Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2007

01.04.2007

A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields

verfasst von: Martin Rehn, Friedrich T. Sommer

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computational models of primary visual cortex have demonstrated that principles of efficient coding and neuronal sparseness can explain the emergence of neurones with localised oriented receptive fields. Yet, existing models have failed to predict the diverse shapes of receptive fields that occur in nature. The existing models used a particular “soft” form of sparseness that limits average neuronal activity. Here we study models of efficient coding in a broader context by comparing soft and “hard” forms of neuronal sparseness.
As a result of our analyses, we propose a novel network model for visual cortex. The model forms efficient visual representations in which the number of active neurones, rather than mean neuronal activity, is limited. This form of hard sparseness also economises cortical resources like synaptic memory and metabolic energy. Furthermore, our model accurately predicts the distribution of receptive field shapes found in the primary visual cortex of cat and monkey.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For an introduction to these models, see chapter ten of Dayan and Abbott (2003).
 
2
The distribution of shapes of receptive fields in the primary visual cortex of cat and monkey are very similar, for a comparison see Ringach (2002).
 
3
Note that in the Sparsenet, even though the combination of feedforward and feedback is linear the coding is ultimately a nonlinear operation on the input because feedback is present.
 
Literatur
Zurück zum Zitat Atick JJ (1992) Could information theory provide an ecological theory of sensory processing? Network: Comput. Neural Syst. 3: 213–251. Atick JJ (1992) Could information theory provide an ecological theory of sensory processing? Network: Comput. Neural Syst. 3: 213–251.
Zurück zum Zitat Attneave F (1954) Some informational aspects of visual perception. Psychol. Rev. 61: 183–193. Attneave F (1954) Some informational aspects of visual perception. Psychol. Rev. 61: 183–193.
Zurück zum Zitat Baddeley R (1996) An efficient code in V1? Nature 381: 560–561. Baddeley R (1996) An efficient code in V1? Nature 381: 560–561.
Zurück zum Zitat Barlow HB (1983) Understanding natural vision. Springer-Verlag, Berlin. Barlow HB (1983) Understanding natural vision. Springer-Verlag, Berlin.
Zurück zum Zitat Baum EB, Moody J, Wilczek F (1988) Internal representations for associative memory. Biol. Cybern. 59: 217–228. Baum EB, Moody J, Wilczek F (1988) Internal representations for associative memory. Biol. Cybern. 59: 217–228.
Zurück zum Zitat Bell AJ, Sejnowski TJ (1997) The independent components of natural images are edge filters. Vis. Res. 37: 3327–3338. Bell AJ, Sejnowski TJ (1997) The independent components of natural images are edge filters. Vis. Res. 37: 3327–3338.
Zurück zum Zitat Bethge M, Rotermund D, Pawelzik K (2003) Second order phase transition in neural rate coding: binary encoding is optimal for rapid signal transmission. Phys. Rev. Lett. 90(8): 088104–0881044. Bethge M, Rotermund D, Pawelzik K (2003) Second order phase transition in neural rate coding: binary encoding is optimal for rapid signal transmission. Phys. Rev. Lett. 90(8): 088104–0881044.
Zurück zum Zitat Buhmann J, Schulten K (1988) Storing sequences of biased patterns in neural networks with stochastic dynamics. In R Eckmiller, C von der Malsburg, eds. Neural Computers, Berlin. (Neuss 1987), Springer-Verlag, pp. 231–242. Buhmann J, Schulten K (1988) Storing sequences of biased patterns in neural networks with stochastic dynamics. In R Eckmiller, C von der Malsburg, eds. Neural Computers, Berlin. (Neuss 1987), Springer-Verlag, pp. 231–242.
Zurück zum Zitat Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1):33–61. Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1):33–61.
Zurück zum Zitat Dayan P, Abbott L (2003) Theoretical Neuroscience. MIT Press, Cambridge MA. Dayan P, Abbott L (2003) Theoretical Neuroscience. MIT Press, Cambridge MA.
Zurück zum Zitat Donoho DL, Elad M (2002) Optimally sparse representation in general (nonorthogonal) dictionaries via \(l^{1}\) minimization. PNAS 100(5): 2197–2002. Donoho DL, Elad M (2002) Optimally sparse representation in general (nonorthogonal) dictionaries via \(l^{1}\) minimization. PNAS 100(5): 2197–2002.
Zurück zum Zitat Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4: 2379–2394. Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4: 2379–2394.
Zurück zum Zitat Földiak P (1995) Sparse coding in the primate cortex. In MA Arbib ed. The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA, pp. 165–170. Földiak P (1995) Sparse coding in the primate cortex. In MA Arbib ed. The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA, pp. 165–170.
Zurück zum Zitat Gardner-Medwin A (1976) The recall of events through the learning of associations between their parts. Proc. R. Soc. London. B 194: 375–402. Gardner-Medwin A (1976) The recall of events through the learning of associations between their parts. Proc. R. Soc. London. B 194: 375–402.
Zurück zum Zitat Gibson JJ (1966) The Perception of the Visual World. Houghton Mifflin, Boston, MA. Gibson JJ (1966) The Perception of the Visual World. Houghton Mifflin, Boston, MA.
Zurück zum Zitat Hinton GE, Sallans B, Ghahramani ZJ (1997) A hierarchical community of experts. In M Jordan, ed. Learning in Graphical Models, Kluwer Academic Publishers, pp. 479–494. Hinton GE, Sallans B, Ghahramani ZJ (1997) A hierarchical community of experts. In M Jordan, ed. Learning in Graphical Models, Kluwer Academic Publishers, pp. 479–494.
Zurück zum Zitat Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. (USA) 79: 2554–2558. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. (USA) 79: 2554–2558.
Zurück zum Zitat Hurri J, Hyvärinen A (2003) Simple-cell-like receptive fields maximize temporal coherence in natural video. Neural. Comput. 15: 663–691. Hurri J, Hyvärinen A (2003) Simple-cell-like receptive fields maximize temporal coherence in natural video. Neural. Comput. 15: 663–691.
Zurück zum Zitat Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw. 13: 411–430. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw. 13: 411–430.
Zurück zum Zitat Jones JP, Palmer LA (1987) The two-dimensional spatial structure of simple receptive fields in the striate cortex. J. Neurophysiol. 58: 1187–1211. Jones JP, Palmer LA (1987) The two-dimensional spatial structure of simple receptive fields in the striate cortex. J. Neurophysiol. 58: 1187–1211.
Zurück zum Zitat Laughlin SB, Sejnowski TJ (2003) Communication in neuronal networks. Science 301: 1870–1874. Laughlin SB, Sejnowski TJ (2003) Communication in neuronal networks. Science 301: 1870–1874.
Zurück zum Zitat Lennie P (2003) The cost of cortical computation. Curr. Biol. 13(6): 493–497. Lennie P (2003) The cost of cortical computation. Curr. Biol. 13(6): 493–497.
Zurück zum Zitat Li Z, Attick J (1994) Towards a theory of the striate cortex. Neural. Comput. 6: 127–146. Li Z, Attick J (1994) Towards a theory of the striate cortex. Neural. Comput. 6: 127–146.
Zurück zum Zitat Mallat S, Zhang Z, (1993) Matching pursuit in time-frequency dictionary. IEEE Trans. Signal Process. 41: 3397–3415. Mallat S, Zhang Z, (1993) Matching pursuit in time-frequency dictionary. IEEE Trans. Signal Process. 41: 3397–3415.
Zurück zum Zitat Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–608. Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–608.
Zurück zum Zitat Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed in V1. Vis. Res. 37: 3311–3325. Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed in V1. Vis. Res. 37: 3311–3325.
Zurück zum Zitat Palm G (1980) On associative memory. Biol. Cybern. 36: 19–31. Palm G (1980) On associative memory. Biol. Cybern. 36: 19–31.
Zurück zum Zitat Palm G, Sommer FT (1992) Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory states. Network: Comput. Neural Syst. 3: 1–10. Palm G, Sommer FT (1992) Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory states. Network: Comput. Neural Syst. 3: 1–10.
Zurück zum Zitat Palm G, Sommer FT (1995) Associative data storage and retrieval in neural networks. In E Domany, JL van Hemmen, KS Hemmen, eds. Models of Neural Networks III. Springer, New York, pp. 79 –118. Palm G, Sommer FT (1995) Associative data storage and retrieval in neural networks. In E Domany, JL van Hemmen, KS Hemmen, eds. Models of Neural Networks III. Springer, New York, pp. 79 –118.
Zurück zum Zitat Pati Y, Reziifar R, Krishnaprasad P (1993) Orthogonal matching pursuits: recursive function approximation with applications to wavelet decomposition. In Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44. Pati Y, Reziifar R, Krishnaprasad P (1993) Orthogonal matching pursuits: recursive function approximation with applications to wavelet decomposition. In Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44.
Zurück zum Zitat Perrinet L, Samuelides M, Thorpe S (2004) Sparse spike coding in an asynchronous feed-forward multi-layer neural network using matching pursuit. Neurocomputing 57: 125–134. Perrinet L, Samuelides M, Thorpe S (2004) Sparse spike coding in an asynchronous feed-forward multi-layer neural network using matching pursuit. Neurocomputing 57: 125–134.
Zurück zum Zitat Peters A, Paine BR (1994) A numerical analysis of the genicocortical input to striate cortex in the monkey. Cereb. Cortex 4: 215–229. Peters A, Paine BR (1994) A numerical analysis of the genicocortical input to striate cortex in the monkey. Cereb. Cortex 4: 215–229.
Zurück zum Zitat Rebollo-Neira L, Lowe D (2002) Optimised orthogonal matching pursuit approach. IEEE Signal Process. Lett. 9: 137–140. Rebollo-Neira L, Lowe D (2002) Optimised orthogonal matching pursuit approach. IEEE Signal Process. Lett. 9: 137–140.
Zurück zum Zitat Rehn M, Sommer FT (2006) Storing and restoring visual input with collaborative rank coding and associative memory. Neurocomputing 69(10–12): 1219–1223. Rehn M, Sommer FT (2006) Storing and restoring visual input with collaborative rank coding and associative memory. Neurocomputing 69(10–12): 1219–1223.
Zurück zum Zitat Ringach DL (2002) Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophys. 88(1): 455–463. Ringach DL (2002) Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophys. 88(1): 455–463.
Zurück zum Zitat Ruderman D (1994) The statistics of natural images. Network: Comput. Neural Syst. 5: 517–548. Ruderman D (1994) The statistics of natural images. Network: Comput. Neural Syst. 5: 517–548.
Zurück zum Zitat Sallee P (2002) Statistical methods for image and signal processing. PhD Thesis, UC Davis. Sallee P (2002) Statistical methods for image and signal processing. PhD Thesis, UC Davis.
Zurück zum Zitat Sallee P, Olshausen BA (2002) Learning sparse multiscale image representations. In TK Leen, TG Dietterich, V Tresp, eds. Advances in Neural Information Processing Systems, vol. 13. Morgan Kaufmann Publishers, Inc., pp. 887–893. Sallee P, Olshausen BA (2002) Learning sparse multiscale image representations. In TK Leen, TG Dietterich, V Tresp, eds. Advances in Neural Information Processing Systems, vol. 13. Morgan Kaufmann Publishers, Inc., pp. 887–893.
Zurück zum Zitat Sommer FT, Wennekers T (2005) Synfire chains with conductance-based neurons: internal timing and coordination with timed input. Neurocomputing 65–66: 449–454. Sommer FT, Wennekers T (2005) Synfire chains with conductance-based neurons: internal timing and coordination with timed input. Neurocomputing 65–66: 449–454.
Zurück zum Zitat Stroud JM (1956) The fine structure of psychological time. In H Quastler, ed. Information Theory in Psychology. Free Press, pp. 174–205. Stroud JM (1956) The fine structure of psychological time. In H Quastler, ed. Information Theory in Psychology. Free Press, pp. 174–205.
Zurück zum Zitat Teh Y, Welling M, Osindero S, Hinton GE (2003) Energy-based models for sparse overcomplete representations. J. Mach. Learn. Res. 4: 1235–1260. Teh Y, Welling M, Osindero S, Hinton GE (2003) Energy-based models for sparse overcomplete representations. J. Mach. Learn. Res. 4: 1235–1260.
Zurück zum Zitat Treves A (1991) Dilution and sparse coding in threshold-linear nets. J. Phys. A: Math. Gen. 24: 327–335. Treves A (1991) Dilution and sparse coding in threshold-linear nets. J. Phys. A: Math. Gen. 24: 327–335.
Zurück zum Zitat Tsodyks MV, Feigelman MV (1988) The enhanced storage capacity in neural networks with low activity level. Europhys. Lett. 6: 101–105. Tsodyks MV, Feigelman MV (1988) The enhanced storage capacity in neural networks with low activity level. Europhys. Lett. 6: 101–105.
Zurück zum Zitat Van Essen DC, Anderson CH (1995) Information processing strategies and pathways in the primate retina and visual cortex. In SF Zornetzer, JL Davis, C Lau, eds. Introduction to Neural and Electronic Networks, 2nd ed. Orlando, Academic Press, pp. 45–76. Van Essen DC, Anderson CH (1995) Information processing strategies and pathways in the primate retina and visual cortex. In SF Zornetzer, JL Davis, C Lau, eds. Introduction to Neural and Electronic Networks, 2nd ed. Orlando, Academic Press, pp. 45–76.
Zurück zum Zitat VanRullen R, Koch C (2003) Is perception discrete or continuous? Trends Cogn. Sci. 7: 207–213. VanRullen R, Koch C (2003) Is perception discrete or continuous? Trends Cogn. Sci. 7: 207–213.
Zurück zum Zitat VanRullen R, Koch C (2005) Attention-driven discrete sampling of motion perception. Proc. Nat. Acad. Sci., USA 102: 5291–5296. VanRullen R, Koch C (2005) Attention-driven discrete sampling of motion perception. Proc. Nat. Acad. Sci., USA 102: 5291–5296.
Zurück zum Zitat Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memory. Nature 222: 960–962. Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memory. Nature 222: 960–962.
Zurück zum Zitat Willwacher G (1982) Storage of a temporal sequence in a network. Biol. Cybern. 43: 115–126. Willwacher G (1982) Storage of a temporal sequence in a network. Biol. Cybern. 43: 115–126.
Zurück zum Zitat Zetsche C (1990) Sparse coding: the link between low level vision and associative memory. In R Eckmiller, G Hartmann, G Hauske, eds., Parallel Processing in Neural Systems and Computers. Elsevier Science Publishers B.V. (North Holland). Zetsche C (1990) Sparse coding: the link between low level vision and associative memory. In R Eckmiller, G Hartmann, G Hauske, eds., Parallel Processing in Neural Systems and Computers. Elsevier Science Publishers B.V. (North Holland).
Metadaten
Titel
A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
verfasst von
Martin Rehn
Friedrich T. Sommer
Publikationsdatum
01.04.2007
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2007
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-006-0003-9

Weitere Artikel der Ausgabe 2/2007

Journal of Computational Neuroscience 2/2007 Zur Ausgabe