Skip to main content
Erschienen in: Experiments in Fluids 1/2004

01.07.2004 | Original

Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)

verfasst von: Jae Sung Park, Chang Kyoung Choi, Kenneth D. Kihm

Erschienen in: Experiments in Fluids | Ausgabe 1/2004

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optically sliced microscopic-particle image velocimetry (micro-PIV) is developed using confocal laser scanning microscopy (CLSM). The developed PIV system shows a unique optical slicing capability allowing true depth-wise resolved micro-PIV vector field mapping. A comparative study between CLSM micro-PIV and conventional epi-fluorescence micro-PIV is presented. Both techniques have been applied to the creeping Poiseuille flows in two different microtubes of 99-μm (Re=0.00275) and 516-μm ID diameters (Re=0.021), which are respectively imaged by a 40×-0.75NA objective with an estimated 2.8-μm optical slice thickness, and by a 10×-0.30NA objective with a 26.7-μm slicing. Compared to conventional micro-PIV, CLSM micro-PIV consistently shows significantly improved particle image contrasts, definitions, and measured flow vector fields agreeing more accurately with predictions based on the Poiseuille flow fields. The data improvement due to the optical slicing of CLSM micro-PIV is more pronounced with higher magnification imaging with higher NA objectives for a smaller microtube.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This is also called a “far-field” diffraction condition, which is defined as R>a 2/λ, where R is the smaller of the two distances from the particle to the objective lens and the objective lens to the imaging detector, a is the particle radius, and λ is the wavelength in the medium. For typical conditions for micro-PIV, R~1 mm, a~200 nm, and λ~500 nm, the inequality is well satisfied by a ratio of greater than 12,000.
 
2
Numerical aperture, NA, is defined as \(NA \equiv n_{i} \sin \theta _{{\max }} \), where n i is the refractive index of the immersing medium (air, water, oil, etc.) adjacent to the objective lens, and θ max is the half-angle of the maximum cone of the light apertured by the lens.
 
3
Modified pinhole diameter, PD, is defined as pinhole diameter/magnification, with the pinhole diameter measured in μm.
 
4
Airy unit, \({\text{AU}} \equiv {1.22\lambda _{{{\text{ex}}}} } \mathord{\left/ {\vphantom {{1.22\lambda _{{{\text{ex}}}} } {NA}}} \right. \kern-\nulldelimiterspace} {NA} \), with λ ex being the fluorescent excitation wavelength.
 
5
The mean wavelength is defined as, \(\ifmmode\expandafter\bar\else\expandafter\=\fi{\lambda } = {\sqrt 2 }\frac{{\lambda _{{{\text{ex}}}} \cdot \lambda _{{{\text{em}}}} }}{{{\sqrt {\lambda _{{{\text{ex}}}} ^{2} + \lambda _{{{\text{em}}}} ^{2} } }}} \).
 
6
The reduced apparent depth, h a, is derived as h/n, based on Snell’s law of refraction (Hecht 2002). Strictly speaking, the analysis assumes a planar interface and zero ray-incident angle, thus, for the case of a circular microtube, it is only valid along the centerline (refer to Fig. 9).
 
7
The spatial uncertainty of the imaging planes is estimated as an rms of the one-half of the micro-stage reading resolution, 0.5 μm, and the uncertainty level for identifying the top-end point is estimated to be approximately identical to the image depth-of-field (DOF), 0.92 µm for 40× and 5.72 µm for 10× magnification, for the conventional microscope. Note that the values of DOF for CLSM are 0.63 µm and 4.66 µm for 40× and 10× magnification, respectively.
 
8
The background noise from the off-focus particle images can be reduced to an acceptable level by limiting the PIV measurement depth to a base-cut level where the field-wide-averaged image intensity reaches one-tenth of the maximum in-focus image intensity (Meinhart et al. 2000).
 
9
The actual recorded image of a seed particle on the CCD is a convolution of the geometric particle image, Md p, with the FPS, d s, of the recording optics. Approximating both of the geometric and diffraction-limited images as Gaussian functions, the image diameter, d e, can be expressed as (Born and Wolf 1999) \(d_{{\text{e}}} = {\left[ {M^{2} d_{{\text{p}}} ^{2} + d_{{\text{s}}} ^{2} } \right]}^{{1/2}} \) where d e is the effective particle diameter in the CCD, M is the magnification of the microscope, d p is the particle diameter, and d s is the characteristic diameter of the PSF. For magnifications much larger than unity, the diameter of the diffraction-limited PSF, in the image plane, is given by \(d_{{\text{s}}} = 2.44M\frac{\lambda }{{2NA}} \) where NA is the numerical aperture and λ is the wavelength of light.
 
10
Optical path length (OPL) is defined as the local medium thickness multiplied by the local refractive index.
 
Literatur
Zurück zum Zitat Born M, Wolf E (1999) Principles of optics, 7th edn. Cambridge University Press, Cambridge, UK, pp 491 Born M, Wolf E (1999) Principles of optics, 7th edn. Cambridge University Press, Cambridge, UK, pp 491
Zurück zum Zitat Conchello JA, Lichtman JW (1994) Theoretical analysis of a rotating-disk partially confocal scanning microscope. Appl Opt 33:585–596 Conchello JA, Lichtman JW (1994) Theoretical analysis of a rotating-disk partially confocal scanning microscope. Appl Opt 33:585–596
Zurück zum Zitat Diaspro A (ed) (2002) Confocal and two-photon microscopy: Foundations, application, and advances. Wiley-Liss, New York, pp 101–125, 245–247 Diaspro A (ed) (2002) Confocal and two-photon microscopy: Foundations, application, and advances. Wiley-Liss, New York, pp 101–125, 245–247
Zurück zum Zitat Egner A, Andersen V, Hell SW (2002) Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: Theory and experiment. J Microsc 206:24–32CrossRefPubMed Egner A, Andersen V, Hell SW (2002) Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: Theory and experiment. J Microsc 206:24–32CrossRefPubMed
Zurück zum Zitat Hecht E (2002) Optics, 4th edn. Addison Wesley, Reading, MA, pp 467–471 Hecht E (2002) Optics, 4th edn. Addison Wesley, Reading, MA, pp 467–471
Zurück zum Zitat Hell S, Reiner G, Cremer C, Stelzer EHK (1993) Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J Microsc 169:391–405 Hell S, Reiner G, Cremer C, Stelzer EHK (1993) Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J Microsc 169:391–405
Zurück zum Zitat Ichihara A, Tanaami T, Isozaki K, Sugiyama Y, Kosugi Y, Mikuriya K, Abe M, Uemura I (1996) High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3-D imaging of single fluorescent molecule in real time. Bioimaging 4:57–62 Ichihara A, Tanaami T, Isozaki K, Sugiyama Y, Kosugi Y, Mikuriya K, Abe M, Uemura I (1996) High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3-D imaging of single fluorescent molecule in real time. Bioimaging 4:57–62
Zurück zum Zitat Kimura S, Munakata C (1990) Depth resolution of the fluorescent confocal scanning optical microscope. Appl Opt 29:489–494 Kimura S, Munakata C (1990) Depth resolution of the fluorescent confocal scanning optical microscope. Appl Opt 29:489–494
Zurück zum Zitat Lew HS, Fung YC (1970) Entry flow into blood vessels at arbitrary Reynolds number. J Biomech 3:23–28PubMed Lew HS, Fung YC (1970) Entry flow into blood vessels at arbitrary Reynolds number. J Biomech 3:23–28PubMed
Zurück zum Zitat Meinhart CD, Wereley ST, Gray MHB (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814 Meinhart CD, Wereley ST, Gray MHB (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814
Zurück zum Zitat Merzkirch W (1987) Flow visualization, 2nd edn. Academic Press, Orlando Merzkirch W (1987) Flow visualization, 2nd edn. Academic Press, Orlando
Zurück zum Zitat Minsky M (1998) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138 Minsky M (1998) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138
Zurück zum Zitat Olsen MG, Adrian RJ (2000) Out-of-focus effects on particle image visibility and correlation in microscopic particle image Velocimetry. Exp Fluids 29:S166-S174CrossRef Olsen MG, Adrian RJ (2000) Out-of-focus effects on particle image visibility and correlation in microscopic particle image Velocimetry. Exp Fluids 29:S166-S174CrossRef
Zurück zum Zitat Prenel JP, Bailly Y (1998) Theoretical determination of light distributions in various laser light sheets for flow visualization. J Flow Vis Image Proc 5:211–224 Prenel JP, Bailly Y (1998) Theoretical determination of light distributions in various laser light sheets for flow visualization. J Flow Vis Image Proc 5:211–224
Zurück zum Zitat Qian H, Elson EL (1991) Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy. Appl Opt 30:1185–1195 Qian H, Elson EL (1991) Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy. Appl Opt 30:1185–1195
Zurück zum Zitat Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry: A practical guide. Springer, Berlin Heidelberg New York Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry: A practical guide. Springer, Berlin Heidelberg New York
Zurück zum Zitat Sandison DR, Webb WW (1994) Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes. Appl Opt 33:603–615 Sandison DR, Webb WW (1994) Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes. Appl Opt 33:603–615
Zurück zum Zitat Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319 Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319
Zurück zum Zitat Sheppard CJR, Gu M (1991) Aberration compensation in confocal microscopy. Appl Opt 30:3563–3568 Sheppard CJR, Gu M (1991) Aberration compensation in confocal microscopy. Appl Opt 30:3563–3568
Zurück zum Zitat Sugii Y, Nishio S, Okamoto K (2002) In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion. Physiol Meas 23:403–416CrossRefPubMed Sugii Y, Nishio S, Okamoto K (2002) In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion. Physiol Meas 23:403–416CrossRefPubMed
Zurück zum Zitat Thiery L, Prenel JP, Porcar R (1996) Theoretical and experimental intensity analysis of laser sheets for flow visualization. Opt Commun 123:801–809CrossRef Thiery L, Prenel JP, Porcar R (1996) Theoretical and experimental intensity analysis of laser sheets for flow visualization. Opt Commun 123:801–809CrossRef
Zurück zum Zitat Tiziani HJ, Uhde HM (1994) Three-dimensional analysis by a microlens-array confocal arrangement. Appl Opt 33:567–572 Tiziani HJ, Uhde HM (1994) Three-dimensional analysis by a microlens-array confocal arrangement. Appl Opt 33:567–572
Zurück zum Zitat Webb RH (1996) Confocal optical microscopy. Rep Prog Phys 59:427–471CrossRef Webb RH (1996) Confocal optical microscopy. Rep Prog Phys 59:427–471CrossRef
Zurück zum Zitat Wilhelm S, Grobler B, Gluch M, Heinz H (2003) Confocal laser scanning microscopy: Principles. Carl Zeiss, pp 7–16 Wilhelm S, Grobler B, Gluch M, Heinz H (2003) Confocal laser scanning microscopy: Principles. Carl Zeiss, pp 7–16
Metadaten
Titel
Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)
verfasst von
Jae Sung Park
Chang Kyoung Choi
Kenneth D. Kihm
Publikationsdatum
01.07.2004
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 1/2004
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-004-0790-6

Weitere Artikel der Ausgabe 1/2004

Experiments in Fluids 1/2004 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.