghighi M, Abdollahifar M (2014) Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance. Mater Res Bull 60:328–340CrossRef
Zurück zum Zitat Shiga H (1998) Large-scale hydrogen production from biogas. Int J Hydrogen Energy 23(97):631–640CrossRef Shiga H (1998) Large-scale hydrogen production from biogas. Int J Hydrogen Energy 23(97):631–640CrossRef
Zurück zum Zitat Simeone M, Salemme L, Allouis C (2008) Reactor temperature profile during auto-thermal methane reforming on Rh/Al2O3 catalyst by IR imaging. Int J Hydrogen Energy 33:4798–4808CrossRef Simeone M, Salemme L, Allouis C (2008) Reactor temperature profile during auto-thermal methane reforming on Rh/Al2O3 catalyst by IR imaging. Int J Hydrogen Energy 33:4798–4808CrossRef
Zurück zum Zitat Sisani E, Cinti G, Discepoli G, Penchini D, Desideri U, Marmottini F (2014) Adsorptive removal of H2S in biogas conditions for high temperature fuel cell systems. Int J Hydrogen Energy 39(36):21753–21766CrossRef Sisani E, Cinti G, Discepoli G, Penchini D, Desideri U, Marmottini F (2014) Adsorptive removal of H2S in biogas conditions for high temperature fuel cell systems. Int J Hydrogen Energy 39(36):21753–21766CrossRef
Zurück zum Zitat Souza MMVM, Schmal M (2005) Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl Catal A Gen 281:19–24CrossRef Souza MMVM, Schmal M (2005) Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl Catal A Gen 281:19–24CrossRef
Zurück zum Zitat Tippayawong N, Thanompongchart P (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35(12):4531–4535CrossRef Tippayawong N, Thanompongchart P (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35(12):4531–4535CrossRef
Zurück zum Zitat Wongtanet J, Sang BI, Lee SM, Pak D (2007) Biohydrogen Production by Fermentative Process in Continuous Stirred-Tank Reactor. Int J Green Energy 4(4):385–395CrossRef Wongtanet J, Sang BI, Lee SM, Pak D (2007) Biohydrogen Production by Fermentative Process in Continuous Stirred-Tank Reactor. Int J Green Energy 4(4):385–395CrossRef
Zurück zum Zitat Xu G, Chen X, Honda K, Zhang ZG (2004) Producing H2-rich gas from simulated biogas and applying the gas to a 50 W PEFC stack. AIChE J 50(10):2467–2480CrossRef Xu G, Chen X, Honda K, Zhang ZG (2004) Producing H2-rich gas from simulated biogas and applying the gas to a 50 W PEFC stack. AIChE J 50(10):2467–2480CrossRef
Zurück zum Zitat Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrogen Energy 34:6646–6654 Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrogen Energy 34:6646–6654
Zurück zum Zitat Xu J, Zhou W, Li Z, Wang J, Ma J (2010) Biogas reforming for hydrogen production over a Ni–Co bimetallic catalyst: Effect of operating conditions. Int J Hydrogen Energy 35:13013–13020CrossRef Xu J, Zhou W, Li Z, Wang J, Ma J (2010) Biogas reforming for hydrogen production over a Ni–Co bimetallic catalyst: Effect of operating conditions. Int J Hydrogen Energy 35:13013–13020CrossRef
Zurück zum Zitat Yang L, Ge X, Wan C, Yu F, Li Y (2014) Progress and perspectives in converting biogas to transportation fuels. Renew Sustain Energy Rev 40:1133–1152CrossRef Yang L, Ge X, Wan C, Yu F, Li Y (2014) Progress and perspectives in converting biogas to transportation fuels. Renew Sustain Energy Rev 40:1133–1152CrossRef
Zurück zum Zitat Zhai X, Ding S, Liu Z, Jin Y, Cheng Y (2011) Catalytic performance of Ni catalysts for steam reforming of methane at high space velocity. Int J Hydrogen Energy 36:482–489CrossRef Zhai X, Ding S, Liu Z, Jin Y, Cheng Y (2011) Catalytic performance of Ni catalysts for steam reforming of methane at high space velocity. Int J Hydrogen Energy 36:482–489CrossRef
Metadaten
Titel
Overview of Biogas Reforming Technologies for Hydrogen Production: Advantages and Challenges
verfasst von
Priyanshu Verma
Sujoy Kumar Samanta
Copyright-Jahr
2016
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-2773-1_17