Skip to main content
Erschienen in: Experiments in Fluids 5/2010

01.11.2010 | Research Article

Grazing impact of continuous droplet streams with a superhydrophobic surface

verfasst von: Paul R. Chiarot, T. B. Jones

Erschienen in: Experiments in Fluids | Ausgabe 5/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When high-velocity droplets make grazing impact with a superhydrophobic surface, the droplets undergo significant deformation before recoiling and rebounding from the surface. Two distinct operating regimes describe the response of the reflected droplet stream after impact. In the first regime, the droplets remain discrete and uniform after the impact, but exhibit rotation and significant oscillations. This regime dominates if each droplet can clear the impact region before the next droplet arrives. In the second regime, droplets cannot avoid coalescing into a puddle at the surface. A secondary jet is ejected from the puddle which breaks up into a random droplet stream after traveling a short distance due to the lack of a forced unstable perturbation. The droplet-to-droplet spacing in the incoming stream determines which regime rules, with the critical value correlated by a Weber number. In the first regime, a detailed accounting of the kinetic and potential energies reveals that neither droplet oscillation nor rotation can fully account for the loss of translational kinetic energy, indicating significant internal circulation must occur in the droplets at impact. An application of droplet rebound from a superhydrophobic surface is proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol.
 
2
While it is non-zero for the shallow-angle impacts we have investigated, \( E_{K}^{*} = 0 \) for the case of large, perpendicularly impacting droplets (Clanet et al. 2004).
 
3
In our experiments, even if all of the initial kinetic energy of a droplet was instantaneously converted to heat, the droplet temperature would rise only ~0.01°.
 
Literatur
Zurück zum Zitat Aussillous P, Quere D (2004) Shape of rolling liquid drops. J Fluid Mech 512:133–151MATHCrossRef Aussillous P, Quere D (2004) Shape of rolling liquid drops. J Fluid Mech 512:133–151MATHCrossRef
Zurück zum Zitat Basaran O (1992) Nonlinear oscillations of viscous liquid drops. J Fluid Mech 241:169–198MATHCrossRef Basaran O (1992) Nonlinear oscillations of viscous liquid drops. J Fluid Mech 241:169–198MATHCrossRef
Zurück zum Zitat Chandra S, Avedisian C (1991) On the collision of a droplet with a solid substrate. P R Soc London 432:13–41CrossRef Chandra S, Avedisian C (1991) On the collision of a droplet with a solid substrate. P R Soc London 432:13–41CrossRef
Zurück zum Zitat Chen R, Wang H (2005) Effect of tangential speed on low-normal-speed liquid drop impact on a non-wettable solid surface. Exp Fluids 39:754–760CrossRef Chen R, Wang H (2005) Effect of tangential speed on low-normal-speed liquid drop impact on a non-wettable solid surface. Exp Fluids 39:754–760CrossRef
Zurück zum Zitat Chiarot P, Jones TB (2009) Dielectrophoretic deflection of ink jets. J Micromech Microeng 19:125018CrossRef Chiarot P, Jones TB (2009) Dielectrophoretic deflection of ink jets. J Micromech Microeng 19:125018CrossRef
Zurück zum Zitat Chiu S, Lin T (2005) Experiment on the dynamics of a compound drop impinging on a hot surface. Phys Fluids 17:122103CrossRef Chiu S, Lin T (2005) Experiment on the dynamics of a compound drop impinging on a hot surface. Phys Fluids 17:122103CrossRef
Zurück zum Zitat Choi C, Kim C (2006) Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology 17:5326–5333CrossRef Choi C, Kim C (2006) Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology 17:5326–5333CrossRef
Zurück zum Zitat Chwalek J, Jeanmaire D, Anagnostopoulos C (2000) Continuous ink jet printer with asymmetric heating drop deflection. US Patent #6,079,821 Chwalek J, Jeanmaire D, Anagnostopoulos C (2000) Continuous ink jet printer with asymmetric heating drop deflection. US Patent #6,079,821
Zurück zum Zitat Clanet C, Beguin C, Richard D, Quere D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208MATHCrossRef Clanet C, Beguin C, Richard D, Quere D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208MATHCrossRef
Zurück zum Zitat Karl A, Frohn A (2000) Experimental investigation of interaction processes between droplets and hot walls. Phys Fluids 12:785–796MATHCrossRef Karl A, Frohn A (2000) Experimental investigation of interaction processes between droplets and hot walls. Phys Fluids 12:785–796MATHCrossRef
Zurück zum Zitat Lamb H (1945) Hydrodynamics, 6th edn. Dover Publications, New York Lamb H (1945) Hydrodynamics, 6th edn. Dover Publications, New York
Zurück zum Zitat Larmour I, Bell S, Saunders G (2007) Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew Chem Int Edit 46:1710–1712CrossRef Larmour I, Bell S, Saunders G (2007) Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew Chem Int Edit 46:1710–1712CrossRef
Zurück zum Zitat Lau K, Bico J, Teo K, Chhowalla M, Amaratunga G, Milne W, McKinley G, Gleason K (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3:1701–1705CrossRef Lau K, Bico J, Teo K, Chhowalla M, Amaratunga G, Milne W, McKinley G, Gleason K (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3:1701–1705CrossRef
Zurück zum Zitat Li X, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368CrossRef Li X, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368CrossRef
Zurück zum Zitat Mashayek F, Ashgriz N (1998) Nonlinear oscillations of drops with internal circulation. Phys Fluids 10:1071–1082CrossRef Mashayek F, Ashgriz N (1998) Nonlinear oscillations of drops with internal circulation. Phys Fluids 10:1071–1082CrossRef
Zurück zum Zitat Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: experimental studies of the deformation and breakup process. Int J Multiphas Flow 21:151–173MATHCrossRef Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: experimental studies of the deformation and breakup process. Int J Multiphas Flow 21:151–173MATHCrossRef
Zurück zum Zitat Okumura K, Chevy F, Richard D, Quere D, Clanet C (2003) Water spring: a model for bouncing drops. Europhys Lett 62:237–243CrossRef Okumura K, Chevy F, Richard D, Quere D, Clanet C (2003) Water spring: a model for bouncing drops. Europhys Lett 62:237–243CrossRef
Zurück zum Zitat Rayleigh L (1878) On the instability of jets. P Lond Math Soc 10:4–13CrossRef Rayleigh L (1878) On the instability of jets. P Lond Math Soc 10:4–13CrossRef
Zurück zum Zitat Rayleigh L (1879) On the capillary phenomena of jets. P R Soc London 29:71–97CrossRef Rayleigh L (1879) On the capillary phenomena of jets. P R Soc London 29:71–97CrossRef
Zurück zum Zitat Rayleigh JWS (1945) The theory of sound, vol. 2. Dover Publications, New York Rayleigh JWS (1945) The theory of sound, vol. 2. Dover Publications, New York
Zurück zum Zitat Richard D, Quere D (2000) Bouncing water drops. Europhys Lett 50:769–775CrossRef Richard D, Quere D (2000) Bouncing water drops. Europhys Lett 50:769–775CrossRef
Zurück zum Zitat Richard D, Clanet C, Quere D (2002) Contact time of a bouncing drop. Nature 417:811CrossRef Richard D, Clanet C, Quere D (2002) Contact time of a bouncing drop. Nature 417:811CrossRef
Zurück zum Zitat Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto a solid, dry surface. Exp Fluids 33:112–124 Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto a solid, dry surface. Exp Fluids 33:112–124
Zurück zum Zitat Rioboo R, Voue M, Vaillant A, De Coninck J (2008) Drop impact on porous superhydrophobic polymer surfaces. Langmuir 24:14074–14077CrossRef Rioboo R, Voue M, Vaillant A, De Coninck J (2008) Drop impact on porous superhydrophobic polymer surfaces. Langmuir 24:14074–14077CrossRef
Zurück zum Zitat Saffman P (1992) Vortex dynamics. Cambridge University Press, CambridgeMATH Saffman P (1992) Vortex dynamics. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Sikalo S, Tropea C, Ganic E (2005) Impact of droplets onto inclined surfaces. J Colloid Interf Sci 286:661–669CrossRef Sikalo S, Tropea C, Ganic E (2005) Impact of droplets onto inclined surfaces. J Colloid Interf Sci 286:661–669CrossRef
Zurück zum Zitat Tsai P, Pacheco S, Pirat C, Lefferts L, Lohse D (2009) Drop impact upon micro- and nanostructured superhydrophobic surfaces. Langmuir 25:12293–12298CrossRef Tsai P, Pacheco S, Pirat C, Lefferts L, Lohse D (2009) Drop impact upon micro- and nanostructured superhydrophobic surfaces. Langmuir 25:12293–12298CrossRef
Zurück zum Zitat van Dam D, Le Clerc C (2004) Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys Fluids 16:3403–3414CrossRef van Dam D, Le Clerc C (2004) Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys Fluids 16:3403–3414CrossRef
Metadaten
Titel
Grazing impact of continuous droplet streams with a superhydrophobic surface
verfasst von
Paul R. Chiarot
T. B. Jones
Publikationsdatum
01.11.2010
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 5/2010
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-010-0860-x

Weitere Artikel der Ausgabe 5/2010

Experiments in Fluids 5/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.