Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2009

01.06.2009

Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities

verfasst von: Srdjan Ostojic, Nicolas Brunel, Vincent Hakim

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate how synchrony can be generated or induced in networks of electrically coupled integrate-and-fire neurons subject to noisy and heterogeneous inputs. Using analytical tools, we find that in a network under constant external inputs, synchrony can appear via a Hopf bifurcation from the asynchronous state to an oscillatory state. In a homogeneous net work, in the oscillatory state all neurons fire in synchrony, while in a heterogeneous network synchrony is looser, many neurons skipping cycles of the oscillation. If the transmission of action potentials via the electrical synapses is effectively excitatory, the Hopf bifurcation is supercritical, while effectively inhibitory transmission due to pronounced hyperpolarization leads to a subcritical bifurcation. In the latter case, the network exhibits bistability between an asynchronous state and an oscillatory state where all the neurons fire in synchrony. Finally we show that for time-varying external inputs, electrical coupling enhances the synchronization in an asynchronous network via a resonance at the firing-rate frequency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Clearly, the amount of charge transferred during any portion of the spike is proportional to γ gap . Here we deliberately treat β gap and γ gap as independent parameters to be able to consider the case γ gap  = 0 while β gap  ≠ 0.
 
Literatur
Zurück zum Zitat Abbott, L. F., & van Vreeswijk, C. (1993). Asynchronous states in a network of pulse-coupled oscillators. Physical Review, E, 48, 1483–1490.CrossRef Abbott, L. F., & van Vreeswijk, C. (1993). Asynchronous states in a network of pulse-coupled oscillators. Physical Review, E, 48, 1483–1490.CrossRef
Zurück zum Zitat Amit, D., & Brunel, N. (1997). Model of global spontaneous activity and local structured delay activity during delay periods in the cerebral cortex. Cerebral Cortex, 7, 237–252.PubMedCrossRef Amit, D., & Brunel, N. (1997). Model of global spontaneous activity and local structured delay activity during delay periods in the cerebral cortex. Cerebral Cortex, 7, 237–252.PubMedCrossRef
Zurück zum Zitat Beierlein, M., Gibson, J. R., & Connors, B. (2000). A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature Neuroscience, 3, 904–909PubMedCrossRef Beierlein, M., Gibson, J. R., & Connors, B. (2000). A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature Neuroscience, 3, 904–909PubMedCrossRef
Zurück zum Zitat Bem, T., Feuvre, Y. L., Rinzel, J., & Meyrand, P. (2005). Electrical coupling induces bistability of rhythms in networks of inhibitory spiking neurons. European Journal of Neuroscience, 22, 2661–2668.PubMedCrossRef Bem, T., Feuvre, Y. L., Rinzel, J., & Meyrand, P. (2005). Electrical coupling induces bistability of rhythms in networks of inhibitory spiking neurons. European Journal of Neuroscience, 22, 2661–2668.PubMedCrossRef
Zurück zum Zitat Bennett, M., & Zukin, R. (2004). Electrical coupling and neuronal synchronization in the mammalian brain. Neuron, 41, 495–511.PubMedCrossRef Bennett, M., & Zukin, R. (2004). Electrical coupling and neuronal synchronization in the mammalian brain. Neuron, 41, 495–511.PubMedCrossRef
Zurück zum Zitat Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.PubMedCrossRef Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.PubMedCrossRef
Zurück zum Zitat Brunel, N., Chance, F., Fourcaud, N., & Abbott, L. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 86, 2186–2189.PubMedCrossRef Brunel, N., Chance, F., Fourcaud, N., & Abbott, L. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 86, 2186–2189.PubMedCrossRef
Zurück zum Zitat Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11, 162–1671.CrossRef Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11, 162–1671.CrossRef
Zurück zum Zitat Brunel, N., & Hakim, V. (2008). Sparsely synchronized neuronal oscillations. Chaos, 18, 015113.PubMedCrossRef Brunel, N., & Hakim, V. (2008). Sparsely synchronized neuronal oscillations. Chaos, 18, 015113.PubMedCrossRef
Zurück zum Zitat Brunel, N., & Hansel, D. (2006). How noise affects the synchronization properties of reccurent networks of inhibitory neurons. Neural Computation, 18, 1066–1110.PubMedCrossRef Brunel, N., & Hansel, D. (2006). How noise affects the synchronization properties of reccurent networks of inhibitory neurons. Neural Computation, 18, 1066–1110.PubMedCrossRef
Zurück zum Zitat Chow, C. C., & Kopell, N. (2000). Dynamics of spiking neurons with electrical coupling. Neural Computation, 12, 1643–1678.PubMedCrossRef Chow, C. C., & Kopell, N. (2000). Dynamics of spiking neurons with electrical coupling. Neural Computation, 12, 1643–1678.PubMedCrossRef
Zurück zum Zitat Connors, B., & Long, M. (2004). Electrical synapses in the mammalian brain. Annual Review of Neuroscience, 27, 393–418.PubMedCrossRef Connors, B., & Long, M. (2004). Electrical synapses in the mammalian brain. Annual Review of Neuroscience, 27, 393–418.PubMedCrossRef
Zurück zum Zitat Coombes, S., & Zachariou, M. (2008). Gap junctions and emergent rhythms. In J. Rubin, R. Matias (Ed.), Coherent behavior in neuronal networks, computational neuroscience series. New York: Springer. Coombes, S., & Zachariou, M. (2008). Gap junctions and emergent rhythms. In J. Rubin, R. Matias (Ed.), Coherent behavior in neuronal networks, computational neuroscience series. New York: Springer.
Zurück zum Zitat Coombes, S. (2008). Neuronal networks with gap junctions: A study of piece-wise linear planar neuron models. SIAM Journal on Applied Dynamical Systems, 7, 1101–1129.CrossRef Coombes, S. (2008). Neuronal networks with gap junctions: A study of piece-wise linear planar neuron models. SIAM Journal on Applied Dynamical Systems, 7, 1101–1129.CrossRef
Zurück zum Zitat Draguhn, A., Traub, R., Schmitz, D., & Jefferys, J. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394, 189–192.PubMedCrossRef Draguhn, A., Traub, R., Schmitz, D., & Jefferys, J. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394, 189–192.PubMedCrossRef
Zurück zum Zitat Dugué G., Brunel N., Hakim V., Schwartz E., Chat M., Levesque M., et al. (2008). Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi network. Neuron (in press). Dugué G., Brunel N., Hakim V., Schwartz E., Chat M., Levesque M., et al. (2008). Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi network. Neuron (in press).
Zurück zum Zitat Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628–11640.PubMed Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628–11640.PubMed
Zurück zum Zitat Fukuda, T., & Kosaka, T. (2000). Gap-junction coupling linking the dendritic network of gabaergic neurons in the hippocampus. Journal of Neuroscience, 20, 1519–1528.PubMed Fukuda, T., & Kosaka, T. (2000). Gap-junction coupling linking the dendritic network of gabaergic neurons in the hippocampus. Journal of Neuroscience, 20, 1519–1528.PubMed
Zurück zum Zitat Galarreta, M., Erdelyi, F., Szabo, G., & Hestrin, S. (2004). Electrical coupling among irregular-spiking gabaergic interneurons expressing cannabinoid receptors. Journal of Neuroscience, 24, 9770–9778.PubMedCrossRef Galarreta, M., Erdelyi, F., Szabo, G., & Hestrin, S. (2004). Electrical coupling among irregular-spiking gabaergic interneurons expressing cannabinoid receptors. Journal of Neuroscience, 24, 9770–9778.PubMedCrossRef
Zurück zum Zitat Galarreta, M., & Hestrin, S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature, 402, 72–75.PubMedCrossRef Galarreta, M., & Hestrin, S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature, 402, 72–75.PubMedCrossRef
Zurück zum Zitat Galarreta, M., & Hestrin, S. (2001a). Electrical synapses between gaba-releasing interneurons. Nature Reviews, Neuroscience, 2, 425–433.CrossRef Galarreta, M., & Hestrin, S. (2001a). Electrical synapses between gaba-releasing interneurons. Nature Reviews, Neuroscience, 2, 425–433.CrossRef
Zurück zum Zitat Galarreta, M., & Hestrin, S. (2001b). Spike transmission and synchrony detection in networks of gabaergic interneurons. Science, 292, 2295–2299.PubMedCrossRef Galarreta, M., & Hestrin, S. (2001b). Spike transmission and synchrony detection in networks of gabaergic interneurons. Science, 292, 2295–2299.PubMedCrossRef
Zurück zum Zitat Galarreta, M., & Hestrin, S. (2002). Electrical and chemical synapses among parvalbumin fast-spiking gabaergic interneurons in adult mouse neocortex. Proceedings of the National Academy of Sciences of the United States of America, 00, 12438–12443.CrossRef Galarreta, M., & Hestrin, S. (2002). Electrical and chemical synapses among parvalbumin fast-spiking gabaergic interneurons in adult mouse neocortex. Proceedings of the National Academy of Sciences of the United States of America, 00, 12438–12443.CrossRef
Zurück zum Zitat Gerstner, W., & van Hemmen, J. L. (1993). Coherence and incoherence in a globally coupled ensemble of pulse-emitting units. Physical Review Letters, 71, 312–315.PubMedCrossRef Gerstner, W., & van Hemmen, J. L. (1993). Coherence and incoherence in a globally coupled ensemble of pulse-emitting units. Physical Review Letters, 71, 312–315.PubMedCrossRef
Zurück zum Zitat Gibson, J. R., Beierlein, M., & Connors, B. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402, 75–79.PubMedCrossRef Gibson, J. R., Beierlein, M., & Connors, B. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402, 75–79.PubMedCrossRef
Zurück zum Zitat Hestrin, S., & Galarreta, M. (2005). Electrical synapses define networks of neocortical gabaergic neurons. Trends in Neuroscience, 28, 304–309.CrossRef Hestrin, S., & Galarreta, M. (2005). Electrical synapses define networks of neocortical gabaergic neurons. Trends in Neuroscience, 28, 304–309.CrossRef
Zurück zum Zitat Kopell, N., & Ermentrout, B. (2004). Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proceedings of the National Academy of Sciences of the United States of America, 101, 15482–15487.PubMedCrossRef Kopell, N., & Ermentrout, B. (2004). Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proceedings of the National Academy of Sciences of the United States of America, 101, 15482–15487.PubMedCrossRef
Zurück zum Zitat Landisman, C., Long, M., Beierlein, M., Deans, M., Paul, D. & Connors, B. (2002). Electrical synapses in the thalamic reticular nucleus. Journal of Neuroscience, 22, 1002–1009.PubMed Landisman, C., Long, M., Beierlein, M., Deans, M., Paul, D. & Connors, B. (2002). Electrical synapses in the thalamic reticular nucleus. Journal of Neuroscience, 22, 1002–1009.PubMed
Zurück zum Zitat LeBeau, F., Traub, R., Monyer, H., Whittington, M., & Buhl, E. (2003). The role of electrical signaling via gap junctions in the generation of fast network oscillations. Brain Research Bulletin, 62, 3–13.PubMedCrossRef LeBeau, F., Traub, R., Monyer, H., Whittington, M., & Buhl, E. (2003). The role of electrical signaling via gap junctions in the generation of fast network oscillations. Brain Research Bulletin, 62, 3–13.PubMedCrossRef
Zurück zum Zitat Lewis, T. J., & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. Journal of Computational Neuroscience, 14, 283–309.PubMedCrossRef Lewis, T. J., & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. Journal of Computational Neuroscience, 14, 283–309.PubMedCrossRef
Zurück zum Zitat Mann-Metzer, P., & Yarom, Y. (1999). Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. Journal of Neuroscience, 19, 3298–3306.PubMed Mann-Metzer, P., & Yarom, Y. (1999). Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. Journal of Neuroscience, 19, 3298–3306.PubMed
Zurück zum Zitat Pfeuty, B., Mato, G., Golomb, D., & Hansel, D. (2003). Electrical synapses and synchrony: The role of intrinsic currents. Journal of Neuroscience, 23, 6280–6294.PubMed Pfeuty, B., Mato, G., Golomb, D., & Hansel, D. (2003). Electrical synapses and synchrony: The role of intrinsic currents. Journal of Neuroscience, 23, 6280–6294.PubMed
Zurück zum Zitat Pfeuty, B., Mato, G., Golomb, D., & Hansel, D. (2005). The combined effects of inhibitory and electrical synapses in synchrony. Neural Computation, 17, 633–670.PubMedCrossRef Pfeuty, B., Mato, G., Golomb, D., & Hansel, D. (2005). The combined effects of inhibitory and electrical synapses in synchrony. Neural Computation, 17, 633–670.PubMedCrossRef
Zurück zum Zitat Risken, H. (1984). The Fokker Planck equation: methods of solution and applications. New York: Springer. Risken, H. (1984). The Fokker Planck equation: methods of solution and applications. New York: Springer.
Zurück zum Zitat Schneider A. R., Lewis T. J., & Rinzel J. (2006). Effects of correlated input and electrical coupling on synchrony in fast-spiking cell networks. Neurocomputing, 69, 1125–1129CrossRef Schneider A. R., Lewis T. J., & Rinzel J. (2006). Effects of correlated input and electrical coupling on synchrony in fast-spiking cell networks. Neurocomputing, 69, 1125–1129CrossRef
Zurück zum Zitat Sherman, A., & Rinzel, J. (1992). Proceedings of the National Academy of Sciences of the United States of America, 89, 2471–2474.PubMedCrossRef Sherman, A., & Rinzel, J. (1992). Proceedings of the National Academy of Sciences of the United States of America, 89, 2471–2474.PubMedCrossRef
Zurück zum Zitat Skinner F. K., Zhang L., Perez Velazquez J.L., & Carlen P. L. (1999). Bursting in Inhibitory Interneuronal Networks: A Role for Gap-Junctional Coupling. Journal of Neurophysiology, 81, 1274–1283.PubMed Skinner F. K., Zhang L., Perez Velazquez J.L., & Carlen P. L. (1999). Bursting in Inhibitory Interneuronal Networks: A Role for Gap-Junctional Coupling. Journal of Neurophysiology, 81, 1274–1283.PubMed
Zurück zum Zitat Tamas, G., Buhl, E., Lorincz, A., & Somogyi, P. (2000). Proximally targeted gabaergic synapses and gap junctions synchronize cortical interneurons. Nature Neuroscience, 3, 366–371.PubMedCrossRef Tamas, G., Buhl, E., Lorincz, A., & Somogyi, P. (2000). Proximally targeted gabaergic synapses and gap junctions synchronize cortical interneurons. Nature Neuroscience, 3, 366–371.PubMedCrossRef
Zurück zum Zitat Timme, M., Wolf, F., & Geisel, T. (2002). Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators. Physical Review Letters, 89, 258701.PubMedCrossRef Timme, M., Wolf, F., & Geisel, T. (2002). Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators. Physical Review Letters, 89, 258701.PubMedCrossRef
Zurück zum Zitat Traub, R., Kopell, N., Bibbig, A., Buhl, E., LeBeau, F., & Whittington, M. (2001). Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. Journal of Neuroscience, 21, 9478–86.PubMed Traub, R., Kopell, N., Bibbig, A., Buhl, E., LeBeau, F., & Whittington, M. (2001). Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. Journal of Neuroscience, 21, 9478–86.PubMed
Zurück zum Zitat Tuckwell, H. (1988). Introduction to theoretical neurobiology. Cambridge: Cambridge University Press. Tuckwell, H. (1988). Introduction to theoretical neurobiology. Cambridge: Cambridge University Press.
Zurück zum Zitat Venance, L., Rozov, A., Blatow, M., Burnashev, N., Feldmeyer, D., & Monyer, H. (2000). Connexin expression in electrically coupled postnatal rat brain neurons. Proceedings of the National Academy of Sciences of the United States of America, 97, 10260–10265.PubMedCrossRef Venance, L., Rozov, A., Blatow, M., Burnashev, N., Feldmeyer, D., & Monyer, H. (2000). Connexin expression in electrically coupled postnatal rat brain neurons. Proceedings of the National Academy of Sciences of the United States of America, 97, 10260–10265.PubMedCrossRef
Metadaten
Titel
Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities
verfasst von
Srdjan Ostojic
Nicolas Brunel
Vincent Hakim
Publikationsdatum
01.06.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-008-0117-3

Weitere Artikel der Ausgabe 3/2009

Journal of Computational Neuroscience 3/2009 Zur Ausgabe