Skip to main content
Erschienen in: Experiments in Fluids 10/2017

01.10.2017 | Research Article

Flow around a slotted circular cylinder at various angles of attack

verfasst von: Dong-Lai Gao, Wen-Li Chen, Hui Li, Hui Hu

Erschienen in: Experiments in Fluids | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We experimentally investigated the flow characteristics around a circular cylinder with a slot at different angles of attack. The experimental campaign was performed in a wind tunnel at the Reynolds number of Re = 2.67 × 104. The cylindrical test model was manufactured with a slot at the slot width S = 0.075 D (D is the diameter of the cylinder). The angle of attack α was varied from 0° to 90°. In addition to measuring the pressure distributions around the cylinder surface, a digital particle image velocimetry (PIV) system was employed to quantify the wake flow characteristics behind the baseline cylinder (i.e., baseline case of the cylinder without slot) and slotted cylinder at various angles of attack. Measurement results suggested that at low angles of attack, the passive jet flow generated by the slot would work as an effective control scheme to modify the wake flow characteristics and contribute to reducing the drag and suppressing the fluctuating lift. The flip-flop phenomenon was also identified and discussed with the slot at 0° angle of attack. As the angle of attack α became 45°, the effects of the slot were found to be minimal. When the angle of attack α of the slot approached 90°, the self-organized boundary layer suction and blowing were realized. As a result, the flow separations on both sides of the test model were found to be notably delayed, the wake width behind the slotted cylinder was decreased and the vortex formation length was greatly shrunk, in comparison with the baseline case. Instantaneous pressure measurement results revealed that the pressure difference between the two slot ends and the periodically fluctuating pressure distributions would cause the alternative boundary layer suction and blowing at α = 90°.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adrian R, Christensen K, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29:275CrossRef Adrian R, Christensen K, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29:275CrossRef
Zurück zum Zitat Anderson E, Szewczyk A (1997) Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations. Exp Fluids 23:161–174CrossRef Anderson E, Szewczyk A (1997) Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations. Exp Fluids 23:161–174CrossRef
Zurück zum Zitat Antonia R, Zhu Y, Sokolov M (1995) Effect of concentrated wall suction on a turbulent boundary layer. Phys Fluids 7(10):2465–2474CrossRef Antonia R, Zhu Y, Sokolov M (1995) Effect of concentrated wall suction on a turbulent boundary layer. Phys Fluids 7(10):2465–2474CrossRef
Zurück zum Zitat Baek H, Karniadakis GE (2009) Suppressing vortex-induced vibrations via passive means. J Fluids Struct 25(5):848CrossRef Baek H, Karniadakis GE (2009) Suppressing vortex-induced vibrations via passive means. J Fluids Struct 25(5):848CrossRef
Zurück zum Zitat Barlow B, Rae H, Pope A (1999) Low-speed wind tunnel testing, 3rd edn. Wiley, New York, pp 330–375 Barlow B, Rae H, Pope A (1999) Low-speed wind tunnel testing, 3rd edn. Wiley, New York, pp 330–375
Zurück zum Zitat Bearman PW (1965) Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J Fluid Mech 21:241–255CrossRefMATH Bearman PW (1965) Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J Fluid Mech 21:241–255CrossRefMATH
Zurück zum Zitat Bearman PW, Wadcock AJ (1973) The interaction between a pair of circular cylinders normal to a stream. J Fluid Mech 61:499CrossRef Bearman PW, Wadcock AJ (1973) The interaction between a pair of circular cylinders normal to a stream. J Fluid Mech 61:499CrossRef
Zurück zum Zitat Benard N, Balcon N, Touchard G, Moreau E (2008) Control of diffuser jet flow: turbulent kinetic energy and jet spreading enhancements assisted by a non-thermal plasma discharge. Exp Fluids 45:333–355CrossRef Benard N, Balcon N, Touchard G, Moreau E (2008) Control of diffuser jet flow: turbulent kinetic energy and jet spreading enhancements assisted by a non-thermal plasma discharge. Exp Fluids 45:333–355CrossRef
Zurück zum Zitat Brika D, Laneville A (1993) Vortex-induced vibrations of a long flexible circular cylinder. J Fluid Mech 250:481CrossRef Brika D, Laneville A (1993) Vortex-induced vibrations of a long flexible circular cylinder. J Fluid Mech 250:481CrossRef
Zurück zum Zitat Chen WL, Li H, Hu H (2014) An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder. Exp Fluids 55(4):1–20 Chen WL, Li H, Hu H (2014) An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder. Exp Fluids 55(4):1–20
Zurück zum Zitat Chen WL, Gao DL, Yuan WY, Li H, Hu H (2015) Passive jet control of flow around a circular cylinder. Exp Fluids 56(11):201CrossRef Chen WL, Gao DL, Yuan WY, Li H, Hu H (2015) Passive jet control of flow around a circular cylinder. Exp Fluids 56(11):201CrossRef
Zurück zum Zitat Chew YT, Cheng M, Luo SC (1995) A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme. J Fluid Mech 299:35CrossRefMATH Chew YT, Cheng M, Luo SC (1995) A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme. J Fluid Mech 299:35CrossRefMATH
Zurück zum Zitat Choi J, Jeon W-P, Choi H (2006) Mechanism of drag reduction by dimples on a sphere. Phys Fluids 18:041702CrossRef Choi J, Jeon W-P, Choi H (2006) Mechanism of drag reduction by dimples on a sphere. Phys Fluids 18:041702CrossRef
Zurück zum Zitat Dong S, Triantafyllou GS, Karniadakis GE (2008) Elimination of vortex streets in bluff-body flows. Phys Rev Lett 100(20):204501CrossRef Dong S, Triantafyllou GS, Karniadakis GE (2008) Elimination of vortex streets in bluff-body flows. Phys Rev Lett 100(20):204501CrossRef
Zurück zum Zitat Gao DL, Chen WL, Li H, Hu H (2017) Flow around a circular cylinder with slit. Exp Thermal Fluid Sci 82:287–301CrossRef Gao DL, Chen WL, Li H, Hu H (2017) Flow around a circular cylinder with slit. Exp Thermal Fluid Sci 82:287–301CrossRef
Zurück zum Zitat Gran RL, Lewis JE, Kubota T (1974) The effect of wall cooling on a compressible turbulent boundary layer. J Fluid Mech 66(03):507–528CrossRef Gran RL, Lewis JE, Kubota T (1974) The effect of wall cooling on a compressible turbulent boundary layer. J Fluid Mech 66(03):507–528CrossRef
Zurück zum Zitat Hwang J-Y, Yang K-S, Sun S-H (2003) Reduction of flow-induced forces on a circular cylinder using a detached splitter plate. Phys Fluids 15:2433–2436CrossRefMATH Hwang J-Y, Yang K-S, Sun S-H (2003) Reduction of flow-induced forces on a circular cylinder using a detached splitter plate. Phys Fluids 15:2433–2436CrossRefMATH
Zurück zum Zitat Irwin H, Cooper R, Girard R (1979) Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures [J]. J Wind Eng Ind Aerodyn 5(1):93–107CrossRef Irwin H, Cooper R, Girard R (1979) Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures [J]. J Wind Eng Ind Aerodyn 5(1):93–107CrossRef
Zurück zum Zitat Joslin RD (1998) Aircraft laminar flow control. Annu Rev Fluid Mech 30(1):1–29CrossRef Joslin RD (1998) Aircraft laminar flow control. Annu Rev Fluid Mech 30(1):1–29CrossRef
Zurück zum Zitat Kang S (2003) Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Phys Fluids 15(9):2486CrossRefMATH Kang S (2003) Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Phys Fluids 15(9):2486CrossRefMATH
Zurück zum Zitat Kim HJ, Durbin PA (1988) Investigation of the flow between a pair of circular cylinders in the flopping regime. J Fluid Mech 196:431CrossRef Kim HJ, Durbin PA (1988) Investigation of the flow between a pair of circular cylinders in the flopping regime. J Fluid Mech 196:431CrossRef
Zurück zum Zitat MacManus DG, Eaton JA (2000) Flow physics of discrete boundary layer suction–measurements and predictions. J Fluid Mech 417:47–75CrossRefMATH MacManus DG, Eaton JA (2000) Flow physics of discrete boundary layer suction–measurements and predictions. J Fluid Mech 417:47–75CrossRefMATH
Zurück zum Zitat Meyer KE, Pedersen JM, Özcan O (2007) A turbulent jet in crossflow analysed with proper orthogonal decomposition. J Fluid Mech 583:199–227MathSciNetCrossRefMATH Meyer KE, Pedersen JM, Özcan O (2007) A turbulent jet in crossflow analysed with proper orthogonal decomposition. J Fluid Mech 583:199–227MathSciNetCrossRefMATH
Zurück zum Zitat Orszag SA (1971) Accurate solution of the Orr-Sommerfeld stability equation. J Fluid Mech 50(4):689CrossRefMATH Orszag SA (1971) Accurate solution of the Orr-Sommerfeld stability equation. J Fluid Mech 50(4):689CrossRefMATH
Zurück zum Zitat Owen JC, Bearman PW, Szewczyk AA (2001) Passive control of VIV with drag reduction. J Fluids Struct 15:597–605CrossRef Owen JC, Bearman PW, Szewczyk AA (2001) Passive control of VIV with drag reduction. J Fluids Struct 15:597–605CrossRef
Zurück zum Zitat Piomelli U, Balaras E, Pascarelli A (2000) Turbulent structures in accelerating boundary layers. J Turbul 1(1):01CrossRefMATH Piomelli U, Balaras E, Pascarelli A (2000) Turbulent structures in accelerating boundary layers. J Turbul 1(1):01CrossRefMATH
Zurück zum Zitat Rodriguez O (1991) Base drag reduction by the control of three-dimensional unsteady vortical structures. Exp Fluids 11:218–226CrossRef Rodriguez O (1991) Base drag reduction by the control of three-dimensional unsteady vortical structures. Exp Fluids 11:218–226CrossRef
Zurück zum Zitat Roshko A (1993) Perspectives on bluff body aerodynamics. J Wind Eng Ind Aerodyn 49(1-3):79CrossRef Roshko A (1993) Perspectives on bluff body aerodynamics. J Wind Eng Ind Aerodyn 49(1-3):79CrossRef
Zurück zum Zitat Schlichting H, Gersten K, Krause E (1979) Boundary-layer theory [M]. McGraw-hill, New York, pp 379–402 Schlichting H, Gersten K, Krause E (1979) Boundary-layer theory [M]. McGraw-hill, New York, pp 379–402
Zurück zum Zitat Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q Appl Math 45(3):561–571CrossRefMATH Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q Appl Math 45(3):561–571CrossRefMATH
Zurück zum Zitat Tombazis N, Bearman PW (1997) A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance. J Fluid Mech 330:85–112CrossRef Tombazis N, Bearman PW (1997) A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance. J Fluid Mech 330:85–112CrossRef
Zurück zum Zitat Triantafyllou G, Triantafyllou M, Chryssostomidis C (1986) On the formation of vortex streets behind stationary cylinders. J Fluid Mech 170:461–477CrossRef Triantafyllou G, Triantafyllou M, Chryssostomidis C (1986) On the formation of vortex streets behind stationary cylinders. J Fluid Mech 170:461–477CrossRef
Zurück zum Zitat Wang C, Tang H, Yu SC, Duan F (2016) Active control of vortex-induced vibrations of a circular cylinder using windward-suction-leeward-blowing actuation. Phys Fluids 28(5):053601CrossRef Wang C, Tang H, Yu SC, Duan F (2016) Active control of vortex-induced vibrations of a circular cylinder using windward-suction-leeward-blowing actuation. Phys Fluids 28(5):053601CrossRef
Zurück zum Zitat Williamson CHK (1985) Evolution of a single wake behind a pair of bluff bodies. J Fluid Mech 159:1CrossRef Williamson CHK (1985) Evolution of a single wake behind a pair of bluff bodies. J Fluid Mech 159:1CrossRef
Zurück zum Zitat Zdravkovich MM (1981) Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. J Wind Eng Ind Aerodyn 7:145–189CrossRef Zdravkovich MM (1981) Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. J Wind Eng Ind Aerodyn 7:145–189CrossRef
Zurück zum Zitat Zhou Y, Zhang HJ, Yiu MW (2002) The turbulent wake of two side-by-side circular cylinders. J Fluid Mech 458:303CrossRefMATH Zhou Y, Zhang HJ, Yiu MW (2002) The turbulent wake of two side-by-side circular cylinders. J Fluid Mech 458:303CrossRefMATH
Zurück zum Zitat Zhou B, Wang X, Guo W, Gho WM, Tan SK (2015) Control of flow past a dimpled circular cylinder. Exp Thermal Fluid Sci 69:19–26CrossRef Zhou B, Wang X, Guo W, Gho WM, Tan SK (2015) Control of flow past a dimpled circular cylinder. Exp Thermal Fluid Sci 69:19–26CrossRef
Metadaten
Titel
Flow around a slotted circular cylinder at various angles of attack
verfasst von
Dong-Lai Gao
Wen-Li Chen
Hui Li
Hui Hu
Publikationsdatum
01.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 10/2017
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-017-2417-8

Weitere Artikel der Ausgabe 10/2017

Experiments in Fluids 10/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.