Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2012

01.06.2012

Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study

verfasst von: Rosa Q. So, Alexander R. Kent, Warren M. Grill

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep brain stimulation (DBS) and lesioning are two surgical techniques used in the treatment of advanced Parkinson’s disease (PD) in patients whose symptoms are not well controlled by drugs, or who experience dyskinesias as a side effect of medications. Although these treatments have been widely practiced, the mechanisms behind DBS and lesioning are still not well understood. The subthalamic nucleus (STN) and globus pallidus pars interna (GPi) are two common targets for both DBS and lesioning. Previous studies have indicated that DBS not only affects local cells within the target, but also passing axons within neighboring regions. Using a computational model of the basal ganglia-thalamic network, we studied the relative contributions of activation and silencing of local cells (LCs) and fibers of passage (FOPs) to changes in the accuracy of information transmission through the thalamus (thalamic fidelity), which is correlated with the effectiveness of DBS. Activation of both LCs and FOPs during STN and GPi-DBS were beneficial to the outcome of stimulation. During STN and GPi lesioning, effects of silencing LCs and FOPs were different between the two types of lesioning. For STN lesioning, silencing GPi FOPs mainly contributed to its effectiveness, while silencing only STN LCs did not improve thalamic fidelity. In contrast, silencing both GPi LCs and GPe FOPs during GPi lesioning contributed to improvements in thalamic fidelity. Thus, two distinct mechanisms produced comparable improvements in thalamic function: driving the output of the basal ganglia to produce tonic inhibition and silencing the output of the basal ganglia to produce tonic disinhibition. These results show the importance of considering effects of activating or silencing fibers passing close to the nucleus when deciding upon a target location for DBS or lesioning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Afsharpour, S. (1985). Light microscopic analysis of Golgi-impregnated rat subthalamic neurons. Journal of Computational Neurology, 236(1), 1–13.CrossRef Afsharpour, S. (1985). Light microscopic analysis of Golgi-impregnated rat subthalamic neurons. Journal of Computational Neurology, 236(1), 1–13.CrossRef
Zurück zum Zitat Alvarez, L., Macias, R., Pavón, N., López, G., Rodríguez-Oroz, M. C., Rodríguez, R., et al. (2009). Therapeutic efficacy of unilateral subthalamotomy in Parkinson’s disease: results in 89 patients followed for up to 36 months. Journal of Neurology, Neurosurgery, and Psychiatry, 80(9), 979–985.PubMedCrossRef Alvarez, L., Macias, R., Pavón, N., López, G., Rodríguez-Oroz, M. C., Rodríguez, R., et al. (2009). Therapeutic efficacy of unilateral subthalamotomy in Parkinson’s disease: results in 89 patients followed for up to 36 months. Journal of Neurology, Neurosurgery, and Psychiatry, 80(9), 979–985.PubMedCrossRef
Zurück zum Zitat Aziz, T. Z., Peggs, D., Sambrook, M. A., & Crossman, A. R. (1991). Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Movement Disorders, 6(4), 288–292.PubMedCrossRef Aziz, T. Z., Peggs, D., Sambrook, M. A., & Crossman, A. R. (1991). Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Movement Disorders, 6(4), 288–292.PubMedCrossRef
Zurück zum Zitat Baker, K. B., Lee, J. Y., Mavinkurve, G., Russo, G. S., Walter, B., DeLong, M. R., et al. (2010). Somatotopic organization in the internal segment of the globus pallidus in Parkinson’s disease. Experimental Neurology, 2, 219–225.CrossRef Baker, K. B., Lee, J. Y., Mavinkurve, G., Russo, G. S., Walter, B., DeLong, M. R., et al. (2010). Somatotopic organization in the internal segment of the globus pallidus in Parkinson’s disease. Experimental Neurology, 2, 219–225.CrossRef
Zurück zum Zitat Bejjani, B., Damier, P., Arnulf, I., Bonnet, A. M., Vidailhet, M., Dormont, D., et al. (1997). Pallidal stimulation for Parkinson’s disease: two targets? Neurology, 49, 1564–1569.PubMed Bejjani, B., Damier, P., Arnulf, I., Bonnet, A. M., Vidailhet, M., Dormont, D., et al. (1997). Pallidal stimulation for Parkinson’s disease: two targets? Neurology, 49, 1564–1569.PubMed
Zurück zum Zitat Begman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental parkinsonism by lesions of the STN. Science, 249, 1436–1438.CrossRef Begman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental parkinsonism by lesions of the STN. Science, 249, 1436–1438.CrossRef
Zurück zum Zitat Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 507–520.PubMed Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 507–520.PubMed
Zurück zum Zitat Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., et al. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in Neuroscience, 21, 32–28.CrossRef Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., et al. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in Neuroscience, 21, 32–28.CrossRef
Zurück zum Zitat Benazzouz, A., Breit, S., Koudsie, A., Pollak, P., Krack, P., & Benabid, A. L. (2002). Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Movement Disorders, 17(Suppl 3), S145–S149.PubMedCrossRef Benazzouz, A., Breit, S., Koudsie, A., Pollak, P., Krack, P., & Benabid, A. L. (2002). Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Movement Disorders, 17(Suppl 3), S145–S149.PubMedCrossRef
Zurück zum Zitat Beurrier, C., Congar, P., Bioulac, B., & Hammond, C. (1999). Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. Journal of Neuroscience, 19, 599–609.PubMed Beurrier, C., Congar, P., Bioulac, B., & Hammond, C. (1999). Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. Journal of Neuroscience, 19, 599–609.PubMed
Zurück zum Zitat Bevan, M. D., & Wilson, C. J. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. Journal of Neuroscience, 19(17), 7617–7628.PubMed Bevan, M. D., & Wilson, C. J. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. Journal of Neuroscience, 19(17), 7617–7628.PubMed
Zurück zum Zitat Birdno, M. J., & Grill, W. M. (2008). Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics, 5(1), 14–25. Review.PubMedCrossRef Birdno, M. J., & Grill, W. M. (2008). Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics, 5(1), 14–25. Review.PubMedCrossRef
Zurück zum Zitat Boraud, T., Bezard, E., Guehl, D., Bioulac, B., & Gross, C. (1998). Effects of L-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Research, 787, 157–160.PubMedCrossRef Boraud, T., Bezard, E., Guehl, D., Bioulac, B., & Gross, C. (1998). Effects of L-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Research, 787, 157–160.PubMedCrossRef
Zurück zum Zitat Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. Journal of Neuroscience, 21, 1033–1038.PubMed Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. Journal of Neuroscience, 21, 1033–1038.PubMed
Zurück zum Zitat Butson, C. R., Cooper, S. E., Henderson, J. M., Wolgamuth, B., & McIntyre, C. C. (2010). Probabilistic analysis of activation volumes generated during deep brain stimulation. NeuroImage, 54(3), 2096–2104.PubMedCrossRef Butson, C. R., Cooper, S. E., Henderson, J. M., Wolgamuth, B., & McIntyre, C. C. (2010). Probabilistic analysis of activation volumes generated during deep brain stimulation. NeuroImage, 54(3), 2096–2104.PubMedCrossRef
Zurück zum Zitat Carpenter, M. B., Whittier, J. R., & Mettler, F. A. (1950). Analysis of choreoid hyperkinesia in the Rhesus monkey; surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys. The Journal of Comparative Neurology, 92(3), 293–331.PubMedCrossRef Carpenter, M. B., Whittier, J. R., & Mettler, F. A. (1950). Analysis of choreoid hyperkinesia in the Rhesus monkey; surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys. The Journal of Comparative Neurology, 92(3), 293–331.PubMedCrossRef
Zurück zum Zitat Chang, J. W., Yang, J. S., Jeon, M. F., Lee, B. H., & Chung, S. S. (2003). Effect of subthalamic lesion with kainic acid on the neuronal activities of the basal ganglia of rat parkinsonian models with 6-hydroxydopamine. Acta Neurochirurgica. Supplement, 87, 163–168.PubMed Chang, J. W., Yang, J. S., Jeon, M. F., Lee, B. H., & Chung, S. S. (2003). Effect of subthalamic lesion with kainic acid on the neuronal activities of the basal ganglia of rat parkinsonian models with 6-hydroxydopamine. Acta Neurochirurgica. Supplement, 87, 163–168.PubMed
Zurück zum Zitat Coban, A., Hanagasi, H. A., Karamursel, S., & Barlas, O. (2009). Comparison of unilateral pallidotomy and subthalamotomy findings in advanced idiopathic Parkinson’s disease. British Journal of Neurosurgery, 23(1), 23–29.PubMedCrossRef Coban, A., Hanagasi, H. A., Karamursel, S., & Barlas, O. (2009). Comparison of unilateral pallidotomy and subthalamotomy findings in advanced idiopathic Parkinson’s disease. British Journal of Neurosurgery, 23(1), 23–29.PubMedCrossRef
Zurück zum Zitat Cooper, A. J., & Stanford, I. M. (2000). Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. The Journal of Physiology, 527(Pt 2), 291–304.PubMedCrossRef Cooper, A. J., & Stanford, I. M. (2000). Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. The Journal of Physiology, 527(Pt 2), 291–304.PubMedCrossRef
Zurück zum Zitat Costa, R. M., Lin, S. C., Sotnikova, T. D., Cyr, M., Gainetdinov, R. R., Caron, M. G., et al. (2006). Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron, 52, 359–369.PubMedCrossRef Costa, R. M., Lin, S. C., Sotnikova, T. D., Cyr, M., Gainetdinov, R. R., Caron, M. G., et al. (2006). Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron, 52, 359–369.PubMedCrossRef
Zurück zum Zitat Destexhe, A., Neubig, M., Ulrich, D., & Huguenard, J. (1998). Dendritic low-threshold calcium currents in thalamic relay cells. Journal of Neuroscience, 18(10), 3574–3588.PubMed Destexhe, A., Neubig, M., Ulrich, D., & Huguenard, J. (1998). Dendritic low-threshold calcium currents in thalamic relay cells. Journal of Neuroscience, 18(10), 3574–3588.PubMed
Zurück zum Zitat Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2009). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100, 2807–2818.CrossRef Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2009). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100, 2807–2818.CrossRef
Zurück zum Zitat Dorval, A. D., Kuncel, A. M., Birdno, M. J., Turner, D. A., & Grill, W. M. (2010). Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity. Journal of Neurophysiology, 801. Dorval, A. D., Kuncel, A. M., Birdno, M. J., Turner, D. A., & Grill, W. M. (2010). Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity. Journal of Neurophysiology, 801.
Zurück zum Zitat Eusebio, A., Chen, C. C., Lu, C. S., Lee, S. T., Tsai, C. H., Limousin, P., et al. (2008). Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Experimental Neurology, 209, 125–130.PubMedCrossRef Eusebio, A., Chen, C. C., Lu, C. S., Lee, S. T., Tsai, C. H., Limousin, P., et al. (2008). Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Experimental Neurology, 209, 125–130.PubMedCrossRef
Zurück zum Zitat Feng, X. J., Shea-Brown, E., Greenwald, B., Kosut, R., & Rabitz, H. (2007). Optimal deep brain stimulation of the subthalamic nucleus–a computational study. Journal of Computational Neuroscience, 23(3), 265–282.PubMedCrossRef Feng, X. J., Shea-Brown, E., Greenwald, B., Kosut, R., & Rabitz, H. (2007). Optimal deep brain stimulation of the subthalamic nucleus–a computational study. Journal of Computational Neuroscience, 23(3), 265–282.PubMedCrossRef
Zurück zum Zitat Fogelson, N., Kühn, A. A., Silberstein, P., Limousin, P. D., Hariz, M., Trottenberg, T., et al. (2005). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neuroscience Letters, 382, 5–9.PubMedCrossRef Fogelson, N., Kühn, A. A., Silberstein, P., Limousin, P. D., Hariz, M., Trottenberg, T., et al. (2005). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neuroscience Letters, 382, 5–9.PubMedCrossRef
Zurück zum Zitat Garcia, L., D’Alessandro, G., Fernagut, P. O., Bioulac, B., & Hammond, C. (2005). Impact of high-frequency stimulation parameters on the pattern of discharge of subthalamic neurons. Journal of Neurophysiology, 94, 3662–3669.PubMedCrossRef Garcia, L., D’Alessandro, G., Fernagut, P. O., Bioulac, B., & Hammond, C. (2005). Impact of high-frequency stimulation parameters on the pattern of discharge of subthalamic neurons. Journal of Neurophysiology, 94, 3662–3669.PubMedCrossRef
Zurück zum Zitat Godinho, F., Thobois, S., Magnin, M., Guenot, M., Polo, G., Benatru, I., et al. (2006). Subthalamic nucleus stimulation in Parkinson’s disease: anatomical and electrophysiological localization of active contacts. Journal of Neurology, 253, 1347–1355.PubMedCrossRef Godinho, F., Thobois, S., Magnin, M., Guenot, M., Polo, G., Benatru, I., et al. (2006). Subthalamic nucleus stimulation in Parkinson’s disease: anatomical and electrophysiological localization of active contacts. Journal of Neurology, 253, 1347–1355.PubMedCrossRef
Zurück zum Zitat Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport, 15, 1137–1140.PubMedCrossRef Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport, 15, 1137–1140.PubMedCrossRef
Zurück zum Zitat Gross, R. E. (2008). What happened to posteroventral pallidotomy for Parkinson’s disease and dystonia? Neurotherapeutics, 5(2), 281–293.PubMedCrossRef Gross, R. E. (2008). What happened to posteroventral pallidotomy for Parkinson’s disease and dystonia? Neurotherapeutics, 5(2), 281–293.PubMedCrossRef
Zurück zum Zitat Guo, Y., Rubin, J. E., McIntyre, C. C., Vitek, J. L., & Terman, D. (2008). Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computation model. Journal of Neurophysiology, 99, 1477–1492.PubMedCrossRef Guo, Y., Rubin, J. E., McIntyre, C. C., Vitek, J. L., & Terman, D. (2008). Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computation model. Journal of Neurophysiology, 99, 1477–1492.PubMedCrossRef
Zurück zum Zitat Hahn, P. J., Hashimoto, T., Russo, G. S., Xu, W., Miocinovic, S., Mcintyre, C., et al. (2008). Pallidal burst activity during therapeutic deep brain stimulation. Experimental Neurology, 211, 243–251.PubMedCrossRef Hahn, P. J., Hashimoto, T., Russo, G. S., Xu, W., Miocinovic, S., Mcintyre, C., et al. (2008). Pallidal burst activity during therapeutic deep brain stimulation. Experimental Neurology, 211, 243–251.PubMedCrossRef
Zurück zum Zitat Hahn, P. J., & McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28, 425–441.PubMedCrossRef Hahn, P. J., & McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28, 425–441.PubMedCrossRef
Zurück zum Zitat Hallworth, N., Wilson, C., & Bevan, M. (2003). Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat. Journal of Neuroscience, 23, 7525–7542.PubMed Hallworth, N., Wilson, C., & Bevan, M. (2003). Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat. Journal of Neuroscience, 23, 7525–7542.PubMed
Zurück zum Zitat Hamel, W., Fietzek, U., Morsnowski, A., Schrader, B., Herzog, J., Weinert, D., et al. (2003). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: evaluation of active electrode contacts. Journal of Neurology, Neurosurgery, and Psychiatry, 74, 1036–1046.PubMedCrossRef Hamel, W., Fietzek, U., Morsnowski, A., Schrader, B., Herzog, J., Weinert, D., et al. (2003). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: evaluation of active electrode contacts. Journal of Neurology, Neurosurgery, and Psychiatry, 74, 1036–1046.PubMedCrossRef
Zurück zum Zitat Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23, 1916–1923.PubMed Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23, 1916–1923.PubMed
Zurück zum Zitat Hassini, O. K., Mouroux, M., & Feger, J. (1996). Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience, 72, 105–115.CrossRef Hassini, O. K., Mouroux, M., & Feger, J. (1996). Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience, 72, 105–115.CrossRef
Zurück zum Zitat Jahnsen, H., & Llinas, R. (1984). Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. The Journal of Physiology, 349, 205–226.PubMed Jahnsen, H., & Llinas, R. (1984). Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. The Journal of Physiology, 349, 205–226.PubMed
Zurück zum Zitat Johnsen, E. L., Sunde, N., Mogensen, P. H., & Ostergaard, K. (2010). MRI verified STN stimulation site—gait improvement and clinical outcome. European Journal of Neurology, 17, 746–753.PubMedCrossRef Johnsen, E. L., Sunde, N., Mogensen, P. H., & Ostergaard, K. (2010). MRI verified STN stimulation site—gait improvement and clinical outcome. European Journal of Neurology, 17, 746–753.PubMedCrossRef
Zurück zum Zitat Johnson, M. D., & McIntyre, C. C. (2008). Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. Journal of Neurophysiology, 100, 2549–2563.PubMedCrossRef Johnson, M. D., & McIntyre, C. C. (2008). Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. Journal of Neurophysiology, 100, 2549–2563.PubMedCrossRef
Zurück zum Zitat Kita, H., & Kitai, S. T. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564, 296–305.PubMedCrossRef Kita, H., & Kitai, S. T. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564, 296–305.PubMedCrossRef
Zurück zum Zitat Kita, H., & Kita, T. (2011). Role of striatum in the pause and burst generation in the globus pallidus of 6-OHDA-treated rats. Frontiers in Systems Neuroscience, 5, 1–11.CrossRef Kita, H., & Kita, T. (2011). Role of striatum in the pause and burst generation in the globus pallidus of 6-OHDA-treated rats. Frontiers in Systems Neuroscience, 5, 1–11.CrossRef
Zurück zum Zitat Kleiner-Fisman, G., Lozano, A., Moro, E., Poon, Y. Y., & Lang, A. E. (2010). Long-term effect of unilateral pallidotomy on levodopa-induced dyskinesia. Movment Disorders, 25(10), 1496–1498.CrossRef Kleiner-Fisman, G., Lozano, A., Moro, E., Poon, Y. Y., & Lang, A. E. (2010). Long-term effect of unilateral pallidotomy on levodopa-induced dyskinesia. Movment Disorders, 25(10), 1496–1498.CrossRef
Zurück zum Zitat Krack, P., Pollak, P., Limousin, P., Hoffmann, D., Benazzouz, A., Le Bas, J. F., et al. (1998). Opposite motor effects of pallidal stimulation in Parkinson’s disease. Annals of Neurology, 43, 180–192.PubMedCrossRef Krack, P., Pollak, P., Limousin, P., Hoffmann, D., Benazzouz, A., Le Bas, J. F., et al. (1998). Opposite motor effects of pallidal stimulation in Parkinson’s disease. Annals of Neurology, 43, 180–192.PubMedCrossRef
Zurück zum Zitat Kuncel, A. M., & Grill, W. M. (2004) Selection of stimulus parameters for deep brain stimulation. Clinical Neurophysiology, 115(11), 2431–2441. Kuncel, A. M., & Grill, W. M. (2004) Selection of stimulus parameters for deep brain stimulation. Clinical Neurophysiology, 115(11), 2431–2441.
Zurück zum Zitat Levy, R., Hutchison, W. D., Lozano, A. M., & Dostrovsky, J. O. (2000). High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. Journal of Neuroscience, 20, 7766–7775.PubMed Levy, R., Hutchison, W. D., Lozano, A. M., & Dostrovsky, J. O. (2000). High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. Journal of Neuroscience, 20, 7766–7775.PubMed
Zurück zum Zitat Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125, 1196–1209.PubMedCrossRef Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125, 1196–1209.PubMedCrossRef
Zurück zum Zitat Magill, P. J., Bolam, J. P., & Bevan, M. D. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus globus pallidus network. Neuroscience, 106, 313–330.PubMedCrossRef Magill, P. J., Bolam, J. P., & Bevan, M. D. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus globus pallidus network. Neuroscience, 106, 313–330.PubMedCrossRef
Zurück zum Zitat Magnin, M., Morel, A., & Jeanmonod, D. (2000). Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience, 96, 549–564.PubMedCrossRef Magnin, M., Morel, A., & Jeanmonod, D. (2000). Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience, 96, 549–564.PubMedCrossRef
Zurück zum Zitat Mallet, N., Pogosyan, A., Márton, L. F., Bolam, P. B. J., Peter, B., & Magill, P. J. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. Journal of Neuroscience, 28, 14245–14258.PubMedCrossRef Mallet, N., Pogosyan, A., Márton, L. F., Bolam, P. B. J., Peter, B., & Magill, P. J. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. Journal of Neuroscience, 28, 14245–14258.PubMedCrossRef
Zurück zum Zitat McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.PubMedCrossRef McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.PubMedCrossRef
Zurück zum Zitat McIntyre, C. C., & Hahn, P. J. (2009). Network perspectives on the mechanisms of deep brain stimulation. Neurobiology of Disease, 38(3), 329–337.PubMedCrossRef McIntyre, C. C., & Hahn, P. J. (2009). Network perspectives on the mechanisms of deep brain stimulation. Neurobiology of Disease, 38(3), 329–337.PubMedCrossRef
Zurück zum Zitat Miocinovic, S., Parent, M., Butson, C. R., Hahn, P. J., Russo, G. S., Vitek, J. L., et al. (2006). Computational analysis of subthalamic nucleus and lenticular fasciulus activation during therapeutic deep brain stimulation. Journal of Neurophysiology, 96, 1569–1580.PubMedCrossRef Miocinovic, S., Parent, M., Butson, C. R., Hahn, P. J., Russo, G. S., Vitek, J. L., et al. (2006). Computational analysis of subthalamic nucleus and lenticular fasciulus activation during therapeutic deep brain stimulation. Journal of Neurophysiology, 96, 1569–1580.PubMedCrossRef
Zurück zum Zitat Moro, E., Esselink, R. J., Xie, J., Hommel, M., Benabid, A. L., & Pollak, P. (2002). The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology, 59, 706–713.PubMed Moro, E., Esselink, R. J., Xie, J., Hommel, M., Benabid, A. L., & Pollak, P. (2002). The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology, 59, 706–713.PubMed
Zurück zum Zitat Moro, E., Lozano, A. M., Pollak, P., Agid, Y., Rehncrona, S., Volkmann, J., et al. (2010). Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Movement Disorders, 25, 578–586.PubMedCrossRef Moro, E., Lozano, A. M., Pollak, P., Agid, Y., Rehncrona, S., Volkmann, J., et al. (2010). Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Movement Disorders, 25, 578–586.PubMedCrossRef
Zurück zum Zitat Montgomery, E. B., Jr. (2005). Effect of subthalamic nucleus stimulation patterns on motor performance in Parkinson’s disease. Parkinsonism & Related Disorders, 11, 167–171.CrossRef Montgomery, E. B., Jr. (2005). Effect of subthalamic nucleus stimulation patterns on motor performance in Parkinson’s disease. Parkinsonism & Related Disorders, 11, 167–171.CrossRef
Zurück zum Zitat Nambu, A., & Llinas, R. (1994). Electrophysiology of globus pallidus neurons in vitro. Journal of Neurophysiology, 72, 1127–1139.PubMed Nambu, A., & Llinas, R. (1994). Electrophysiology of globus pallidus neurons in vitro. Journal of Neurophysiology, 72, 1127–1139.PubMed
Zurück zum Zitat Nishio, M., Korematsu, K., Yoshioka, S., Nagai, Y., Maruo, T., Ushio, Y., et al. (2009). Long-term suppression of tremor by deep brain stimulation of the ventral intermediate nucleus of the thalamus combined with pallidotomy in hemiparkinsonian patients. Journal of Clinical Neuroscience, 16(11), 1489–1491.PubMedCrossRef Nishio, M., Korematsu, K., Yoshioka, S., Nagai, Y., Maruo, T., Ushio, Y., et al. (2009). Long-term suppression of tremor by deep brain stimulation of the ventral intermediate nucleus of the thalamus combined with pallidotomy in hemiparkinsonian patients. Journal of Clinical Neuroscience, 16(11), 1489–1491.PubMedCrossRef
Zurück zum Zitat Obwegeser, A. A., Uitti, R. J., Lucas, J. A., Witte, R. J., Turk, M. F., Galiano, K., et al. (2008). Correlation of outcome to neurosurgical lesions: confirmation of a new method using data after microelectrode-guided pallidotomy. British Journal of Neurosurgery, 22(5), 654–662.PubMedCrossRef Obwegeser, A. A., Uitti, R. J., Lucas, J. A., Witte, R. J., Turk, M. F., Galiano, K., et al. (2008). Correlation of outcome to neurosurgical lesions: confirmation of a new method using data after microelectrode-guided pallidotomy. British Journal of Neurosurgery, 22(5), 654–662.PubMedCrossRef
Zurück zum Zitat Okun, M. S., & Vitek, J. L. (2004). Lesion therapy for Parkinson’s disease and other movement disorders: update and controversies. Movement Disorders, 19(4), 375–389.PubMedCrossRef Okun, M. S., & Vitek, J. L. (2004). Lesion therapy for Parkinson’s disease and other movement disorders: update and controversies. Movement Disorders, 19(4), 375–389.PubMedCrossRef
Zurück zum Zitat Parent, A., Sato, F., Wu, Y., Gauthier, J., Lévesque, M., & Parent, M. (2000). Organization of the basal ganglia: the importance of axonal collateralization. Trends in Neuroscience, 10(Suppl), S20–S27.CrossRef Parent, A., Sato, F., Wu, Y., Gauthier, J., Lévesque, M., & Parent, M. (2000). Organization of the basal ganglia: the importance of axonal collateralization. Trends in Neuroscience, 10(Suppl), S20–S27.CrossRef
Zurück zum Zitat Parent, M., Lévesque, M., & Parent, A. (2001). Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. The Journal of Comparative Neurology, 439, 162–175.PubMedCrossRef Parent, M., Lévesque, M., & Parent, A. (2001). Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. The Journal of Comparative Neurology, 439, 162–175.PubMedCrossRef
Zurück zum Zitat Parent, M., & Parent, A. (2004). The pallidofugal motor fiber system in primates. Parkinsonism & Related Disorders, 10, 203–211.CrossRef Parent, M., & Parent, A. (2004). The pallidofugal motor fiber system in primates. Parkinsonism & Related Disorders, 10, 203–211.CrossRef
Zurück zum Zitat Patel, N. K., Heywood, P., O’Sullivan, K., McCarter, R., Love, S., & Gill, S. S. (2003). Unilateral subthalamotomy in the treatment of Parkinson’s disease. Brain, 126(Pt 5), 1136–1145.PubMedCrossRef Patel, N. K., Heywood, P., O’Sullivan, K., McCarter, R., Love, S., & Gill, S. S. (2003). Unilateral subthalamotomy in the treatment of Parkinson’s disease. Brain, 126(Pt 5), 1136–1145.PubMedCrossRef
Zurück zum Zitat Pirini, M., Rocchi, L., Sensi, M., & Chiari, L. (2009). A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson’s disease. Journal of Computational Neuroscience, 26(1), 91–107.PubMedCrossRef Pirini, M., Rocchi, L., Sensi, M., & Chiari, L. (2009). A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson’s disease. Journal of Computational Neuroscience, 26(1), 91–107.PubMedCrossRef
Zurück zum Zitat Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.PubMedCrossRef Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.PubMedCrossRef
Zurück zum Zitat Pollo, C., Vingerhoets, F., Pralong, E., Ghika, J., Maeder, P., Meuli, R., et al. (2007). Localization of electrodes in the subthalamic nucleus on magnetic resonance imaging. Journal of Neurosurgery, 106, 36–44.PubMedCrossRef Pollo, C., Vingerhoets, F., Pralong, E., Ghika, J., Maeder, P., Meuli, R., et al. (2007). Localization of electrodes in the subthalamic nucleus on magnetic resonance imaging. Journal of Neurosurgery, 106, 36–44.PubMedCrossRef
Zurück zum Zitat Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.PubMedCrossRef Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.PubMedCrossRef
Zurück zum Zitat Sato, F., Lavallée, P., Lévesque, M., & Parent, A. (2000). Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. The Journal of Comparative Neurology, 417, 17–31.PubMedCrossRef Sato, F., Lavallée, P., Lévesque, M., & Parent, A. (2000). Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. The Journal of Comparative Neurology, 417, 17–31.PubMedCrossRef
Zurück zum Zitat Smith, Y., Bevan, M. D., Shink, E., & Bolam, J. P. (1998). Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience, 86, 353–387.PubMedCrossRef Smith, Y., Bevan, M. D., Shink, E., & Bolam, J. P. (1998). Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience, 86, 353–387.PubMedCrossRef
Zurück zum Zitat Stanford, I. M. (2003) Independent Neuronal Oscillators of the Rat Globus Pallidus. Journal of Neurophysiology, 89, 1713–1717. Stanford, I. M. (2003) Independent Neuronal Oscillators of the Rat Globus Pallidus. Journal of Neurophysiology, 89, 1713–1717.
Zurück zum Zitat St George, R. J., Nutt, J. G., Burchiel, K. J., & Horak, F. B. (2010). A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology, 75(14), 1292–1299.PubMedCrossRef St George, R. J., Nutt, J. G., Burchiel, K. J., & Horak, F. B. (2010). A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology, 75(14), 1292–1299.PubMedCrossRef
Zurück zum Zitat Steigerwald, F., Pötter, M., Herzog, J., Pinsker, M., Kopper, F., Mehdorn, H., et al. (2008). Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. Journal of Neurophysiology, 100, 2515–2524.PubMedCrossRef Steigerwald, F., Pötter, M., Herzog, J., Pinsker, M., Kopper, F., Mehdorn, H., et al. (2008). Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. Journal of Neurophysiology, 100, 2515–2524.PubMedCrossRef
Zurück zum Zitat Su, P. C., Tseng, H. M., Liu, H. M., Yen, R. F., & Liou, H. H. (2002). Subthalamotomy for advanced Parkinson disease. Journal of Neurosurgery, 97(3), 598–606.PubMedCrossRef Su, P. C., Tseng, H. M., Liu, H. M., Yen, R. F., & Liou, H. H. (2002). Subthalamotomy for advanced Parkinson disease. Journal of Neurosurgery, 97(3), 598–606.PubMedCrossRef
Zurück zum Zitat Tarsy, D. (2009). Does subthalamotomy have a place in the treatment of Parkinson’s disease? Journal of Neurology, Neurosurgery and Psychiatry, 80(9), 939–940.CrossRef Tarsy, D. (2009). Does subthalamotomy have a place in the treatment of Parkinson’s disease? Journal of Neurology, Neurosurgery and Psychiatry, 80(9), 939–940.CrossRef
Zurück zum Zitat Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.PubMed Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.PubMed
Zurück zum Zitat Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., et al. (2004). Ten-hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement Disorders, 19, 1328–1333.PubMedCrossRef Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., et al. (2004). Ten-hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement Disorders, 19, 1328–1333.PubMedCrossRef
Zurück zum Zitat Voges, J., Volkmann, J., Allert, N., Lehrke, R., Koulousakis, A., Freund, H. J., et al. (2002). Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. Journal of Neurosurgery, 96, 269–279.PubMedCrossRef Voges, J., Volkmann, J., Allert, N., Lehrke, R., Koulousakis, A., Freund, H. J., et al. (2002). Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. Journal of Neurosurgery, 96, 269–279.PubMedCrossRef
Zurück zum Zitat Weaver, F. M., Follett, K., Stern, M., Hur, K., Harris, C., Marks, W. J., Jr., et al. (2009). Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease: a randomized controlled trial. JAMA, 301, 63–73.PubMedCrossRef Weaver, F. M., Follett, K., Stern, M., Hur, K., Harris, C., Marks, W. J., Jr., et al. (2009). Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease: a randomized controlled trial. JAMA, 301, 63–73.PubMedCrossRef
Zurück zum Zitat Wilson, C. J., Weyrick, A., Terman, D., Hallworth, N. E., & Bevan, M. D. (2004). A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons. Journal of Neurophysiology, 91, 1963–1980.PubMedCrossRef Wilson, C. J., Weyrick, A., Terman, D., Hallworth, N. E., & Bevan, M. D. (2004). A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons. Journal of Neurophysiology, 91, 1963–1980.PubMedCrossRef
Zurück zum Zitat Wilson, C. L., Cash, D., Galley, K., Chapman, H., Lacey, M. G., & Stanford, I. M. (2006). Subthalamic nucleus neurones in slices from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mice show irregular, dopamine-reversible firing pattern changes, but without synchronous activity. Neuroscience, 143, 565–572.PubMedCrossRef Wilson, C. L., Cash, D., Galley, K., Chapman, H., Lacey, M. G., & Stanford, I. M. (2006). Subthalamic nucleus neurones in slices from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mice show irregular, dopamine-reversible firing pattern changes, but without synchronous activity. Neuroscience, 143, 565–572.PubMedCrossRef
Zurück zum Zitat Wichmann, T., Bergman, H., & DeLong, M. R. (1994). The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 521–530.PubMed Wichmann, T., Bergman, H., & DeLong, M. R. (1994). The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 521–530.PubMed
Zurück zum Zitat Wichmann, T., & Soares, J. (2006). Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. Journal of Neurophysiology, 95, 2120–2133.PubMedCrossRef Wichmann, T., & Soares, J. (2006). Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. Journal of Neurophysiology, 95, 2120–2133.PubMedCrossRef
Zurück zum Zitat Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. Journal of Neuroscience, 28, 11916–11924.PubMedCrossRef Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. Journal of Neuroscience, 28, 11916–11924.PubMedCrossRef
Zurück zum Zitat Yelnik, J., Damier, P., Demeret, S., Gervais, D., Bardinet, E., Bejjani, B. P., et al. (2003). Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlas-magnetic resonance imaging coregistration method. Journal of Neurosurgery, 99, 89–99.PubMedCrossRef Yelnik, J., Damier, P., Demeret, S., Gervais, D., Bardinet, E., Bejjani, B. P., et al. (2003). Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlas-magnetic resonance imaging coregistration method. Journal of Neurosurgery, 99, 89–99.PubMedCrossRef
Zurück zum Zitat Yokoyama, T., Ando, N., Sugiyama, K., Akamine, S., & Namba, H. (2006). Relationship of stimulation site location within the subthalamic nucleus region to clinical effects on parkinsonian symptoms. Stereotactic and Functional Neurosurgery, 84(4), 70–175.CrossRef Yokoyama, T., Ando, N., Sugiyama, K., Akamine, S., & Namba, H. (2006). Relationship of stimulation site location within the subthalamic nucleus region to clinical effects on parkinsonian symptoms. Stereotactic and Functional Neurosurgery, 84(4), 70–175.CrossRef
Zurück zum Zitat Zonenshayn, M., Sterio, D., Kelly, P. J., Rezai, A. R., & Beric, A. (2004). Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson’s disease. Surgical Neurology, 62, 216–226.PubMedCrossRef Zonenshayn, M., Sterio, D., Kelly, P. J., Rezai, A. R., & Beric, A. (2004). Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson’s disease. Surgical Neurology, 62, 216–226.PubMedCrossRef
Metadaten
Titel
Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study
verfasst von
Rosa Q. So
Alexander R. Kent
Warren M. Grill
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2012
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0366-4

Weitere Artikel der Ausgabe 3/2012

Journal of Computational Neuroscience 3/2012 Zur Ausgabe

BriefCommunication

The faithful copy neuron

Premium Partner