Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2014

01.02.2014

A single functional model of drivers and modulators in cortex

verfasst von: M. W. Spratling

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A distinction is commonly made between synaptic connections capable of evoking a response (“drivers”) and those that can alter ongoing activity but not initiate it (“modulators”). Here it is proposed that, in cortex, both drivers and modulators are an emergent property of the perceptual inference performed by cortical circuits. Hence, it is proposed that there is a single underlying computational explanation for both forms of synaptic connection. This idea is illustrated using a predictive coding model of cortical perceptual inference. In this model all synaptic inputs are treated identically. However, functionally, certain synaptic inputs drive neural responses while others have a modulatory influence. This model is shown to account for driving and modulatory influences in bottom-up, lateral, and top-down pathways, and is used to simulate a wide range of neurophysiological phenomena including surround suppression, contour integration, gain modulation, spatio-temporal prediction, and attention. The proposed computational model thus provides a single functional explanation for drivers and modulators and a unified account of a diverse range of neurophysiological data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that if cortical feedback connections were more diffuse than feedforward connections (Salin and Bullier 1995; Zeki and Shipp 1988), then the current model would predict that top-down influences would (on average) be more modulatory than bottom-up influences, which would allow the current model to be partially reconciled with some previous theories that propose an asymmetry between feedforward driving influences and feedback modulatory influences (Crick and Koch 1998; Kveraga et al. 2007; Lamme et al. 1998). The model can also be partially reconciled with some previous models that proposes that cortical feedback connections are suppressive (Barlow 1994; Mumford 1992; Rao and Ballard 1999), as PC/BC proposes that functionally equivalent suppressive operations occur within each cortical region rather than between cortical regions (Spratling 2008b).
 
Literatur
Zurück zum Zitat Abbott, L.F., & Chance, F.S. (2005). Drivers and modulators from push-pull and balanced synaptic input. Progress in Brain Research, 149, 147–155.PubMed Abbott, L.F., & Chance, F.S. (2005). Drivers and modulators from push-pull and balanced synaptic input. Progress in Brain Research, 149, 147–155.PubMed
Zurück zum Zitat Achler, T., & Amir, E. (2008). Input feedback networks: classification and inference based on network structure. In P. Wang, B. Goertzel, S. Franklin (Eds.), Artificial general intelligence (pp. 15–26). Amsterdam: IOS Press. Achler, T., & Amir, E. (2008). Input feedback networks: classification and inference based on network structure. In P. Wang, B. Goertzel, S. Franklin (Eds.), Artificial general intelligence (pp. 15–26). Amsterdam: IOS Press.
Zurück zum Zitat Adelson, E., & Bergen, J. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2, 284–299. Adelson, E., & Bergen, J. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2, 284–299.
Zurück zum Zitat Andersen, R.A., Essick, G.K., Siegel, R.M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230(4724), 456–458.PubMed Andersen, R.A., Essick, G.K., Siegel, R.M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230(4724), 456–458.PubMed
Zurück zum Zitat Andersen, R.A., & Mountcastle, V.B. (1983). The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 3(3), 532–548.PubMed Andersen, R.A., & Mountcastle, V.B. (1983). The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 3(3), 532–548.PubMed
Zurück zum Zitat Angelucci, A., & Bressloff, P.C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Progress in Brain Research, 154, 93–120.PubMed Angelucci, A., & Bressloff, P.C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Progress in Brain Research, 154, 93–120.PubMed
Zurück zum Zitat Angelucci, A., & Bullier, J. (2003). Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons?Journal of Physiology, Paris, 97(2–3), 141–154.PubMed Angelucci, A., & Bullier, J. (2003). Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons?Journal of Physiology, Paris, 97(2–3), 141–154.PubMed
Zurück zum Zitat Baker, P.M., & Bair, W. (2012). Inter-neuronal correlation distinguishes mechanisms of direction selectivity in cortical circuit models. Journal of Neuroscience, 32(26), 8800–8816.PubMedCentralPubMed Baker, P.M., & Bair, W. (2012). Inter-neuronal correlation distinguishes mechanisms of direction selectivity in cortical circuit models. Journal of Neuroscience, 32(26), 8800–8816.PubMedCentralPubMed
Zurück zum Zitat Balkenius, C. (1995). Multi-modal sensing for robot control. In L.F. Niklasson, & M.B. Bodén (Eds.), Current trends in connectionism (pp. 203–16). Hillsdale: Lawrence Erlbaum. Balkenius, C. (1995). Multi-modal sensing for robot control. In L.F. Niklasson, & M.B. Bodén (Eds.), Current trends in connectionism (pp. 203–16). Hillsdale: Lawrence Erlbaum.
Zurück zum Zitat Barlow, H.B. (1994). What is the computational goal of the neocortex? In C. Koch & J.L. Davis (Eds.), Large-scale neuronal theories of the brain (Chap. 1, pp. 1–22). Cambridge: MIT Press. Barlow, H.B. (1994). What is the computational goal of the neocortex? In C. Koch & J.L. Davis (Eds.), Large-scale neuronal theories of the brain (Chap. 1, pp. 1–22). Cambridge: MIT Press.
Zurück zum Zitat Barlow, H.B., & Levick, W.R. (1965). The mechanism of directionally selective units in rabbit’s retina. Journal of Physiology (London), 178(3), 477–504. Barlow, H.B., & Levick, W.R. (1965). The mechanism of directionally selective units in rabbit’s retina. Journal of Physiology (London), 178(3), 477–504.
Zurück zum Zitat Ben-Shahar, O., & Zucker, S.W. (2004). Geometrical computations explain projection patterns of long range horizontal connections in visual cortex. Neural Computation, 16(3), 445–476.PubMed Ben-Shahar, O., & Zucker, S.W. (2004). Geometrical computations explain projection patterns of long range horizontal connections in visual cortex. Neural Computation, 16(3), 445–476.PubMed
Zurück zum Zitat Braun, J. (1999). On the detection of salient contours. Spatial Vision, 12(2), 211–225.PubMed Braun, J. (1999). On the detection of salient contours. Spatial Vision, 12(2), 211–225.PubMed
Zurück zum Zitat Bremmer, F., Distler, C., Hoffmann, K.P. (1997). Eye position effects in monkey cortex. II. pursuit- and fixation-related activity in posterior parietal areas LIP and 7a. Journal of Neurophysiology, 77(2), 962–977.PubMed Bremmer, F., Distler, C., Hoffmann, K.P. (1997). Eye position effects in monkey cortex. II. pursuit- and fixation-related activity in posterior parietal areas LIP and 7a. Journal of Neurophysiology, 77(2), 962–977.PubMed
Zurück zum Zitat Brotchie, P.R., Andersen, R.A., Snyder, L.H., Goodman, S.J. (1995). Head position signals used by parietal neurons to encode locations of visual stimuli. Nature, 375(6528), 232–235.PubMed Brotchie, P.R., Andersen, R.A., Snyder, L.H., Goodman, S.J. (1995). Head position signals used by parietal neurons to encode locations of visual stimuli. Nature, 375(6528), 232–235.PubMed
Zurück zum Zitat Brozović, M., Abbott, L.F., Andersen, R.A. (2008). Mechanism of gain modulation at single neuron and network levels. Journal of Computational Neuroscience, 25, 158–168.PubMed Brozović, M., Abbott, L.F., Andersen, R.A. (2008). Mechanism of gain modulation at single neuron and network levels. Journal of Computational Neuroscience, 25, 158–168.PubMed
Zurück zum Zitat Buffalo, E.A., Fries, P., Landman, R., Liang, H., Desimone, R. (2010). A backward progression of attentional effects in the ventral stream. Proceedings of the National Academy of Sciences, 107(1), 361–365. Buffalo, E.A., Fries, P., Landman, R., Liang, H., Desimone, R. (2010). A backward progression of attentional effects in the ventral stream. Proceedings of the National Academy of Sciences, 107(1), 361–365.
Zurück zum Zitat Chang, S.W., & Snyder, L.H. (2010). Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 107, 7951–7956.PubMedCentralPubMed Chang, S.W., & Snyder, L.H. (2010). Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 107, 7951–7956.PubMedCentralPubMed
Zurück zum Zitat Chelazzi, L., Miller, E.K., Duncan, J., Desimone, R. (2001). Responses of neurons in macaque area V4 during memory-guided visual search. Cerebral Cortex, 11(8), 761–772.PubMed Chelazzi, L., Miller, E.K., Duncan, J., Desimone, R. (2001). Responses of neurons in macaque area V4 during memory-guided visual search. Cerebral Cortex, 11(8), 761–772.PubMed
Zurück zum Zitat Chen, C.C., Kasamatsu, T., Polat, U., Norcia, A.M. (2001). Contrast response characteristics of long-range lateral interactions in cat striate cortex. Neuroreport, 12(4), 655–661.PubMed Chen, C.C., Kasamatsu, T., Polat, U., Norcia, A.M. (2001). Contrast response characteristics of long-range lateral interactions in cat striate cortex. Neuroreport, 12(4), 655–661.PubMed
Zurück zum Zitat Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.
Zurück zum Zitat Covic, E.N., & Sherman, S.M. (2011). Synaptic properties of connections between the primary and secondary auditory cortices in mice. Cerebral Cortex, 21(11), 2425–2441.PubMed Covic, E.N., & Sherman, S.M. (2011). Synaptic properties of connections between the primary and secondary auditory cortices in mice. Cerebral Cortex, 21(11), 2425–2441.PubMed
Zurück zum Zitat Craft, E., Schütze, H., Niebur, E., von der Heydt, R. (2007). A neural model of figure-ground organization. Journal of Neurophysiology, 97, 4310–4326.PubMed Craft, E., Schütze, H., Niebur, E., von der Heydt, R. (2007). A neural model of figure-ground organization. Journal of Neurophysiology, 97, 4310–4326.PubMed
Zurück zum Zitat Crick, F., & Koch, C. (1998). Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature, 391, 245–250.PubMed Crick, F., & Koch, C. (1998). Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature, 391, 245–250.PubMed
Zurück zum Zitat Dakin, S.C., & Baruch, N.J. (2009). Context influences contour integration. Journal of Vision, 9(2), 1–13.PubMedCentral Dakin, S.C., & Baruch, N.J. (2009). Context influences contour integration. Journal of Vision, 9(2), 1–13.PubMedCentral
Zurück zum Zitat Dakin, S.C., & Hess, R.F. (1998). Spatial-frequency tuning of visual contour integration. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 15(6), 1486–1499.PubMed Dakin, S.C., & Hess, R.F. (1998). Spatial-frequency tuning of visual contour integration. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 15(6), 1486–1499.PubMed
Zurück zum Zitat De Meyer, K., & Spratling, M.W. (2009). A model of non-linear interactions between cortical top-down and horizontal connections explains the attentional gating of collinear facilitation. Vision Research, 49(5), 553–568.PubMed De Meyer, K., & Spratling, M.W. (2009). A model of non-linear interactions between cortical top-down and horizontal connections explains the attentional gating of collinear facilitation. Vision Research, 49(5), 553–568.PubMed
Zurück zum Zitat De Meyer, K., & Spratling, M.W. (2011). Multiplicative gain modulation arises through unsupervised learning in a predictive coding model of cortical function. Neural Computation, 23(6), 1536–1567.PubMed De Meyer, K., & Spratling, M.W. (2011). Multiplicative gain modulation arises through unsupervised learning in a predictive coding model of cortical function. Neural Computation, 23(6), 1536–1567.PubMed
Zurück zum Zitat De Meyer, K., & Spratling, M.W. (2013). A model of partial reference frame transforms through pooling of gain-modulated responses. Cerebral Cortex, 23(5), 1230–1239.PubMed De Meyer, K., & Spratling, M.W. (2013). A model of partial reference frame transforms through pooling of gain-modulated responses. Cerebral Cortex, 23(5), 1230–1239.PubMed
Zurück zum Zitat Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMed Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMed
Zurück zum Zitat Everling, S., Tinsley, C.J., Gaffan, D., Duncan, J. (2002). Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nature Neuroscience, 5(7), 671–676.PubMed Everling, S., Tinsley, C.J., Gaffan, D., Duncan, J. (2002). Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nature Neuroscience, 5(7), 671–676.PubMed
Zurück zum Zitat Field, D., Hayes, A., Hess, R. (1993). Contour integration in the human visual system: evidence for a local ‘association’ field. Vision Research, 33, 173–193.PubMed Field, D., Hayes, A., Hess, R. (1993). Contour integration in the human visual system: evidence for a local ‘association’ field. Vision Research, 33, 173–193.PubMed
Zurück zum Zitat Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Current Opinion in Neurobiology, 10, 438–443.PubMed Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Current Opinion in Neurobiology, 10, 438–443.PubMed
Zurück zum Zitat Friston, K.J. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 815–836.PubMed Friston, K.J. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 815–836.PubMed
Zurück zum Zitat Friston, K.J. (2009). The free-energy principle: a rough guide to the brain?. Trends in Cognitive Sciences, 13(7), 293–301.PubMed Friston, K.J. (2009). The free-energy principle: a rough guide to the brain?. Trends in Cognitive Sciences, 13(7), 293–301.PubMed
Zurück zum Zitat Friston, K.J., & Büchel, C. (2000). Attentional modulations of effective connectivity from V2 to V5/MT in humans. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7591–7596.PubMedCentralPubMed Friston, K.J., & Büchel, C. (2000). Attentional modulations of effective connectivity from V2 to V5/MT in humans. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7591–7596.PubMedCentralPubMed
Zurück zum Zitat Fukushima, K. (1987). Neural network model for selective attention in visual pattern recognition and associative recall. Applied Optics, 26(23), 4985–4992.PubMed Fukushima, K. (1987). Neural network model for selective attention in visual pattern recognition and associative recall. Applied Optics, 26(23), 4985–4992.PubMed
Zurück zum Zitat Galletti, C., Battaglini, P.P., Fattori, P. (1995). Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. European Journal Neuroscience, 7(12), 2486–2501. Galletti, C., Battaglini, P.P., Fattori, P. (1995). Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. European Journal Neuroscience, 7(12), 2486–2501.
Zurück zum Zitat Geisler, W.S., Perry, J.S., Super, B.J., Gallogly, D.P. (2001). Edge co-occurrence in natural images predicts contour grouping performance. Vision Research, 41(6), 711–24.PubMed Geisler, W.S., Perry, J.S., Super, B.J., Gallogly, D.P. (2001). Edge co-occurrence in natural images predicts contour grouping performance. Vision Research, 41(6), 711–24.PubMed
Zurück zum Zitat Grigorescu, C., Petkov, N., Westenberg, M.A. (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Proceedings, 12(7), 729–739. Grigorescu, C., Petkov, N., Westenberg, M.A. (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Proceedings, 12(7), 729–739.
Zurück zum Zitat Guo, K., Robertson, R.G., Pulgarin, M., Nevado, A., Panzeri, S., Thiele, A., Young, M.P. (2007). Spatio-temporal prediction and inference by V1 neurons. European Journal Neuroscience, 26(4), 1045–1054. Guo, K., Robertson, R.G., Pulgarin, M., Nevado, A., Panzeri, S., Thiele, A., Young, M.P. (2007). Spatio-temporal prediction and inference by V1 neurons. European Journal Neuroscience, 26(4), 1045–1054.
Zurück zum Zitat Hansen, T., & Neumann, H. (2008). A recurrent model of contour integration in primary visual cortex. Journal of Vision, 8(8). Hansen, T., & Neumann, H. (2008). A recurrent model of contour integration in primary visual cortex. Journal of Vision, 8(8).
Zurück zum Zitat Hess, R., & Field, D. (1999). Integration of contours: new insight. Trends in Cognitive Sciences, 3, 480–486.PubMed Hess, R., & Field, D. (1999). Integration of contours: new insight. Trends in Cognitive Sciences, 3, 480–486.PubMed
Zurück zum Zitat Hess, R., Hayes, A., Field, D.J. (2003). Contour integration and cortical processing. Journal of Physiology - Paris, 97, 105–119. Hess, R., Hayes, A., Field, D.J. (2003). Contour integration and cortical processing. Journal of Physiology - Paris, 97, 105–119.
Zurück zum Zitat Huang, W., Jiao, L., Jia, J., Yu, H. (2009). A neural contextual model for detecting peceptually salient contours. Pattern Recognition Letters, 30, 985–993. Huang, W., Jiao, L., Jia, J., Yu, H. (2009). A neural contextual model for detecting peceptually salient contours. Pattern Recognition Letters, 30, 985–993.
Zurück zum Zitat Hunt, J., Bosking, W., Goodhill, G. (2011). Statistical structure of lateral connections in the primary visual cortex. Neural Systems and Circuits, 1(1), 3.PubMed Hunt, J., Bosking, W., Goodhill, G. (2011). Statistical structure of lateral connections in the primary visual cortex. Neural Systems and Circuits, 1(1), 3.PubMed
Zurück zum Zitat Hupé, J.M., James, A.C., Payne, B.R., Lomber, S.G., Girard, P., Bullier, J. (1998). Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394(6695), 784–787.PubMed Hupé, J.M., James, A.C., Payne, B.R., Lomber, S.G., Girard, P., Bullier, J. (1998). Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394(6695), 784–787.PubMed
Zurück zum Zitat Jack, A.I., Shulman, G.L., Snyder, A.Z., McAvoy, M., Corbetta, M. (2006). Separate modulations of human v1 associated with spatial attention and task structure. Neuron, 51(1), 135–147.PubMed Jack, A.I., Shulman, G.L., Snyder, A.Z., McAvoy, M., Corbetta, M. (2006). Separate modulations of human v1 associated with spatial attention and task structure. Neuron, 51(1), 135–147.PubMed
Zurück zum Zitat Jones, H.E., Grieve, K.L., Wang, W., Sillito, A.M. (2001). Surround suppression in primate V1. Journal of Neurophysiology, 86, 2011–2028.PubMed Jones, H.E., Grieve, K.L., Wang, W., Sillito, A.M. (2001). Surround suppression in primate V1. Journal of Neurophysiology, 86, 2011–2028.PubMed
Zurück zum Zitat Kanwisher, N., & Wojciulik, E. (2000). Visual attention: insights from brain imaging. Nature Reviews Neuroscience, 1(2), 91–100.PubMed Kanwisher, N., & Wojciulik, E. (2000). Visual attention: insights from brain imaging. Nature Reviews Neuroscience, 1(2), 91–100.PubMed
Zurück zum Zitat Kapadia, M.K., Ito, M., Gilbert, C.D., Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron, 15(4), 843–856.PubMed Kapadia, M.K., Ito, M., Gilbert, C.D., Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron, 15(4), 843–856.PubMed
Zurück zum Zitat Kapadia, M.K., Westheimer, G., Gilbert, C.D. (2000). Spatial distribution of contextual interactions in primary visual cortex and in visual perception. Journal of Neurophysiology, 84, 2048–2062.PubMed Kapadia, M.K., Westheimer, G., Gilbert, C.D. (2000). Spatial distribution of contextual interactions in primary visual cortex and in visual perception. Journal of Neurophysiology, 84, 2048–2062.PubMed
Zurück zum Zitat Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R., Ungerleider, L.G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4), 751–761.PubMed Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R., Ungerleider, L.G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4), 751–761.PubMed
Zurück zum Zitat Kastner, S., & Ungerleider, L.G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341.PubMed Kastner, S., & Ungerleider, L.G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341.PubMed
Zurück zum Zitat Kay, J., & Phillips, W.A. (1997). Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Computation, 9(4), 895–910. Kay, J., & Phillips, W.A. (1997). Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Computation, 9(4), 895–910.
Zurück zum Zitat Kay, J.W., & Phillips, W.A. (2011). Coherent infomax as a computational goal for neural systems. Bulletin of Mathematical Biology, 73, 344–372.PubMed Kay, J.W., & Phillips, W.A. (2011). Coherent infomax as a computational goal for neural systems. Bulletin of Mathematical Biology, 73, 344–372.PubMed
Zurück zum Zitat Keith, G.P., & Crawford, J.D. (2008). Saccade-related remapping of target representations between topographic maps: a neural network study. Journal of Computational Neuroscience, 24(2), 157–178.PubMed Keith, G.P., & Crawford, J.D. (2008). Saccade-related remapping of target representations between topographic maps: a neural network study. Journal of Computational Neuroscience, 24(2), 157–178.PubMed
Zurück zum Zitat Kersten, D., Mamassian, P., Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55(1), 271–304.PubMed Kersten, D., Mamassian, P., Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55(1), 271–304.PubMed
Zurück zum Zitat Koch, C., & Segev, I. (2000). The role of single neurons in information processing. Nature Neuroscience, 3(supplement), 1171–1177.PubMed Koch, C., & Segev, I. (2000). The role of single neurons in information processing. Nature Neuroscience, 3(supplement), 1171–1177.PubMed
Zurück zum Zitat Koerner, E., Tsujino, H., Masutani, T. (1997). A cortical-type modular neural network for hypothetical reasoning. Neural Networks , 10(5), 791–814.PubMed Koerner, E., Tsujino, H., Masutani, T. (1997). A cortical-type modular neural network for hypothetical reasoning. Neural Networks , 10(5), 791–814.PubMed
Zurück zum Zitat Kosslyn, S.M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J.P., Thompson, W.L., Ganis, G., Sukel, K.E., Alpert, N.M. (1999). The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science, 284(5411), 167–170.PubMed Kosslyn, S.M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J.P., Thompson, W.L., Ganis, G., Sukel, K.E., Alpert, N.M. (1999). The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science, 284(5411), 167–170.PubMed
Zurück zum Zitat Kveraga, K., Ghuman, A.S., Bar, M. (2007). Top-down predictions in the cognitive brain. Brain and Cognition, 65, 145–168.PubMedCentralPubMed Kveraga, K., Ghuman, A.S., Bar, M. (2007). Top-down predictions in the cognitive brain. Brain and Cognition, 65, 145–168.PubMedCentralPubMed
Zurück zum Zitat Lamme, V.A.F., Supèr, H., Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8(4), 529–135.PubMed Lamme, V.A.F., Supèr, H., Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8(4), 529–135.PubMed
Zurück zum Zitat Ledgeway, T., Hess, R.F., Geisler, W.S. (2005). Grouping local orientation and direction signals to extract spatial contours: empirical tests of ‘association field’ models of contour integration. Vision Research, 45, 2511–2522.PubMed Ledgeway, T., Hess, R.F., Geisler, W.S. (2005). Grouping local orientation and direction signals to extract spatial contours: empirical tests of ‘association field’ models of contour integration. Vision Research, 45, 2511–2522.PubMed
Zurück zum Zitat Lee, J., & Maunsell, J.H.R. (2009). A normalization model of attentional modulation of single unit responses. PLoS ONE, 4(2), e4651.PubMedCentralPubMed Lee, J., & Maunsell, J.H.R. (2009). A normalization model of attentional modulation of single unit responses. PLoS ONE, 4(2), e4651.PubMedCentralPubMed
Zurück zum Zitat Li, W., & Gilbert, C.D. (2002). Global contour saliency and local colinear interactions. Journal of Neurophysiology, 88, 2846–2856.PubMed Li, W., & Gilbert, C.D. (2002). Global contour saliency and local colinear interactions. Journal of Neurophysiology, 88, 2846–2856.PubMed
Zurück zum Zitat Li, Z. (1998). A neural model of contour integration in the primary visual cortex. Neural Computation, 10, 903–940.PubMed Li, Z. (1998). A neural model of contour integration in the primary visual cortex. Neural Computation, 10, 903–940.PubMed
Zurück zum Zitat Lochmann, T., & Deneve, S. (2011). Neural processing as causal inference. Current Opinion in Neurobiology, 21(5), 774–781.PubMed Lochmann, T., & Deneve, S. (2011). Neural processing as causal inference. Current Opinion in Neurobiology, 21(5), 774–781.PubMed
Zurück zum Zitat Loffler, G. (2008). Perception of contours and shapes: low and intermediate stage mechanisms. Vision Research, 48(20), 2106–2127.PubMed Loffler, G. (2008). Perception of contours and shapes: low and intermediate stage mechanisms. Vision Research, 48(20), 2106–2127.PubMed
Zurück zum Zitat Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.PubMed Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.PubMed
Zurück zum Zitat Markov, N.T., & Kennedy, H. (2013). The importance of being hierarchical. Current Opinion in Neurobiology, 23(2), 187–194.PubMed Markov, N.T., & Kennedy, H. (2013). The importance of being hierarchical. Current Opinion in Neurobiology, 23(2), 187–194.PubMed
Zurück zum Zitat Martinez-Trujillo, J.C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14, 744–751.PubMed Martinez-Trujillo, J.C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14, 744–751.PubMed
Zurück zum Zitat McAdams, C.J., & Maunsell, J.H.R. (1999a). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19(1), 431–441.PubMed McAdams, C.J., & Maunsell, J.H.R. (1999a). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19(1), 431–441.PubMed
Zurück zum Zitat McAdams, C.J., & Maunsell, J.H.R. (1999b). Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron, 23, 765–773.PubMed McAdams, C.J., & Maunsell, J.H.R. (1999b). Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron, 23, 765–773.PubMed
Zurück zum Zitat McAdams, C.J., & Maunsell, J.H.R. (2000). Attention to both space and feature modulates neuronal responses in macaque area V4. Journal of Neurophysiology, 83(3), 1751–1755.PubMed McAdams, C.J., & Maunsell, J.H.R. (2000). Attention to both space and feature modulates neuronal responses in macaque area V4. Journal of Neurophysiology, 83(3), 1751–1755.PubMed
Zurück zum Zitat Mehta, A.D., Ulbert, I., Schroeder, C.E. (2000a). Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cerebral Cortex, 10, 343–358.PubMed Mehta, A.D., Ulbert, I., Schroeder, C.E. (2000a). Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cerebral Cortex, 10, 343–358.PubMed
Zurück zum Zitat Mehta, A.D., Ulbert, I., Schroeder, C.E. (2000b). Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. Cerebral Cortex, 10, 359–370.PubMed Mehta, A.D., Ulbert, I., Schroeder, C.E. (2000b). Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. Cerebral Cortex, 10, 359–370.PubMed
Zurück zum Zitat Mizobe, K., Polat, U., Pettet, M.W., Kasamatsu, T. (2001). Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field. Visual Neuroscience, 18(3), 377–391.PubMed Mizobe, K., Polat, U., Pettet, M.W., Kasamatsu, T. (2001). Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field. Visual Neuroscience, 18(3), 377–391.PubMed
Zurück zum Zitat Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782–784.PubMed Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782–784.PubMed
Zurück zum Zitat Motter, B.C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70(3), 909–919.PubMed Motter, B.C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70(3), 909–919.PubMed
Zurück zum Zitat Muckli, L. (2010). What are we missing here? brain imaging evidence for higher cognitive functions in primary visual cortex V1. International Journal of Imaging Systems and Technology, 20(2), 131–139. Muckli, L. (2010). What are we missing here? brain imaging evidence for higher cognitive functions in primary visual cortex V1. International Journal of Imaging Systems and Technology, 20(2), 131–139.
Zurück zum Zitat Muckli, L., & Petro, L.S. (2013). Network interactions: non-geniculate input to V1. Current Opinion in Neurobiology, 23(2), 195–201.PubMed Muckli, L., & Petro, L.S. (2013). Network interactions: non-geniculate input to V1. Current Opinion in Neurobiology, 23(2), 195–201.PubMed
Zurück zum Zitat Mumford, D. (1992). On the computational architecture of the neocortex II: the role of cortico-cortical loops. Biological Cybernetics, 66, 241–251.PubMed Mumford, D. (1992). On the computational architecture of the neocortex II: the role of cortico-cortical loops. Biological Cybernetics, 66, 241–251.PubMed
Zurück zum Zitat Mundhenk, T.N., & Itti, L. (2005). Computational modeling and exploration of contour integration for visual saliency. Biological Cybernetics, 93, 188–212.PubMed Mundhenk, T.N., & Itti, L. (2005). Computational modeling and exploration of contour integration for visual saliency. Biological Cybernetics, 93, 188–212.PubMed
Zurück zum Zitat Munneke, J., Heslenfeld, D.J., Theeuwes, J. (2008). Directing attention to a location in space results in retinotopic activation in primary visual cortex. Brain Research, 1222, 184–191.PubMed Munneke, J., Heslenfeld, D.J., Theeuwes, J. (2008). Directing attention to a location in space results in retinotopic activation in primary visual cortex. Brain Research, 1222, 184–191.PubMed
Zurück zum Zitat Murphy, B.K., & Miller, K.D. (2003). Multiplicative gain changes are induced by excitation or inhibition alone. Journal of Neuroscience, 23, 10040–10051.PubMed Murphy, B.K., & Miller, K.D. (2003). Multiplicative gain changes are induced by excitation or inhibition alone. Journal of Neuroscience, 23, 10040–10051.PubMed
Zurück zum Zitat Olshausen, B.A., Anderson, C.H., van Essen, D.C. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience, 13(11), 4700–4719.PubMed Olshausen, B.A., Anderson, C.H., van Essen, D.C. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience, 13(11), 4700–4719.PubMed
Zurück zum Zitat Parent, P., & Zucker, S. (1989). Trace inference, curvature consistency, and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8), 823–839. Parent, P., & Zucker, S. (1989). Trace inference, curvature consistency, and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8), 823–839.
Zurück zum Zitat Pasquale, R.D., & Sherman, S.M. (2011). Synaptic properties of corticocortical connections between the primary and secondary visual cortical areas in the mouse. Journal of Neuroscience, 31(46), 16494–16506.PubMedCentralPubMed Pasquale, R.D., & Sherman, S.M. (2011). Synaptic properties of corticocortical connections between the primary and secondary visual cortical areas in the mouse. Journal of Neuroscience, 31(46), 16494–16506.PubMedCentralPubMed
Zurück zum Zitat Pettet, M.W. (1999). Shape and contour detection. Vision Research, 39(3), 551–557.PubMed Pettet, M.W. (1999). Shape and contour detection. Vision Research, 39(3), 551–557.PubMed
Zurück zum Zitat Phillips, W.A., Kay, J., Smyth, D. (1995). The discovery of structure by multi-stream networks of local processors with contextual guidance. Network, 6(2), 225–246. Phillips, W.A., Kay, J., Smyth, D. (1995). The discovery of structure by multi-stream networks of local processors with contextual guidance. Network, 6(2), 225–246.
Zurück zum Zitat Phillips, W.A., & Singer, W. (1997). In search of common foundations for cortical computation. Behavioral and Brain Sciences, 20(4), 657–722.PubMed Phillips, W.A., & Singer, W. (1997). In search of common foundations for cortical computation. Behavioral and Brain Sciences, 20(4), 657–722.PubMed
Zurück zum Zitat Polat, U., Mizobe, K., Pettet, M.W., Kasamatsu, T., Norcia, A.M. (1998). Collinear stimuli regulate visual responses depending on cells contrast threshold. Nature, 391(6667), 580–584.PubMed Polat, U., Mizobe, K., Pettet, M.W., Kasamatsu, T., Norcia, A.M. (1998). Collinear stimuli regulate visual responses depending on cells contrast threshold. Nature, 391(6667), 580–584.PubMed
Zurück zum Zitat Pollen, D.A. (1999). On the neural correlates of visual perception. Cerebral Cortex, 9(1), 4–19.PubMed Pollen, D.A. (1999). On the neural correlates of visual perception. Cerebral Cortex, 9(1), 4–19.PubMed
Zurück zum Zitat Pouget, A., & Sejnowski, T.J. (1997). Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience, 9(2), 222–237.PubMed Pouget, A., & Sejnowski, T.J. (1997). Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience, 9(2), 222–237.PubMed
Zurück zum Zitat Rao, R.P.N., & Ballard, D.H. (1999a). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.PubMed Rao, R.P.N., & Ballard, D.H. (1999a). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.PubMed
Zurück zum Zitat Rao, R.P.N., & Sejnowski, T.J. (1999b). Predictive sequence learnng in recurrent neocortical circuits. In S.A. Solla, T.K. Leen, K.-R. Mulle (Eds.), Advances neural information procedure systems (Vol. 12 pp. 164–170). Cambridge: MIT Press. Rao, R.P.N., & Sejnowski, T.J. (1999b). Predictive sequence learnng in recurrent neocortical circuits. In S.A. Solla, T.K. Leen, K.-R. Mulle (Eds.), Advances neural information procedure systems (Vol. 12 pp. 164–170). Cambridge: MIT Press.
Zurück zum Zitat Reggia, J.A. (1985). Virtual lateral inhibition in parallel activation models of associative memory. In Proceedings international joint conference on artificial intelligence (Vol. 1, pp. 244-248). Reggia, J.A. (1985). Virtual lateral inhibition in parallel activation models of associative memory. In Proceedings international joint conference on artificial intelligence (Vol. 1, pp. 244-248).
Zurück zum Zitat Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W.A. Rosenblith (Ed.), Sensory communication (pp. 303–317). Cambridge: Massachusetts Institutes of Technology. Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W.A. Rosenblith (Ed.), Sensory communication (pp. 303–317). Cambridge: Massachusetts Institutes of Technology.
Zurück zum Zitat Ress, D., Backus, B.T., Heeger, D.J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3(9), 940–945.PubMed Ress, D., Backus, B.T., Heeger, D.J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3(9), 940–945.PubMed
Zurück zum Zitat Reynolds, J.H., Chelazzi, L., Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal Neuroscience, 19, 1736–1753. Reynolds, J.H., Chelazzi, L., Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal Neuroscience, 19, 1736–1753.
Zurück zum Zitat Reynolds, J.H., & Desimone, R. (1999). The role of neural mechanisms of attention in solving the binding problem. Neuron, 24(1), 19–29.PubMed Reynolds, J.H., & Desimone, R. (1999). The role of neural mechanisms of attention in solving the binding problem. Neuron, 24(1), 19–29.PubMed
Zurück zum Zitat Reynolds, J.H., & Desimone, R. (2003). Interacting roles of attention and visual salience in V4. Neuron, 37, 853–863.PubMed Reynolds, J.H., & Desimone, R. (2003). Interacting roles of attention and visual salience in V4. Neuron, 37, 853–863.PubMed
Zurück zum Zitat Salin, P.A., & Bullier, J. (1995). Corticocortical connections in the visual system: structure and function. Physiological Reviews, 75, 107–154.PubMed Salin, P.A., & Bullier, J. (1995). Corticocortical connections in the visual system: structure and function. Physiological Reviews, 75, 107–154.PubMed
Zurück zum Zitat Salinas, E. (2004). Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation. Journal of Neuroscience, 24(5), 1113–1118.PubMed Salinas, E. (2004). Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation. Journal of Neuroscience, 24(5), 1113–1118.PubMed
Zurück zum Zitat Salinas, E., & Abbott, L.F. (1995). Transfer of coded information from sensory to motor networks. Journal of Neuroscience, 15, 6461–6474.PubMed Salinas, E., & Abbott, L.F. (1995). Transfer of coded information from sensory to motor networks. Journal of Neuroscience, 15, 6461–6474.PubMed
Zurück zum Zitat Salinas, E., & Abbott, L.F. (1996). A model of multiplicative neural responses in parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 93, 11956–11961.PubMedCentralPubMed Salinas, E., & Abbott, L.F. (1996). A model of multiplicative neural responses in parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 93, 11956–11961.PubMedCentralPubMed
Zurück zum Zitat Salinas, E., & Abbott, L.F. (1997). Attentional gain modulation as a basis for translation invariance. In J. Bower (Ed.), Computational neuroscience: trends in research. New York: Plenum Press. Salinas, E., & Abbott, L.F. (1997). Attentional gain modulation as a basis for translation invariance. In J. Bower (Ed.), Computational neuroscience: trends in research. New York: Plenum Press.
Zurück zum Zitat Salinas, E., & Abbott, L.F. (2001). Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. Progress in Brain Research, 130, 175–190.PubMed Salinas, E., & Abbott, L.F. (2001). Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. Progress in Brain Research, 130, 175–190.PubMed
Zurück zum Zitat Salinas, E., & Sejnowski, T.J. (2001). Gain modulation in the central nervous system: where behavior, neurophysiology and computation meet. The Neuroscientist, 7(5), 430–440.PubMedCentralPubMed Salinas, E., & Sejnowski, T.J. (2001). Gain modulation in the central nervous system: where behavior, neurophysiology and computation meet. The Neuroscientist, 7(5), 430–440.PubMedCentralPubMed
Zurück zum Zitat Salinas, E., & Thier, P. (2000). Gain modulation: a major computational principle of the central nervous system. Neuron, 27, 15–21.PubMed Salinas, E., & Thier, P. (2000). Gain modulation: a major computational principle of the central nervous system. Neuron, 27, 15–21.PubMed
Zurück zum Zitat Schroeder, C.E., Mehta, A.D., Foxe, J.J. (2001). Determinants and mechanisms of attentional modulation of neural processing. Frontiers in Bioscience, 6, d672—d684.PubMed Schroeder, C.E., Mehta, A.D., Foxe, J.J. (2001). Determinants and mechanisms of attentional modulation of neural processing. Frontiers in Bioscience, 6, d672—d684.PubMed
Zurück zum Zitat Seriès, P., Lorenceau, J., Frégnac, Y. (2003). The ‘silent’ surround of V1 receptive fields: theory and experiments. Journal of Physiology - Paris, 97(4–6), 453–474. Seriès, P., Lorenceau, J., Frégnac, Y. (2003). The ‘silent’ surround of V1 receptive fields: theory and experiments. Journal of Physiology - Paris, 97(4–6), 453–474.
Zurück zum Zitat Sherman, S.M., & Guillery, R.W. (1998). On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proceedings of the National Academy of Sciences of the United States of America, 95, 7121–71216.PubMedCentralPubMed Sherman, S.M., & Guillery, R.W. (1998). On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proceedings of the National Academy of Sciences of the United States of America, 95, 7121–71216.PubMedCentralPubMed
Zurück zum Zitat Shipp, S. (2004). The brain circuitry of attention. Trends in Cognitive Sciences, 8(5), 223–230.PubMed Shipp, S. (2004). The brain circuitry of attention. Trends in Cognitive Sciences, 8(5), 223–230.PubMed
Zurück zum Zitat Siegel, M., Körding, K.P., König, P. (2000). Integrating top-down and bottom-up sensory processing by somato-dendritic interactions. Journal of Computational Neuroscience, 8, 161–173.PubMed Siegel, M., Körding, K.P., König, P. (2000). Integrating top-down and bottom-up sensory processing by somato-dendritic interactions. Journal of Computational Neuroscience, 8, 161–173.PubMed
Zurück zum Zitat Sigman, M., Cecchi, G.A., Gilbert, C.D., Magnasco, M.O. (2001). On a common circle: natural scenes and gestalt rules. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1935–1940.PubMedCentralPubMed Sigman, M., Cecchi, G.A., Gilbert, C.D., Magnasco, M.O. (2001). On a common circle: natural scenes and gestalt rules. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1935–1940.PubMedCentralPubMed
Zurück zum Zitat Silver, M.A., Ress, D., Heeger, D. (2007). Neural correlates of sustained spatial attention in human early visual cortex. Journal of Neurophysiology, 229–237. Silver, M.A., Ress, D., Heeger, D. (2007). Neural correlates of sustained spatial attention in human early visual cortex. Journal of Neurophysiology, 229–237.
Zurück zum Zitat Smith, F.W., & Muckli, L. (2010). Nonstimulated early visual areas carry information about surrounding context. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 20099–20103.PubMedCentralPubMed Smith, F.W., & Muckli, L. (2010). Nonstimulated early visual areas carry information about surrounding context. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 20099–20103.PubMedCentralPubMed
Zurück zum Zitat Smith, M., & Crawford, J. (2005). Distributed population mechanism for the 3-D oculomotor reference frame transformation. Journal of Neurophysiology, 93, 1742–1761.PubMed Smith, M., & Crawford, J. (2005). Distributed population mechanism for the 3-D oculomotor reference frame transformation. Journal of Neurophysiology, 93, 1742–1761.PubMed
Zurück zum Zitat Spratling, M.W. (2002). Cortical region interactions and the functional role of apical dendrites. Behavioral and Cognitive Neuroscience Reviews, 1(3), 219–228.PubMed Spratling, M.W. (2002). Cortical region interactions and the functional role of apical dendrites. Behavioral and Cognitive Neuroscience Reviews, 1(3), 219–228.PubMed
Zurück zum Zitat Spratling, M.W. (2008a). Predictive coding as a model of biased competition in visual selective attention. Vision Research, 48(12), 1391–1408.PubMed Spratling, M.W. (2008a). Predictive coding as a model of biased competition in visual selective attention. Vision Research, 48(12), 1391–1408.PubMed
Zurück zum Zitat Spratling, M.W. (2008b). Reconcing predictive coding and biased competition models of cortical function. Frontiers in Computational Neuroscience, 2(4), 1–8. Spratling, M.W. (2008b). Reconcing predictive coding and biased competition models of cortical function. Frontiers in Computational Neuroscience, 2(4), 1–8.
Zurück zum Zitat Spratling, M.W. (2010). Predictive coding as a model of response properties in cortical area V1. Journal of Neuroscience, 30(9), 3531–3543.PubMed Spratling, M.W. (2010). Predictive coding as a model of response properties in cortical area V1. Journal of Neuroscience, 30(9), 3531–3543.PubMed
Zurück zum Zitat Spratling, M.W. (2011). A single functional model accounts for the distinct properties of suppression in cortical area V1. Vision Research, 51(6), 563–576.PubMed Spratling, M.W. (2011). A single functional model accounts for the distinct properties of suppression in cortical area V1. Vision Research, 51(6), 563–576.PubMed
Zurück zum Zitat Spratling, M.W. (2012a). Predictive coding accounts for V1 response properties recorded using reverse correlation. Biological Cybernetics, 106(1), 37–49.PubMed Spratling, M.W. (2012a). Predictive coding accounts for V1 response properties recorded using reverse correlation. Biological Cybernetics, 106(1), 37–49.PubMed
Zurück zum Zitat Spratling, M.W. (2012b). Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Computation, 24(1), 60–103.PubMed Spratling, M.W. (2012b). Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Computation, 24(1), 60–103.PubMed
Zurück zum Zitat Spratling, M.W. (2013). Image segmentation using a sparse coding model of cortical area V1. IEEE Transactions on Image Processing, 22(4), 1631–1643.PubMed Spratling, M.W. (2013). Image segmentation using a sparse coding model of cortical area V1. IEEE Transactions on Image Processing, 22(4), 1631–1643.PubMed
Zurück zum Zitat Spratling, M.W., & Johnson, M.H. (2004). A feedback model of visual attention. Journal of Cognitive Neuroscience, 16(2), 219–237.PubMed Spratling, M.W., & Johnson, M.H. (2004). A feedback model of visual attention. Journal of Cognitive Neuroscience, 16(2), 219–237.PubMed
Zurück zum Zitat Spratling, M.W., & Johnson, M.H. (2006). A feedback model of perceptual learning and categorisation. Visual Cognition, 13(2), 129–165. Spratling, M.W., & Johnson, M.H. (2006). A feedback model of perceptual learning and categorisation. Visual Cognition, 13(2), 129–165.
Zurück zum Zitat Sundberg, K.A., Mitchell, J.F., Reynolds, J.H. (2009). Spatial attention modulates center-surround interactions in macaque visual area V4. Neuron, 61, 1–12. Sundberg, K.A., Mitchell, J.F., Reynolds, J.H. (2009). Spatial attention modulates center-surround interactions in macaque visual area V4. Neuron, 61, 1–12.
Zurück zum Zitat Their, P., Haarmeier, T., Ignashchenkova, A. (2002). The functional architecture of attention. Current Biology, 12(5), R158–R162.PubMed Their, P., Haarmeier, T., Ignashchenkova, A. (2002). The functional architecture of attention. Current Biology, 12(5), R158–R162.PubMed
Zurück zum Zitat Thiele, A., Pooresmaeili, A., Delicato, L.S., Herrero, J.L., Roelfsema, P.R. (2009). Additive effects of attention and stimulus contrast in primary visual cortex. Cerebral Cortex, 19, 2970–2981.PubMed Thiele, A., Pooresmaeili, A., Delicato, L.S., Herrero, J.L., Roelfsema, P.R. (2009). Additive effects of attention and stimulus contrast in primary visual cortex. Cerebral Cortex, 19, 2970–2981.PubMed
Zurück zum Zitat Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends Neurosci, 24(5), 295–300.PubMed Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends Neurosci, 24(5), 295–300.PubMed
Zurück zum Zitat Treue, S., & Martinez-Trujillo, J.C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(6736), 575–579.PubMed Treue, S., & Martinez-Trujillo, J.C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(6736), 575–579.PubMed
Zurück zum Zitat Ursino, M., & La Cara, G.E. (2004). A model of contextual interactions and contour detection in primary visual cortex. Neural Networks, 17(5–6), 719–735.PubMed Ursino, M., & La Cara, G.E. (2004). A model of contextual interactions and contour detection in primary visual cortex. Neural Networks, 17(5–6), 719–735.PubMed
Zurück zum Zitat Vecera, S.P., & O’Reilly, R.C. (1998). Figure-ground organization and object recognition processes: an interactive account. Journal of Experimental Psychology: Human Perception and Performance, 24, 441–462.PubMed Vecera, S.P., & O’Reilly, R.C. (1998). Figure-ground organization and object recognition processes: an interactive account. Journal of Experimental Psychology: Human Perception and Performance, 24, 441–462.PubMed
Zurück zum Zitat Vonikakis, V., Gasteratos, A., Andreadis, I. (2006). Enhancement of perceptually salient contours using a parallel artificial cortical network. Biological Cybernetics, 94(3), 192–214.PubMed Vonikakis, V., Gasteratos, A., Andreadis, I. (2006). Enhancement of perceptually salient contours using a parallel artificial cortical network. Biological Cybernetics, 94(3), 192–214.PubMed
Zurück zum Zitat Watt, R., Ledgeway, T., Dakin, S.C. (2008). Families of models for gabor paths demonstrate the importance of spatial adjacency. Journal of Vision, 8(7), 1–19.PubMed Watt, R., Ledgeway, T., Dakin, S.C. (2008). Families of models for gabor paths demonstrate the importance of spatial adjacency. Journal of Vision, 8(7), 1–19.PubMed
Zurück zum Zitat White, R.L., & Snyder, L.H. (2004). A neural network model of flexible spatial updating. Journal of Neurophysiology, 91(4), 1608–1619.PubMed White, R.L., & Snyder, L.H. (2004). A neural network model of flexible spatial updating. Journal of Neurophysiology, 91(4), 1608–1619.PubMed
Zurück zum Zitat Xing, J., & Andersen, R.A. (2000). Models of the posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. Journal of Cognitive Neuroscience, 12(4), 601–614.PubMed Xing, J., & Andersen, R.A. (2000). Models of the posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. Journal of Cognitive Neuroscience, 12(4), 601–614.PubMed
Zurück zum Zitat Yen, S., & Finkel, L. (1998). Extraction of perceptually salient contours by striate cortical networks. Vision Research, 38(5), 719–741.PubMed Yen, S., & Finkel, L. (1998). Extraction of perceptually salient contours by striate cortical networks. Vision Research, 38(5), 719–741.PubMed
Zurück zum Zitat Young, R.A., & Lesperance, R.M. (2001). The gaussian derivative model for spatial-temporal vision: II cortical data. Spatial Visual, 14, 321–389. Young, R.A., & Lesperance, R.M. (2001). The gaussian derivative model for spatial-temporal vision: II cortical data. Spatial Visual, 14, 321–389.
Zurück zum Zitat Zeki, S., & Shipp, S. (1988). The functional logic of cortical connections. Nature, 335, 311–317.PubMed Zeki, S., & Shipp, S. (1988). The functional logic of cortical connections. Nature, 335, 311–317.PubMed
Zurück zum Zitat Zhaoping, L. (2005). Border ownership from intracortical interactions in visual area V2. Neuron, 47, 143–153.PubMed Zhaoping, L. (2005). Border ownership from intracortical interactions in visual area V2. Neuron, 47, 143–153.PubMed
Zurück zum Zitat Zipser, D., & Andersen, R.A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331(6158), 679–684.PubMed Zipser, D., & Andersen, R.A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331(6158), 679–684.PubMed
Zurück zum Zitat Zoccolan, D., Cox, D.D., DiCarlo, J.J. (2005). Multiple object response normalization in monkey inferotemporal cortex. Journal of Neuroscience, 25(36). Zoccolan, D., Cox, D.D., DiCarlo, J.J. (2005). Multiple object response normalization in monkey inferotemporal cortex. Journal of Neuroscience, 25(36).
Metadaten
Titel
A single functional model of drivers and modulators in cortex
verfasst von
M. W. Spratling
Publikationsdatum
01.02.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0471-7

Weitere Artikel der Ausgabe 1/2014

Journal of Computational Neuroscience 1/2014 Zur Ausgabe