Skip to main content
Erschienen in: Computing and Visualization in Science 1/2013

01.02.2013

On the robustness and optimality of algebraic multilevel methods for reaction–diffusion type problems

verfasst von: Johannes Kraus, Monika Wolfmayr

Erschienen in: Computing and Visualization in Science | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is on preconditioners for reaction–diffusion problems that are both, uniform with respect to the reaction–diffusion coefficients, and optimal in terms of computational complexity. The considered preconditioners belong to the class of so-called algebraic multilevel iteration (AMLI) methods, which are based on a multilevel block factorization and polynomial stabilization. The main focus of this work is on the construction and on the analysis of a hierarchical splitting of the conforming finite element space of piecewise linear functions that allows to meet the optimality conditions for the related AMLI preconditioner in case of second-order elliptic problems with non-vanishing zero-order term. The finite element method (FEM) then leads to a system of linear equations with a system matrix that is a weighted sum of stiffness and mass matrices. Bounds for the constant \(\gamma \) in the strengthened Cauchy–Bunyakowski–Schwarz inequality are computed for both mass and stiffness matrices in case of a general \(m\)-refinement. Moreover, an additive preconditioner is presented for the pivot blocks that arise in the course of the multilevel block factorization. Its optimality is proven for the case \(m=3\). Together with the estimates for \(\gamma \) this shows that the construction of a uniformly convergent AMLI method with optimal complexity is possible (for \(m \ge 3\)). Finally, we discuss the practical application of this preconditioning technique in the context of time-periodic parabolic optimal control problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)CrossRefMATH Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)CrossRefMATH
2.
Zurück zum Zitat Axelsson, O., Barker, V.: Finite Element Solution of Boundary Value Problems: Theory and Computations. Academic Press, Orlando (1984) Axelsson, O., Barker, V.: Finite Element Solution of Boundary Value Problems: Theory and Computations. Academic Press, Orlando (1984)
3.
Zurück zum Zitat Axelsson, O., Blaheta, R.: Two simple derivations of universal bounds for the C.B.S. inequality constant. Appl. Math. 49(1), 57–72 (2004) Axelsson, O., Blaheta, R.: Two simple derivations of universal bounds for the C.B.S. inequality constant. Appl. Math. 49(1), 57–72 (2004)
4.
Zurück zum Zitat Axelsson, O., Padiy, A.: On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems. SIAM J. Sci. Comput. 20(5), 1807–1830 (1999)MathSciNetCrossRefMATH Axelsson, O., Padiy, A.: On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems. SIAM J. Sci. Comput. 20(5), 1807–1830 (1999)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Axelsson, O., Vassilevski, P.: Algebraic multilevel preconditioning methods. I. Numer. Math. 56(2–3), 157–177 (1989) Axelsson, O., Vassilevski, P.: Algebraic multilevel preconditioning methods. I. Numer. Math. 56(2–3), 157–177 (1989)
6.
Zurück zum Zitat Axelsson, O., Vassilevski, P.: Algebraic multilevel preconditioning methods. II. SIAM J. Numer. Anal. 27(6), 1569–1590 (1990) Axelsson, O., Vassilevski, P.: Algebraic multilevel preconditioning methods. II. SIAM J. Numer. Anal. 27(6), 1569–1590 (1990)
7.
Zurück zum Zitat Axelsson, O., Vassilevski, P.: Variable-step multilevel preconditioning methods, I: self-adjoint and positive definite elliptic problems. Numer. Linear Algebra Appl. 1(1), 75–101 (1994)MathSciNetCrossRefMATH Axelsson, O., Vassilevski, P.: Variable-step multilevel preconditioning methods, I: self-adjoint and positive definite elliptic problems. Numer. Linear Algebra Appl. 1(1), 75–101 (1994)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Axelsson, O., Vassilevski, P.: The AMLI Method: An Algebraic Multilevel Iteration Method for Positive Definite Sparse Matrices. University of Nijmegen, Departement of Mathematics (1999) Axelsson, O., Vassilevski, P.: The AMLI Method: An Algebraic Multilevel Iteration Method for Positive Definite Sparse Matrices. University of Nijmegen, Departement of Mathematics (1999)
9.
Zurück zum Zitat Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. Republished by SIAM in April 2002 Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. Republished by SIAM in April 2002
10.
Zurück zum Zitat Collins, G.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Automata theory and formal languages (Second GI Conf., Kaiserslautern, 1975). Lecture Notes in Comput. Sci., vol. 33, pp. 134–183 (1975) Collins, G.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Automata theory and formal languages (Second GI Conf., Kaiserslautern, 1975). Lecture Notes in Comput. Sci., vol. 33, pp. 134–183 (1975)
11.
Zurück zum Zitat Collins, G., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991) Collins, G., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)
12.
Zurück zum Zitat Kauers, M.: How to use cylindrical algebraic decomposition. Semin. Lothar. Comb. 65(B65a), 1–16 (2011)MathSciNet Kauers, M.: How to use cylindrical algebraic decomposition. Semin. Lothar. Comb. 65(B65a), 1–16 (2011)MathSciNet
13.
Zurück zum Zitat Kollmann, M., Kolmbauer, M.: A preconditioned MinRes solver for time-periodic parabolic optimal control problems. Numer. Linear Algebra Appl. 20(5), 761–784 (2013) Kollmann, M., Kolmbauer, M.: A preconditioned MinRes solver for time-periodic parabolic optimal control problems. Numer. Linear Algebra Appl. 20(5), 761–784 (2013)
14.
Zurück zum Zitat Kollmann, M., Kolmbauer, M., Langer, U., Wolfmayr, M., Zulehner, W.: A finite element solver for a multiharmonic parabolic optimal control problem. Comput. Math. Appl. 65(3), 469–486 (2013)MathSciNetCrossRef Kollmann, M., Kolmbauer, M., Langer, U., Wolfmayr, M., Zulehner, W.: A finite element solver for a multiharmonic parabolic optimal control problem. Comput. Math. Appl. 65(3), 469–486 (2013)MathSciNetCrossRef
15.
Zurück zum Zitat Kraus, J.: An algebraic preconditioning method for M-matrices: linear versus non-linear multilevel iteration. Numer. Linear Algebra Appl. 9(8), 599–618 (2002)MathSciNetCrossRefMATH Kraus, J.: An algebraic preconditioning method for M-matrices: linear versus non-linear multilevel iteration. Numer. Linear Algebra Appl. 9(8), 599–618 (2002)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Kraus, J.: Additive Schur complement approximation and application to multilevel preconditioning. SIAM J. Sci. Comput. 34(6), A2872–A2895 (2012)MathSciNetCrossRefMATH Kraus, J.: Additive Schur complement approximation and application to multilevel preconditioning. SIAM J. Sci. Comput. 34(6), A2872–A2895 (2012)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Kraus, J., Lymbery, M., Margenov, S.: Robust multilevel methods for quadratic finite element anisotropic elliptic problems. Numer. Linear Algebra Appl. 21(3), 375–398 (2014) Kraus, J., Lymbery, M., Margenov, S.: Robust multilevel methods for quadratic finite element anisotropic elliptic problems. Numer. Linear Algebra Appl. 21(3), 375–398 (2014)
18.
Zurück zum Zitat Kraus, J., Margenov, S.: Robust Algebraic Multilevel Methods and Algorithms, Volume 5 of Radon Series on Computational and Applied Mathematics. De Gruyter, Berlin (2009)CrossRef Kraus, J., Margenov, S.: Robust Algebraic Multilevel Methods and Algorithms, Volume 5 of Radon Series on Computational and Applied Mathematics. De Gruyter, Berlin (2009)CrossRef
19.
Zurück zum Zitat Langer, U., Wolfmayr, M.: Multiharmonic finite element solvers for time-periodic parabolic optimal control problems. Proc. Appl. Math. Mech. (PAMM) 12(1), 687–688 (2012)CrossRef Langer, U., Wolfmayr, M.: Multiharmonic finite element solvers for time-periodic parabolic optimal control problems. Proc. Appl. Math. Mech. (PAMM) 12(1), 687–688 (2012)CrossRef
20.
Zurück zum Zitat Langer, U., Wolfmayr, M.: Multiharmonic finite element analysis of a time-periodic parabolic optimal control problem. J. Numer. Math. 21(4), 265–300 (2013) Langer, U., Wolfmayr, M.: Multiharmonic finite element analysis of a time-periodic parabolic optimal control problem. J. Numer. Math. 21(4), 265–300 (2013)
21.
Zurück zum Zitat Lazarov, R., Margenov, S.: CBS constants for graph-Laplacians and application to multilevel methods for discontinuous Galerkin systems. J. Complex. 4–6, 498–515 (2007)MathSciNetCrossRef Lazarov, R., Margenov, S.: CBS constants for graph-Laplacians and application to multilevel methods for discontinuous Galerkin systems. J. Complex. 4–6, 498–515 (2007)MathSciNetCrossRef
22.
Zurück zum Zitat Lymbery, M., Margenov, S.: Robust semi-coarsening multilevel preconditioning of biquadratic fem systems. Cent. Eur. J. Math. 10(1), 357–369 (2012) Lymbery, M., Margenov, S.: Robust semi-coarsening multilevel preconditioning of biquadratic fem systems. Cent. Eur. J. Math. 10(1), 357–369 (2012)
23.
Zurück zum Zitat Maitre, J., Musy, F.: The contraction number of a class of two-level methods: an exact evaluation for some finite element subspaces and model problems. Lect. Notes Math. 960, 535–544 (1982) Maitre, J., Musy, F.: The contraction number of a class of two-level methods: an exact evaluation for some finite element subspaces and model problems. Lect. Notes Math. 960, 535–544 (1982)
24.
Zurück zum Zitat Mense, C., Nabben, R.: On algebraic multilevel methods for non-symmetric systems—convergence results. Electron. Trans. Numer. Anal. 30, 323–345 (2008)MathSciNetMATH Mense, C., Nabben, R.: On algebraic multilevel methods for non-symmetric systems—convergence results. Electron. Trans. Numer. Anal. 30, 323–345 (2008)MathSciNetMATH
25.
26.
Zurück zum Zitat Paige, C., Saunders, M.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)MathSciNetCrossRefMATH Paige, C., Saunders, M.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)MathSciNetCrossRefMATH
Metadaten
Titel
On the robustness and optimality of algebraic multilevel methods for reaction–diffusion type problems
verfasst von
Johannes Kraus
Monika Wolfmayr
Publikationsdatum
01.02.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Computing and Visualization in Science / Ausgabe 1/2013
Print ISSN: 1432-9360
Elektronische ISSN: 1433-0369
DOI
https://doi.org/10.1007/s00791-014-0221-z

Premium Partner