Skip to main content
Erschienen in: Fire Technology 1/2011

01.01.2011

Flame Spread Modelling of Complex Textile Materials

verfasst von: Maria Hjohlman, Petra Andersson, Patrick van Hees

Erschienen in: Fire Technology | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flame spread in textile materials was modelled using two different simulation programs: the semi-empirical area-based code ConeTools, and the computational fluid dynamics, CFD, code Fire Dynamics Simulator, FDS, (version 5). Two textile products developed within the EU-project Flexifunbar were selected for study. The two products show a large difference in composition and application area, one material is developed to function as a protecting layer for the underlying structure in case of fire while the other is an insulating material with no requirements on fire performance. The products represent materials for which fire test results indicate a classification on either end of the rating scale for wall materials according to EN 13501. Two FDS-models were developed for the simulations. The first FDS model was a relatively simple model of the small scale Cone Calorimeter test (ISO 5660) which served the purpose of a first preliminary validation of the model for pyrolysis of the material. In the second FDS model, a model of the intermediate scale Single Burning Item, SBI, test method (EN 13823), the fire scenario was expanded to simulate flame spread over a surface. The work included determination of the necessary material properties. In ConeTools, the option to predict an SBI test was used. The results from the two simulation methods were compared to real SBI tests. Neither model was able to fully predict the heat release rate for these complex products. However, the results from both codes were accurate enough to correctly predict the fire rating class for wall linings according to EN13501.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Saito K, Quintiere JG, Williams FA (1984) Upward turbulent flame spread. In: Proceedings of the first international symposium on fire safety science, Hemisphere Publishing Corporation, NY Saito K, Quintiere JG, Williams FA (1984) Upward turbulent flame spread. In: Proceedings of the first international symposium on fire safety science, Hemisphere Publishing Corporation, NY
2.
Zurück zum Zitat Wickström U, Göransson U (1987) “Prediction of Heat Release Rates of Surface materials in Large-Scale Fire Tests Based in Cone Calorimeter Results”, J. Testing and Evaluation, 15: 364-370.CrossRef Wickström U, Göransson U (1987) “Prediction of Heat Release Rates of Surface materials in Large-Scale Fire Tests Based in Cone Calorimeter Results”, J. Testing and Evaluation, 15: 364-370.CrossRef
3.
Zurück zum Zitat Wade C (April 1996) A room fire model incorporating fire growth on combustible lining materials. Master Thesis, Worcester Polytechnic Institute, Worcester, MA Wade C (April 1996) A room fire model incorporating fire growth on combustible lining materials. Master Thesis, Worcester Polytechnic Institute, Worcester, MA
4.
Zurück zum Zitat McGrattan K et al. (2007) Fire dynamics simulator (Version 5) user’s guide. NIST Special Publication, Gaithersburg, 1019-5 McGrattan K et al. (2007) Fire dynamics simulator (Version 5) user’s guide. NIST Special Publication, Gaithersburg, 1019-5
5.
Zurück zum Zitat Sundström B (2007) The development of a European fire classification system for building products test methods and mathematical modelling. Doctoral Thesis, LUTVDG/TVBB-1035-SE, Lund Sundström B (2007) The development of a European fire classification system for building products test methods and mathematical modelling. Doctoral Thesis, LUTVDG/TVBB-1035-SE, Lund
6.
Zurück zum Zitat Rubini P (2000) “SOFIE Version 3.0 Users guide”. Cranfield University School of Mechanical Engineering, England. Rubini P (2000) “SOFIE Version 3.0 Users guide”. Cranfield University School of Mechanical Engineering, England.
7.
Zurück zum Zitat Karlsson B (1992) Modelling fire growth on combustible lining materials in enclosures. PhD thesis TVBB 1009, Lund University, Department of Fire Safety Engineering Karlsson B (1992) Modelling fire growth on combustible lining materials in enclosures. PhD thesis TVBB 1009, Lund University, Department of Fire Safety Engineering
8.
Zurück zum Zitat van Hees P, Hertzberg T, Steen Hansen A (2002) Development of a screening method for the SBI and room corner using the cone calorimeter. SP Report 11 van Hees P, Hertzberg T, Steen Hansen A (2002) Development of a screening method for the SBI and room corner using the cone calorimeter. SP Report 11
9.
Zurück zum Zitat Messerschmidt B, Van Hees P, Wickström U (1999) Prediction of SBI (single burning item) test results by means of cone calorimeter test results. In: Interflam proceedings. Interscience communication Ltd, London, pp 11–22 Messerschmidt B, Van Hees P, Wickström U (1999) Prediction of SBI (single burning item) test results by means of cone calorimeter test results. In: Interflam proceedings. Interscience communication Ltd, London, pp 11–22
10.
Zurück zum Zitat McCaffrey B Flame height. In: The SFPE Handbook of Fire Protection Engineering, 2nd edn, Chapter 2–1 McCaffrey B Flame height. In: The SFPE Handbook of Fire Protection Engineering, 2nd edn, Chapter 2–1
11.
Zurück zum Zitat EN 13238 (2001) Reaction to fire tests for building products—Conditioning procedures and general rules for selection of substrates EN 13238 (2001) Reaction to fire tests for building products—Conditioning procedures and general rules for selection of substrates
12.
Zurück zum Zitat Hjohlman M, Andersson P (2008) Flame spread modelling of textile products. SP Report 2008:34 Hjohlman M, Andersson P (2008) Flame spread modelling of textile products. SP Report 2008:34
13.
Zurück zum Zitat Andersson J, Persson F (2001) Computer supported simulation of pyrolysis. Diploma paper 01–08, Chalmers Lindholmen University College, Department of Chemical Engineering Andersson J, Persson F (2001) Computer supported simulation of pyrolysis. Diploma paper 01–08, Chalmers Lindholmen University College, Department of Chemical Engineering
14.
Zurück zum Zitat Svensson J (2004) “Thermal decomposition of biomass and construction materials – an experimental study”. Göteborg University Department of Chemistry. Svensson J (2004) “Thermal decomposition of biomass and construction materials – an experimental study”. Göteborg University Department of Chemistry.
15.
Zurück zum Zitat Schartel B, Bartolmai M, Knoll U (2005) Some comments on the use of Cone Calorimeter data. Polym Degrad Stab 88(3):540-547CrossRef Schartel B, Bartolmai M, Knoll U (2005) Some comments on the use of Cone Calorimeter data. Polym Degrad Stab 88(3):540-547CrossRef
16.
Zurück zum Zitat Gustafsson S E, Long T (1995) Transient Plane Source (TPS) “Technique for Measuring Thermal Properties of Building Materials”. Fire and Material. 19: 43-49.CrossRef Gustafsson S E, Long T (1995) Transient Plane Source (TPS) “Technique for Measuring Thermal Properties of Building Materials”. Fire and Material. 19: 43-49.CrossRef
17.
Zurück zum Zitat Gustafsson S E (1991) “Transient Plane Source (TPS) Technique for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials”. Rev Sci Instrum. 63(3): 797-804.CrossRef Gustafsson S E (1991) “Transient Plane Source (TPS) Technique for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials”. Rev Sci Instrum. 63(3): 797-804.CrossRef
18.
Zurück zum Zitat Mulholland G, Croarkin C (2000) “Specific Extinction of Flame Generated Smoke”. Fire and Materials. 24: 227-230.CrossRef Mulholland G, Croarkin C (2000) “Specific Extinction of Flame Generated Smoke”. Fire and Materials. 24: 227-230.CrossRef
19.
Zurück zum Zitat The SFPE handbook of fire protection engineering, 3rd edn, (2002). The SFPE handbook of fire protection engineering, 3rd edn, (2002).
20.
Zurück zum Zitat EN 13501-1 (2002) Fire classification of construction products and building elements—Part 1: classification using data from reaction to fire tests. EN 13501-1 (2002) Fire classification of construction products and building elements—Part 1: classification using data from reaction to fire tests.
21.
Zurück zum Zitat Rumbau V, Guillaume E, Sainrat A (2007) EGOLF SBI thermal attack measurements round robin2 Rumbau V, Guillaume E, Sainrat A (2007) EGOLF SBI thermal attack measurements round robin2
22.
Zurück zum Zitat Hietaniemi J, Hostikka S, Vaari J (2004) FDS simulation of fire spread—comparison of model results with experimental data Hietaniemi J, Hostikka S, Vaari J (2004) FDS simulation of fire spread—comparison of model results with experimental data
Metadaten
Titel
Flame Spread Modelling of Complex Textile Materials
verfasst von
Maria Hjohlman
Petra Andersson
Patrick van Hees
Publikationsdatum
01.01.2011
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 1/2011
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-009-0128-2

Weitere Artikel der Ausgabe 1/2011

Fire Technology 1/2011 Zur Ausgabe