Skip to main content
Erschienen in: BIT Numerical Mathematics 4/2013

01.12.2013

A constructive approach to cubic Hermite Fractal Interpolation Function and its constrained aspects

verfasst von: A. K. B. Chand, P. Viswanathan

Erschienen in: BIT Numerical Mathematics | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The theory of splines is a well studied topic, but the kinship of splines with fractals is novel. We introduce a simple explicit construction for a https://static-content.springer.com/image/art%3A10.1007%2Fs10543-013-0442-4/MediaObjects/10543_2013_442_IEq1_HTML.gif -cubic Hermite Fractal Interpolation Function (FIF). Under some suitable hypotheses on the original function, we establish a priori estimates (with respect to the L p -norm, 1≤p≤∞) for the interpolation error of the https://static-content.springer.com/image/art%3A10.1007%2Fs10543-013-0442-4/MediaObjects/10543_2013_442_IEq2_HTML.gif -cubic Hermite FIF and its first derivative. Treating the first derivatives at the knots as free parameters, we derive suitable values for these parameters so that the resulting cubic FIF enjoys https://static-content.springer.com/image/art%3A10.1007%2Fs10543-013-0442-4/MediaObjects/10543_2013_442_IEq3_HTML.gif global smoothness. Consequently, our method offers an alternative to the standard moment construction of https://static-content.springer.com/image/art%3A10.1007%2Fs10543-013-0442-4/MediaObjects/10543_2013_442_IEq4_HTML.gif -cubic spline FIFs. Furthermore, we identify appropriate values for the scaling factors in each subinterval and the derivatives at the knots so that the graph of the resulting https://static-content.springer.com/image/art%3A10.1007%2Fs10543-013-0442-4/MediaObjects/10543_2013_442_IEq5_HTML.gif -cubic FIF lies within a prescribed rectangle. These parameters include, in particular, conditions for the positivity of the cubic FIF. Thus, in the current article, we initiate the study of the shape preserving aspects of fractal interpolation polynomials. We also provide numerical examples to corroborate our results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahlberg, J., Nilson, E., Walsh, J.: The Theory of Splines and Their Applications. Academic Press, New York (1967) MATH Ahlberg, J., Nilson, E., Walsh, J.: The Theory of Splines and Their Applications. Academic Press, New York (1967) MATH
3.
4.
Zurück zum Zitat Barnsley, M.F., Elton, J., Hardin, D., Massopust, P.: Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20(5), 1218–1242 (1989) MathSciNetCrossRefMATH Barnsley, M.F., Elton, J., Hardin, D., Massopust, P.: Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20(5), 1218–1242 (1989) MathSciNetCrossRefMATH
5.
Zurück zum Zitat Birkhoff, G., Schultz, M.H., Varga, R.S.: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11, 232–256 (1968) MathSciNetCrossRefMATH Birkhoff, G., Schultz, M.H., Varga, R.S.: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11, 232–256 (1968) MathSciNetCrossRefMATH
6.
Zurück zum Zitat Boehm, W., Farin, G., Kahmann, J.: A survey of curve and surface methods in CAGD. CAGD 1, 1–60 (1984) MATH Boehm, W., Farin, G., Kahmann, J.: A survey of curve and surface methods in CAGD. CAGD 1, 1–60 (1984) MATH
7.
Zurück zum Zitat Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006) MathSciNetCrossRefMATH Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006) MathSciNetCrossRefMATH
8.
9.
Zurück zum Zitat Chand, A.K.B., Navascués, M.A.: Natural bicubic spline fractal interpolation. Nonlinear Anal. TMA 69, 3679–3691 (2008) CrossRefMATH Chand, A.K.B., Navascués, M.A.: Natural bicubic spline fractal interpolation. Nonlinear Anal. TMA 69, 3679–3691 (2008) CrossRefMATH
10.
Zurück zum Zitat Chand, A.K.B., Navascués, M.A.: Generalized Hermite fractal interpolation. Rev. R. Acad. Cienc. Zaragoza 64(2), 107–120 (2009) MATH Chand, A.K.B., Navascués, M.A.: Generalized Hermite fractal interpolation. Rev. R. Acad. Cienc. Zaragoza 64(2), 107–120 (2009) MATH
11.
Zurück zum Zitat Chand, A.K.B., Viswanathan, P.: Cubic Hermite and cubic spline fractal interpolation functions. AIP Conf. Proc. 1479, 1467–1470 (2012) CrossRef Chand, A.K.B., Viswanathan, P.: Cubic Hermite and cubic spline fractal interpolation functions. AIP Conf. Proc. 1479, 1467–1470 (2012) CrossRef
12.
Zurück zum Zitat Costantini, P., Manni, C.: Curve and surface construction using Hermite subdivision schemes. J. Comput. Appl. Math. 233, 1660–1673 (2010) MathSciNetCrossRefMATH Costantini, P., Manni, C.: Curve and surface construction using Hermite subdivision schemes. J. Comput. Appl. Math. 233, 1660–1673 (2010) MathSciNetCrossRefMATH
13.
Zurück zum Zitat Dalla, L., Drakopoulos, V.: On the parameter identification problem in the plane and the polar fractal interpolation functions. J. Approx. Theory 101, 289–302 (1999) MathSciNetCrossRefMATH Dalla, L., Drakopoulos, V.: On the parameter identification problem in the plane and the polar fractal interpolation functions. J. Approx. Theory 101, 289–302 (1999) MathSciNetCrossRefMATH
14.
Zurück zum Zitat Dalla, L., Drakopoulos, V., Prodromou, M.: On the box dimension for a class of nonaffine fractal interpolation functions. Anal. Theory Appl. 19, 220–233 (2003) MathSciNetCrossRef Dalla, L., Drakopoulos, V., Prodromou, M.: On the box dimension for a class of nonaffine fractal interpolation functions. Anal. Theory Appl. 19, 220–233 (2003) MathSciNetCrossRef
15.
Zurück zum Zitat Dyn, N., Levin, D.: Analysis of Hermite-type subdivision schemes. In: Chui, C.K., Schumaker, L. (eds.) Approximation Theory, vol. VIII. World Scientific, Singapore (1995) Dyn, N., Levin, D.: Analysis of Hermite-type subdivision schemes. In: Chui, C.K., Schumaker, L. (eds.) Approximation Theory, vol. VIII. World Scientific, Singapore (1995)
16.
Zurück zum Zitat Dyn, N., Levin, D.: Analysis of Hermite-interpolatory subdivision schemes. In: Proceedings of Work Shop: Spline Functions and Wavelets (1997) Dyn, N., Levin, D.: Analysis of Hermite-interpolatory subdivision schemes. In: Proceedings of Work Shop: Spline Functions and Wavelets (1997)
18.
Zurück zum Zitat Falconer, K.: Fractal Geometry: Mathematical Foundation and Applications. Wiley, New York (1990) Falconer, K.: Fractal Geometry: Mathematical Foundation and Applications. Wiley, New York (1990)
20.
Zurück zum Zitat Levkovich-Maslyuk, L.I.: Wavelet-based determination of generating matrices for fractal interpolation functions. Regul. Chaotic Dyn. 3, 20–29 (1998) MathSciNetCrossRefMATH Levkovich-Maslyuk, L.I.: Wavelet-based determination of generating matrices for fractal interpolation functions. Regul. Chaotic Dyn. 3, 20–29 (1998) MathSciNetCrossRefMATH
21.
Zurück zum Zitat Massopust, P.R.: Fractal Functions, Fractal Surfaces and Wavelets. Academic Press, San Diego (1994) MATH Massopust, P.R.: Fractal Functions, Fractal Surfaces and Wavelets. Academic Press, San Diego (1994) MATH
24.
Zurück zum Zitat Navascués, M.A., Sebastián, M.V.: Generalization of Hermite functions by fractal interpolation. J. Approx. Theory 131(1), 19–29 (2004) MathSciNetCrossRefMATH Navascués, M.A., Sebastián, M.V.: Generalization of Hermite functions by fractal interpolation. J. Approx. Theory 131(1), 19–29 (2004) MathSciNetCrossRefMATH
25.
Zurück zum Zitat Schmidt, J.W., Heß, W.: Positivity of cubic polynomials on intervals and positive spline interpolation. BIT Numer. Math. 28, 340–352 (1988) CrossRefMATH Schmidt, J.W., Heß, W.: Positivity of cubic polynomials on intervals and positive spline interpolation. BIT Numer. Math. 28, 340–352 (1988) CrossRefMATH
26.
Zurück zum Zitat Schultz, M.H.: Spline Analysis. Prentice-Hall, Englewood Cliffs (1973) MATH Schultz, M.H.: Spline Analysis. Prentice-Hall, Englewood Cliffs (1973) MATH
27.
Zurück zum Zitat Schwanecke, U., Juetller, B.: A B-spline approach to Hermite subdivision. In: Cohen, A., Rabut, C., Schumaker, L. (eds.) Curve and Surface Fitting, pp. 385–392. Vanderbilt University Press, Nashville (2000) Schwanecke, U., Juetller, B.: A B-spline approach to Hermite subdivision. In: Cohen, A., Rabut, C., Schumaker, L. (eds.) Curve and Surface Fitting, pp. 385–392. Vanderbilt University Press, Nashville (2000)
Metadaten
Titel
A constructive approach to cubic Hermite Fractal Interpolation Function and its constrained aspects
verfasst von
A. K. B. Chand
P. Viswanathan
Publikationsdatum
01.12.2013
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 4/2013
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-013-0442-4

Weitere Artikel der Ausgabe 4/2013

BIT Numerical Mathematics 4/2013 Zur Ausgabe