Skip to main content

2016 | OriginalPaper | Buchkapitel

Acoustic Cavitation in a Microchannel

verfasst von : Siew-Wan Ohl, Claus-Dieter Ohl

Erschienen in: Handbook of Ultrasonics and Sonochemistry

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cavitation in confined geometries, such as microfluidic channels, allows an unprecedentedly detailed look on their dynamics with a much better control as compared to cavitation in the bulk. Another advantage is that only small amounts of fluids are required. In these geometries, single or a few laser-generated bubbles are utilized for fundamental liquid processing such as mixing, sorting, and pumping. For acoustic cavitation, the bubbles need to be either injected a priori or generated through an entrainment process. Then cavitation can be utilized for emulsions, to lyse cells, to generate light (sonoluminescence), and to initiate chemical reactions. This review presents a summary of the effects of confinement on the bubble dynamics and how they can be utilized for research and applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Blake JR, Taib BB, Doherty G (1986) Transient cavities near boundaries. Part 1. Rigid boundary. J Fluid Mech 170:479–497CrossRef Blake JR, Taib BB, Doherty G (1986) Transient cavities near boundaries. Part 1. Rigid boundary. J Fluid Mech 170:479–497CrossRef
2.
Zurück zum Zitat Best JP, Kucera A (1992) A numerical investigation of non-spherical rebounding bubbles. J Fluid Mech 245:137–154CrossRef Best JP, Kucera A (1992) A numerical investigation of non-spherical rebounding bubbles. J Fluid Mech 245:137–154CrossRef
3.
Zurück zum Zitat Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73(10):106501CrossRef Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73(10):106501CrossRef
4.
Zurück zum Zitat Flynn HG (1975) Cavitation dynamics: II. Free pulsations and models for cavitation bubbles. J Acoust Soc Am 58(6):1160–1170CrossRef Flynn HG (1975) Cavitation dynamics: II. Free pulsations and models for cavitation bubbles. J Acoust Soc Am 58(6):1160–1170CrossRef
5.
Zurück zum Zitat Mishra C, Peles Y (2005) Cavitation in flow through a micro-orifice inside a silicon microchannel. Phys Fluids 17(1):013601CrossRef Mishra C, Peles Y (2005) Cavitation in flow through a micro-orifice inside a silicon microchannel. Phys Fluids 17(1):013601CrossRef
6.
Zurück zum Zitat Duan C, Karnik R, Lu M-C, Majumdar A (2012) Evaporation-induced cavitation in nanofluidic channels. Proc Natl Acad Sci 109(10):3688–3693CrossRef Duan C, Karnik R, Lu M-C, Majumdar A (2012) Evaporation-induced cavitation in nanofluidic channels. Proc Natl Acad Sci 109(10):3688–3693CrossRef
7.
Zurück zum Zitat Wheeler TD, Stroock AD (2008) The transpiration of water at negative pressures in a synthetic tree. Nature 455(7210):208–212CrossRef Wheeler TD, Stroock AD (2008) The transpiration of water at negative pressures in a synthetic tree. Nature 455(7210):208–212CrossRef
8.
Zurück zum Zitat Vincent O, Marmottant P, Quinto-Su PA, Ohl C-D (2012) Birth and growth of cavitation bubbles within water under tension confined in a simple synthetic tree. Phys Rev Lett 108(18):184502CrossRef Vincent O, Marmottant P, Quinto-Su PA, Ohl C-D (2012) Birth and growth of cavitation bubbles within water under tension confined in a simple synthetic tree. Phys Rev Lett 108(18):184502CrossRef
9.
Zurück zum Zitat Taylor MT, Belgrader P, Furman BJ, Pourahmadi F, Kovacs GTA, Northrup MA (2001) Lysing bacterial spores by sonication through a flexible interface in a microfluidic system. Anal Chem 73(3):492–496CrossRef Taylor MT, Belgrader P, Furman BJ, Pourahmadi F, Kovacs GTA, Northrup MA (2001) Lysing bacterial spores by sonication through a flexible interface in a microfluidic system. Anal Chem 73(3):492–496CrossRef
10.
Zurück zum Zitat Tandiono, Ohl S-W, Ow DS-W, Klaseboer E, Wong VVT, Camattari A, Ohl C-D (2010) Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves. Lab Chip 10(14):1848–1855CrossRef Tandiono, Ohl S-W, Ow DS-W, Klaseboer E, Wong VVT, Camattari A, Ohl C-D (2010) Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves. Lab Chip 10(14):1848–1855CrossRef
11.
Zurück zum Zitat Tandiono, Ohl S-W, Ow DSW, Klaseboer E, Wong VV, Dumke R, Ohl C-D (2011) Sonochemistry and sonoluminescence in microfluidics. Proc Natl Acad Sci 108(15):5996–5998CrossRef Tandiono, Ohl S-W, Ow DSW, Klaseboer E, Wong VV, Dumke R, Ohl C-D (2011) Sonochemistry and sonoluminescence in microfluidics. Proc Natl Acad Sci 108(15):5996–5998CrossRef
12.
Zurück zum Zitat Xu J, Attinger D (2007) Control and ultrasonic actuation of a gas–liquid interface in a microfluidic chip. J Micromech Microeng 17(3):609–616CrossRef Xu J, Attinger D (2007) Control and ultrasonic actuation of a gas–liquid interface in a microfluidic chip. J Micromech Microeng 17(3):609–616CrossRef
13.
Zurück zum Zitat Chen Y-H, Chu H-Y, Lin I (2006) Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap. Phys Rev Lett 96(3):034505CrossRef Chen Y-H, Chu H-Y, Lin I (2006) Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap. Phys Rev Lett 96(3):034505CrossRef
14.
Zurück zum Zitat Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644CrossRef Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644CrossRef
15.
Zurück zum Zitat Sankin GN, Yuan F, Zhong P (2010) Pulsating tandem microbubble for localized and directional single-cell membrane poration. Phys Rev Lett 105(7):078101CrossRef Sankin GN, Yuan F, Zhong P (2010) Pulsating tandem microbubble for localized and directional single-cell membrane poration. Phys Rev Lett 105(7):078101CrossRef
16.
Zurück zum Zitat Dijkink R, Ohl C-D (2008) Laser-induced cavitation based micropump. Lab Chip 8(10):1676–1681CrossRef Dijkink R, Ohl C-D (2008) Laser-induced cavitation based micropump. Lab Chip 8(10):1676–1681CrossRef
17.
Zurück zum Zitat Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1(3):82–111CrossRef Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1(3):82–111CrossRef
18.
Zurück zum Zitat Iida Y, Yasui K, Tuziuti T, Sivakumar M, Endo Y (2004) Ultrasonic cavitation in microspace. Chem Commun 20:2280–2281 Iida Y, Yasui K, Tuziuti T, Sivakumar M, Endo Y (2004) Ultrasonic cavitation in microspace. Chem Commun 20:2280–2281
19.
Zurück zum Zitat Tandiono T, Ow DS-W, Driessen L, Chin CS-H, Klaseboer E, Choo AB-H, Ohl S-W, Ohl C-D (2012) Sonolysis of Escherichia coli and Pichia pastoris in microfluidics. Lab Chip 12(4):780–786CrossRef Tandiono T, Ow DS-W, Driessen L, Chin CS-H, Klaseboer E, Choo AB-H, Ohl S-W, Ohl C-D (2012) Sonolysis of Escherichia coli and Pichia pastoris in microfluidics. Lab Chip 12(4):780–786CrossRef
20.
Zurück zum Zitat Tandiono T, Klaseboer E, Ohl S-W, Ow DS-W, Choo AB-H, Li F, Ohl C-D (2013) Resonant stretching of cells and other elastic objects from transient cavitation. Soft Matter 9(36):8687–8696CrossRef Tandiono T, Klaseboer E, Ohl S-W, Ow DS-W, Choo AB-H, Li F, Ohl C-D (2013) Resonant stretching of cells and other elastic objects from transient cavitation. Soft Matter 9(36):8687–8696CrossRef
21.
Zurück zum Zitat Ohl S-W, Tandiono T, Klaseboer E, Ow D, Choo A, Li F, Ohl C-D (2014) Surfactant-free emulsification in microfluidics using strongly oscillating bubbles. J Acoust Soc Am 136(4):2289–2289CrossRef Ohl S-W, Tandiono T, Klaseboer E, Ow D, Choo A, Li F, Ohl C-D (2014) Surfactant-free emulsification in microfluidics using strongly oscillating bubbles. J Acoust Soc Am 136(4):2289–2289CrossRef
22.
Zurück zum Zitat Frinking PJA, Bouakaz A, Kirkhorn J, Ten Cate FJ, De Jong N (2000) Ultrasound contrast imaging: current and new potential methods. Ultrasound Med Biol 26(6):965–975CrossRef Frinking PJA, Bouakaz A, Kirkhorn J, Ten Cate FJ, De Jong N (2000) Ultrasound contrast imaging: current and new potential methods. Ultrasound Med Biol 26(6):965–975CrossRef
23.
Zurück zum Zitat Unger E, Porter T, Lindner J, Grayburn P (2014) Cardiovascular drug delivery with ultrasound and microbubbles. Adv Drug Deliv Rev 72:110–126CrossRef Unger E, Porter T, Lindner J, Grayburn P (2014) Cardiovascular drug delivery with ultrasound and microbubbles. Adv Drug Deliv Rev 72:110–126CrossRef
24.
Zurück zum Zitat Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447CrossRef Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447CrossRef
25.
Zurück zum Zitat Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60(10):1153–1166CrossRef Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60(10):1153–1166CrossRef
26.
Zurück zum Zitat Datta S, Coussios CC, Ammi AY, Mast TD, de Courten-Myers GM, Holland CK (2008) Ultrasound-enhanced thrombolysis using Definity® as a cavitation nucleation agent. Ultrasound Med Biol 34(9):1421–1433CrossRef Datta S, Coussios CC, Ammi AY, Mast TD, de Courten-Myers GM, Holland CK (2008) Ultrasound-enhanced thrombolysis using Definity® as a cavitation nucleation agent. Ultrasound Med Biol 34(9):1421–1433CrossRef
27.
Zurück zum Zitat Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, Morishita R (2002) Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9(6):372–380CrossRef Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, Morishita R (2002) Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9(6):372–380CrossRef
28.
Zurück zum Zitat Wu J, Xie F, Lof J, Sayyed S, Porter TR (2015) Utilization of modified diagnostic ultrasound and microbubbles to reduce myocardial infarct size. Heart 101:1468–1474 Wu J, Xie F, Lof J, Sayyed S, Porter TR (2015) Utilization of modified diagnostic ultrasound and microbubbles to reduce myocardial infarct size. Heart 101:1468–1474
29.
Zurück zum Zitat O’Reilly MA, Hynynen K (2015) Emerging non-cancer applications of therapeutic ultrasound. Int J Hyperthermia 31(3):310–318CrossRef O’Reilly MA, Hynynen K (2015) Emerging non-cancer applications of therapeutic ultrasound. Int J Hyperthermia 31(3):310–318CrossRef
30.
Zurück zum Zitat Guo H, Leung JCK, Chan LYY, Tsang AWL, Lam MF, Lan HY, Lai KN (2007) Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat. Gene Ther 14(24):1712–1720CrossRef Guo H, Leung JCK, Chan LYY, Tsang AWL, Lam MF, Lan HY, Lai KN (2007) Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat. Gene Ther 14(24):1712–1720CrossRef
31.
Zurück zum Zitat Xiong S, Chin LK, Ando K, Tandiono T, Liu AQ, Ohl CD (2015) Droplet generation via a single bubble transformation in a nanofluidic channel. Lab Chip 15(6):1451–1457CrossRef Xiong S, Chin LK, Ando K, Tandiono T, Liu AQ, Ohl CD (2015) Droplet generation via a single bubble transformation in a nanofluidic channel. Lab Chip 15(6):1451–1457CrossRef
32.
Zurück zum Zitat Leighton TG (2011) The inertial terms in equations of motion for bubbles in tubular vessels or between plates. J Acoust Soc Am 130(5):3333–3338, New York Leighton TG (2011) The inertial terms in equations of motion for bubbles in tubular vessels or between plates. J Acoust Soc Am 130(5):3333–3338, New York
33.
Zurück zum Zitat Luther S, Mettin R, Lauterborn W (2000) Modeling acoustic cavitation by a Lagrangian approach. In: AIP conference proceedings, IOP Institute Of Physics Publishing Ltd, New York pp. 351–354 Luther S, Mettin R, Lauterborn W (2000) Modeling acoustic cavitation by a Lagrangian approach. In: AIP conference proceedings, IOP Institute Of Physics Publishing Ltd, New York pp. 351–354
34.
Zurück zum Zitat Harkin A, Kaper TJ, Nadim A (2001) Coupled pulsation and translation of two gas bubbles in a liquid. J Fluid Mech 445:377–411CrossRef Harkin A, Kaper TJ, Nadim A (2001) Coupled pulsation and translation of two gas bubbles in a liquid. J Fluid Mech 445:377–411CrossRef
35.
Zurück zum Zitat Ilinskii YA, Hamilton MF, Zabolotskaya EA (2007) Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics. J Acoust Soc Am 121(2):786–795CrossRef Ilinskii YA, Hamilton MF, Zabolotskaya EA (2007) Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics. J Acoust Soc Am 121(2):786–795CrossRef
36.
Zurück zum Zitat Quinto-Su PA, Ohl C-D (2009) Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry. J Fluid Mech 633:425–435CrossRef Quinto-Su PA, Ohl C-D (2009) Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry. J Fluid Mech 633:425–435CrossRef
37.
Zurück zum Zitat Elkouh AF (1975) Oscillating radial flow between parallel plates. Appl Sci Res 30(6):401–417CrossRef Elkouh AF (1975) Oscillating radial flow between parallel plates. Appl Sci Res 30(6):401–417CrossRef
38.
Zurück zum Zitat Von Kerczek CH (1999) A note about the radial diffuser. Acta mech 135(3–4):229–233CrossRef Von Kerczek CH (1999) A note about the radial diffuser. Acta mech 135(3–4):229–233CrossRef
39.
Zurück zum Zitat Li F, Mohammadzadeh M, Ohl CD (2013) Shear stress induced stretching of red blood cells by oscillating bubbles within a narrow gap. Bull Am Phys Soc 58 Li F, Mohammadzadeh M, Ohl CD (2013) Shear stress induced stretching of red blood cells by oscillating bubbles within a narrow gap. Bull Am Phys Soc 58
40.
Zurück zum Zitat Yuan H, Prosperetti A (1999) The pumping effect of growing and collapsing bubbles in a tube. J Micromech Microeng 9(4):402CrossRef Yuan H, Prosperetti A (1999) The pumping effect of growing and collapsing bubbles in a tube. J Micromech Microeng 9(4):402CrossRef
41.
Zurück zum Zitat Ory E, Yuan H, Prosperetti A, Popinet S, Zaleski S (2000) Growth and collapse of a vapor bubble in a narrow tube. Phys Fluids 12(6):1268–1277CrossRef Ory E, Yuan H, Prosperetti A, Popinet S, Zaleski S (2000) Growth and collapse of a vapor bubble in a narrow tube. Phys Fluids 12(6):1268–1277CrossRef
42.
Zurück zum Zitat Ye T, Bull JL (2004) Direct numerical simulations of micro-bubble expansion in gas embolotherapy. J Biomech Eng 126(6):745–759CrossRef Ye T, Bull JL (2004) Direct numerical simulations of micro-bubble expansion in gas embolotherapy. J Biomech Eng 126(6):745–759CrossRef
43.
Zurück zum Zitat Ye T, Bull JL (2006) Microbubble expansion in a flexible tube. J Biomech Eng 128(4):554–563CrossRef Ye T, Bull JL (2006) Microbubble expansion in a flexible tube. J Biomech Eng 128(4):554–563CrossRef
44.
Zurück zum Zitat Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116CrossRef Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116CrossRef
45.
Zurück zum Zitat Gonzalez-Avila SR, Klaseboer E, Khoo BC, Ohl C-D (2011) Cavitation bubble dynamics in a liquid gap of variable height. J Fluid Mech 682:241–260CrossRef Gonzalez-Avila SR, Klaseboer E, Khoo BC, Ohl C-D (2011) Cavitation bubble dynamics in a liquid gap of variable height. J Fluid Mech 682:241–260CrossRef
46.
Zurück zum Zitat Zwaan E, Le Gac S, Tsuji K, Ohl C-D (2007) Controlled cavitation in microfluidic systems. Phys Rev Lett 98(25):254501CrossRef Zwaan E, Le Gac S, Tsuji K, Ohl C-D (2007) Controlled cavitation in microfluidic systems. Phys Rev Lett 98(25):254501CrossRef
47.
Zurück zum Zitat Lim KY, Quinto-Su PA, Klaseboer E, Khoo BC, Venugopalan V, Ohl CD (2010) Nonspherical laser-induced cavitation bubbles. Phys Rev E 81(1):016308CrossRef Lim KY, Quinto-Su PA, Klaseboer E, Khoo BC, Venugopalan V, Ohl CD (2010) Nonspherical laser-induced cavitation bubbles. Phys Rev E 81(1):016308CrossRef
48.
Zurück zum Zitat Delius M (1994) Medical applications and bioeffects of extracorporeal shock waves. Shock waves 4(2):55–72CrossRef Delius M (1994) Medical applications and bioeffects of extracorporeal shock waves. Shock waves 4(2):55–72CrossRef
49.
Zurück zum Zitat Sankin GN, Simmons WN, Zhu SL, Zhong P (2005) Shock wave interaction with laser-generated single bubbles. Phys Rev Lett 95(3):034501CrossRef Sankin GN, Simmons WN, Zhu SL, Zhong P (2005) Shock wave interaction with laser-generated single bubbles. Phys Rev Lett 95(3):034501CrossRef
50.
Zurück zum Zitat Johnsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shockwave lithotripsy. J Acoust Soc Am 124(4):2011–2020CrossRef Johnsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shockwave lithotripsy. J Acoust Soc Am 124(4):2011–2020CrossRef
51.
Zurück zum Zitat Dowson D, Taylor CM (1979) Cavitation in bearings. Annu Rev Fluid Mech 11(1):35–65CrossRef Dowson D, Taylor CM (1979) Cavitation in bearings. Annu Rev Fluid Mech 11(1):35–65CrossRef
52.
Zurück zum Zitat Field JE (1992) Hot spot ignition mechanisms for explosives. Acc Chem Res 25(11):489–496CrossRef Field JE (1992) Hot spot ignition mechanisms for explosives. Acc Chem Res 25(11):489–496CrossRef
53.
Zurück zum Zitat Saurel R, Lemetayer O (2001) A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J Fluid Mech 431:239–271CrossRef Saurel R, Lemetayer O (2001) A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J Fluid Mech 431:239–271CrossRef
54.
Zurück zum Zitat Chen Y-H, Lin I (2008) Dynamics of impacting a bubble by another pulsed-laser-induced bubble: jetting, fragmentation, and entanglement. Phys Rev E 77(2):026304CrossRef Chen Y-H, Lin I (2008) Dynamics of impacting a bubble by another pulsed-laser-induced bubble: jetting, fragmentation, and entanglement. Phys Rev E 77(2):026304CrossRef
55.
Zurück zum Zitat Delale CF (ed) (2012) Bubble dynamics and shock waves, vol 8. Springer, Berlin, Heidelberg Delale CF (ed) (2012) Bubble dynamics and shock waves, vol 8. Springer, Berlin, Heidelberg
56.
Zurück zum Zitat Khine M, Lau A, Ionescu-Zanetti C, Seo J, Lee LP (2005) A single cell electroporation chip. Lab Chip 5(1):38–43CrossRef Khine M, Lau A, Ionescu-Zanetti C, Seo J, Lee LP (2005) A single cell electroporation chip. Lab Chip 5(1):38–43CrossRef
57.
Zurück zum Zitat Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K (2010) Single cell optical transfection. J R Soc Interface 7(47):863–871CrossRef Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K (2010) Single cell optical transfection. J R Soc Interface 7(47):863–871CrossRef
58.
Zurück zum Zitat Annemieke VW, Kooiman K, Harteveld M, Marcia E, Folkert J, Versluis M, De Jong N (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 112(2):149–155CrossRef Annemieke VW, Kooiman K, Harteveld M, Marcia E, Folkert J, Versluis M, De Jong N (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 112(2):149–155CrossRef
59.
Zurück zum Zitat Gac SL, Zwaan E, van den Berg A, Ohl C-D (2007) Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement. Lab Chip 7(12):1666–1672CrossRef Gac SL, Zwaan E, van den Berg A, Ohl C-D (2007) Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement. Lab Chip 7(12):1666–1672CrossRef
60.
Zurück zum Zitat Hsiao C-T, Choi J-K, Singh S, Chahine GL, Hay TA, Ilinskii YA, Zabolotskaya EA, Hamilton MF, Sankin G, Yuan F, Zhong P (2013) Modelling single-and tandem-bubble dynamics between two parallel plates for biomedical applications. J Fluid Mech 716:137–170CrossRef Hsiao C-T, Choi J-K, Singh S, Chahine GL, Hay TA, Ilinskii YA, Zabolotskaya EA, Hamilton MF, Sankin G, Yuan F, Zhong P (2013) Modelling single-and tandem-bubble dynamics between two parallel plates for biomedical applications. J Fluid Mech 716:137–170CrossRef
61.
Zurück zum Zitat Han B, Köhler K, Jungnickel K, Mettin R, Lauterborn W, Vogel A (2015) Dynamics of laser-induced bubble pairs. J Fluid Mech 771:706–742CrossRef Han B, Köhler K, Jungnickel K, Mettin R, Lauterborn W, Vogel A (2015) Dynamics of laser-induced bubble pairs. J Fluid Mech 771:706–742CrossRef
62.
Zurück zum Zitat Quinto-Su PA, Lai H-H, Yoon HH, Sims CE, Allbritton NL, Venugopalan V (2008) Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging. Lab Chip 8(3):408–414CrossRef Quinto-Su PA, Lai H-H, Yoon HH, Sims CE, Allbritton NL, Venugopalan V (2008) Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging. Lab Chip 8(3):408–414CrossRef
63.
Zurück zum Zitat Quinto-Su PA, Kuss C, Preiser PR, Ohl C-D (2011) Red blood cell rheology using single controlled laser-induced cavitation bubbles. Lab Chip 11(4):672–678CrossRef Quinto-Su PA, Kuss C, Preiser PR, Ohl C-D (2011) Red blood cell rheology using single controlled laser-induced cavitation bubbles. Lab Chip 11(4):672–678CrossRef
64.
Zurück zum Zitat Li F, Chan CU, Ohl CD (2013) Yield strength of human erythrocyte membranes to impulsive stretching. Biophys J 105(4):872–879CrossRef Li F, Chan CU, Ohl CD (2013) Yield strength of human erythrocyte membranes to impulsive stretching. Biophys J 105(4):872–879CrossRef
65.
Zurück zum Zitat Li F, Chan CU, Ohl CD (2014) Rebuttal to a comment by Richard E. Waugh on our article “Yield Strength of Human Erythrocyte Membranes to Impulsive Stretching”. Biophys J 106(8):1832CrossRef Li F, Chan CU, Ohl CD (2014) Rebuttal to a comment by Richard E. Waugh on our article “Yield Strength of Human Erythrocyte Membranes to Impulsive Stretching”. Biophys J 106(8):1832CrossRef
66.
Zurück zum Zitat Park S-Y, Wu T-H, Chen Y, Teitell MA, Chiou P-Y (2011) High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab Chip 11(6):1010–1012CrossRef Park S-Y, Wu T-H, Chen Y, Teitell MA, Chiou P-Y (2011) High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab Chip 11(6):1010–1012CrossRef
67.
Zurück zum Zitat Li ZG, Ando K, Yu JQ, Liu AQ, Zhang JB, Ohl CD (2011) Fast on-demand droplet fusion using transient cavitation bubbles. Lab Chip 11(11):1879–1885CrossRef Li ZG, Ando K, Yu JQ, Liu AQ, Zhang JB, Ohl CD (2011) Fast on-demand droplet fusion using transient cavitation bubbles. Lab Chip 11(11):1879–1885CrossRef
68.
Zurück zum Zitat Quinto-Su PA, Huang XH, Gonzalez-Avila SR, Wu T, Ohl CD (2010) Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys Rev Lett 104(1):014501CrossRef Quinto-Su PA, Huang XH, Gonzalez-Avila SR, Wu T, Ohl CD (2010) Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys Rev Lett 104(1):014501CrossRef
69.
Zurück zum Zitat Huang X, Quinto-Su PA, Gonzalez-Avila SR, Wu T, Ohl C-D (2010) Controlled manipulation and in situ mechanical measurement of single co nanowire with a laser-induced cavitation bubble. Nano Lett 10(10):3846–3851CrossRef Huang X, Quinto-Su PA, Gonzalez-Avila SR, Wu T, Ohl C-D (2010) Controlled manipulation and in situ mechanical measurement of single co nanowire with a laser-induced cavitation bubble. Nano Lett 10(10):3846–3851CrossRef
70.
Zurück zum Zitat Hellman AN, Rau KR, Yoon HH, Bae S, Palmer JF, Phillips KS, Allbritton NL, Venugopalan V (2007) Laser-induced mixing in microfluidic channels. Anal Chem 79(12):4484–4492CrossRef Hellman AN, Rau KR, Yoon HH, Bae S, Palmer JF, Phillips KS, Allbritton NL, Venugopalan V (2007) Laser-induced mixing in microfluidic channels. Anal Chem 79(12):4484–4492CrossRef
71.
Zurück zum Zitat Lew KSF, Klaseboer E, Khoo BC (2007) A collapsing bubble-induced micropump: an experimental study. Sensors Actuators A Phys 133(1):161–172CrossRef Lew KSF, Klaseboer E, Khoo BC (2007) A collapsing bubble-induced micropump: an experimental study. Sensors Actuators A Phys 133(1):161–172CrossRef
72.
Zurück zum Zitat Wu T-H, Gao L, Wei K, Chiou EPY (2008) Pulsed laser triggered high speed microfluidic switch. In: Optical MEMs and nanophotonics, 2008 IEEE/LEOS International conference on, IEEE, pp. 19–20 Wu T-H, Gao L, Wei K, Chiou EPY (2008) Pulsed laser triggered high speed microfluidic switch. In: Optical MEMs and nanophotonics, 2008 IEEE/LEOS International conference on, IEEE, pp. 19–20
73.
Zurück zum Zitat Wu T-H, Chen Y, Park S-Y, Hong J, Teslaa T, Zhong JF, Di Carlo D, Teitell MA, Chiou P-Y (2012) Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter. Lab Chip 12(7):1378–1383CrossRef Wu T-H, Chen Y, Park S-Y, Hong J, Teslaa T, Zhong JF, Di Carlo D, Teitell MA, Chiou P-Y (2012) Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter. Lab Chip 12(7):1378–1383CrossRef
74.
Zurück zum Zitat Ando K, Liu A-Q, Ohl C-D (2012) Homogeneous nucleation in water in microfluidic channels. Phys Rev Lett 109(4):044501CrossRef Ando K, Liu A-Q, Ohl C-D (2012) Homogeneous nucleation in water in microfluidic channels. Phys Rev Lett 109(4):044501CrossRef
75.
Zurück zum Zitat Azouzi MEM, Ramboz C, Lenain J-F, Caupin F (2013) A coherent picture of water at extreme negative pressure. Nat Phys 9(1):38–41CrossRef Azouzi MEM, Ramboz C, Lenain J-F, Caupin F (2013) A coherent picture of water at extreme negative pressure. Nat Phys 9(1):38–41CrossRef
76.
Zurück zum Zitat Quinto-Su PA, Ando K (2013) Nucleating bubble clouds with a pair of laser-induced shocks and bubbles. J Fluid Mech 733:R3 (12 pages)CrossRef Quinto-Su PA, Ando K (2013) Nucleating bubble clouds with a pair of laser-induced shocks and bubbles. J Fluid Mech 733:R3 (12 pages)CrossRef
77.
Zurück zum Zitat Kentish S, Wooster TJ, Ashokkumar M, Balachandran S, Mawson R, Simons L (2008) The use of ultrasonics for nanoemulsion preparation. Innovative Food Sci Emerg Technol 9(2):170–175CrossRef Kentish S, Wooster TJ, Ashokkumar M, Balachandran S, Mawson R, Simons L (2008) The use of ultrasonics for nanoemulsion preparation. Innovative Food Sci Emerg Technol 9(2):170–175CrossRef
78.
Zurück zum Zitat Maan AA, Schroën K, Boom R (2011) Spontaneous droplet formation techniques for monodisperse emulsions preparation–perspectives for food applications. J Food Eng 107(3):334–346CrossRef Maan AA, Schroën K, Boom R (2011) Spontaneous droplet formation techniques for monodisperse emulsions preparation–perspectives for food applications. J Food Eng 107(3):334–346CrossRef
79.
Zurück zum Zitat Zhao C-X (2013) Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deliv Rev 65(11):1420–1446CrossRef Zhao C-X (2013) Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deliv Rev 65(11):1420–1446CrossRef
80.
81.
Zurück zum Zitat Henglein A, Ulrich R, Lilie J (1989) Luminescence and chemical action by pulsed ultrasound. J Am Chem Soc 111(6):1974–1979CrossRef Henglein A, Ulrich R, Lilie J (1989) Luminescence and chemical action by pulsed ultrasound. J Am Chem Soc 111(6):1974–1979CrossRef
82.
Zurück zum Zitat Hatanaka S-i, Mitome H, Yasui K, Hayashi S (2002) Single-bubble sonochemiluminescence in aqueous luminol solutions. J Am Chem Soc 124(35):10250–10251CrossRef Hatanaka S-i, Mitome H, Yasui K, Hayashi S (2002) Single-bubble sonochemiluminescence in aqueous luminol solutions. J Am Chem Soc 124(35):10250–10251CrossRef
83.
Zurück zum Zitat Fernandez Rivas D, Ashokkumar M, Leong T, Yasui K, Tuziuti T, Kentish S, Lohse D, Gardeniers HJGE (2012) Sonoluminescence and sonochemiluminescence from a microreactor. Ultrason Sonochem 19(6):1252–1259CrossRef Fernandez Rivas D, Ashokkumar M, Leong T, Yasui K, Tuziuti T, Kentish S, Lohse D, Gardeniers HJGE (2012) Sonoluminescence and sonochemiluminescence from a microreactor. Ultrason Sonochem 19(6):1252–1259CrossRef
84.
Zurück zum Zitat Tuziuti T (2013) Influence of degree of gas saturation on sonochemiluminescence intensity resulting from microfluidic reactions. J Phys Chem A 117(41):10598–10603 Tuziuti T (2013) Influence of degree of gas saturation on sonochemiluminescence intensity resulting from microfluidic reactions. J Phys Chem A 117(41):10598–10603
85.
Zurück zum Zitat Smart EJ, Ying Y-S, Mineo C, Anderson RG (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci 92(22):10104–10108CrossRef Smart EJ, Ying Y-S, Mineo C, Anderson RG (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci 92(22):10104–10108CrossRef
86.
Zurück zum Zitat Hughes DE, Nyborg WL (1962) Cell disruption by ultrasound. Streaming and other activity around sonically induced bubbles is a cause of damage to living cells. Science 138(3537):108–114CrossRef Hughes DE, Nyborg WL (1962) Cell disruption by ultrasound. Streaming and other activity around sonically induced bubbles is a cause of damage to living cells. Science 138(3537):108–114CrossRef
87.
Zurück zum Zitat Schilling EA, Kamholz AE, Yager P (2002) Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal Chem 74(8):1798–1804CrossRef Schilling EA, Kamholz AE, Yager P (2002) Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal Chem 74(8):1798–1804CrossRef
88.
Zurück zum Zitat Waters LC, Jacobson SC, Kroutchinina N, Khandurina J, Foote RS, Ramsey JM (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal Chem 70(1):158–162CrossRef Waters LC, Jacobson SC, Kroutchinina N, Khandurina J, Foote RS, Ramsey JM (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal Chem 70(1):158–162CrossRef
89.
Zurück zum Zitat Wang H-Y, Bhunia AK, Chang L (2006) A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosens Bioelectron 22(5):582–588CrossRef Wang H-Y, Bhunia AK, Chang L (2006) A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosens Bioelectron 22(5):582–588CrossRef
90.
Zurück zum Zitat Di Carlo D, Jeong K-H, Lee LP (2003) Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 3(4):287–291CrossRef Di Carlo D, Jeong K-H, Lee LP (2003) Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 3(4):287–291CrossRef
91.
Zurück zum Zitat Boettner M, Prinz B, Holz C, Stahl U, Lang C (2002) High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J Biotechnol 99(1):51–62CrossRef Boettner M, Prinz B, Holz C, Stahl U, Lang C (2002) High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J Biotechnol 99(1):51–62CrossRef
92.
Zurück zum Zitat Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18(2):119–138CrossRef Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18(2):119–138CrossRef
93.
Zurück zum Zitat Marentis TC, Kusler B, Yaralioglu GG, Liu S, Hæggström EO, Khuri-Yakub BT (2005) Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis. Ultrasound Med Biol 31(9):1265–1277CrossRef Marentis TC, Kusler B, Yaralioglu GG, Liu S, Hæggström EO, Khuri-Yakub BT (2005) Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis. Ultrasound Med Biol 31(9):1265–1277CrossRef
94.
Zurück zum Zitat Nan L, Jiang Z, Wei X (2014) Emerging microfluidic devices for cell lysis: a review. Lab Chip 14(6):1060–1073CrossRef Nan L, Jiang Z, Wei X (2014) Emerging microfluidic devices for cell lysis: a review. Lab Chip 14(6):1060–1073CrossRef
95.
Zurück zum Zitat Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T (2012) Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal Chem 84(18):7954–7962CrossRef Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T (2012) Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal Chem 84(18):7954–7962CrossRef
96.
Zurück zum Zitat Yang AHJ, Soh HT (2012) Acoustophoretic sorting of viable mammalian cells in a microfluidic device. Anal Chem 84(24):10756–10762CrossRef Yang AHJ, Soh HT (2012) Acoustophoretic sorting of viable mammalian cells in a microfluidic device. Anal Chem 84(24):10756–10762CrossRef
97.
Zurück zum Zitat Ding X, Steven Lin S-C, Lapsley MI, Li S, Guo X, Chan CY, Chiang I-K, Wang L, McCoy JP, Huang TJ (2012) Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip 12(21):4228–4231CrossRef Ding X, Steven Lin S-C, Lapsley MI, Li S, Guo X, Chan CY, Chiang I-K, Wang L, McCoy JP, Huang TJ (2012) Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip 12(21):4228–4231CrossRef
98.
Zurück zum Zitat Wang QX, Yeo KS, Khoo BC, Lam KY (1996) Strong interaction between a buoyancy bubble and a free surface. Theor Comput Fluid Dyn 8(1):73–88CrossRef Wang QX, Yeo KS, Khoo BC, Lam KY (1996) Strong interaction between a buoyancy bubble and a free surface. Theor Comput Fluid Dyn 8(1):73–88CrossRef
99.
Zurück zum Zitat Klaseboer E, Khoo BC (2004) An oscillating bubble near an elastic material. J Appl Phys 96(10):5808–5818CrossRef Klaseboer E, Khoo BC (2004) An oscillating bubble near an elastic material. J Appl Phys 96(10):5808–5818CrossRef
100.
Zurück zum Zitat Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, Wang J et al (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17(8):1015–1019CrossRef Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, Wang J et al (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17(8):1015–1019CrossRef
101.
Zurück zum Zitat Warner EA, Kotz KT, Ungaro RF, Abouhamze AS, Lopez MC, Cuenca AG, Kelly-Scumpia KM et al (2011) Microfluidics-based capture of human neutrophils for expression analysis in blood and bronchoalveolar lavage. Lab Invest 91(12):1787–1795CrossRef Warner EA, Kotz KT, Ungaro RF, Abouhamze AS, Lopez MC, Cuenca AG, Kelly-Scumpia KM et al (2011) Microfluidics-based capture of human neutrophils for expression analysis in blood and bronchoalveolar lavage. Lab Invest 91(12):1787–1795CrossRef
102.
Zurück zum Zitat Kotz KT, Xiao W, Miller-Graziano C, Qian W-J, Russom A, Warner EA, Moldawer LL et al (2010) Clinical microfluidics for neutrophil genomics and proteomics. Nat Med 16(9):1042–1047CrossRef Kotz KT, Xiao W, Miller-Graziano C, Qian W-J, Russom A, Warner EA, Moldawer LL et al (2010) Clinical microfluidics for neutrophil genomics and proteomics. Nat Med 16(9):1042–1047CrossRef
103.
Zurück zum Zitat Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRef Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRef
Metadaten
Titel
Acoustic Cavitation in a Microchannel
verfasst von
Siew-Wan Ohl
Claus-Dieter Ohl
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-278-4_6