Skip to main content
Erschienen in: Journal of Materials Science 19/2014

01.10.2014 | Ultrafinegrained Materials

Optimizing strength and ductility in Cu–Al alloy with recrystallized nanostructures formed by simple cold rolling and annealing

verfasst von: Y. Z. Tian, L. J. Zhao, S. Chen, D. Terada, A. Shibata, N. Tsuji

Erschienen in: Journal of Materials Science | Ausgabe 19/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A single-phase Cu–Al alloy with a low stacking fault energy was processed by cold rolling and subsequent annealing. Fully recrystallized microstructures composed of ultrafine grains were obtained after isothermal annealing at different temperatures. The minimum mean grain sizes achieved were below 1 μm. It was found that the microstructures were homogeneous after annealing at 400 °C, but somehow inhomogeneous after annealing at lower temperature of 300 °C and higher temperature of 550 °C. Superior strength and ductility were obtained by controlling the grain size of the microstructures. After annealing at 400 °C for 10 s, a fully and homogeneously recrystallized material with mean grain size of 770 nm was produced, which had a high yield strength of 524.2 MPa and a remarkable uniform elongation of 15.7 %.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dao M, Lu L, Asaro R, Dehosson J, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065CrossRef Dao M, Lu L, Asaro R, Dehosson J, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065CrossRef
2.
Zurück zum Zitat Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef
3.
Zurück zum Zitat Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315CrossRef Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315CrossRef
4.
Zurück zum Zitat Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189CrossRef Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189CrossRef
5.
Zurück zum Zitat Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater 47:579–583CrossRef Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater 47:579–583CrossRef
6.
Zurück zum Zitat Zhu YT, Lowe TC (2000) Observations and issues on mechanisms of grain refinement during ECAP process. Mater Sci Eng A 291:46–53CrossRef Zhu YT, Lowe TC (2000) Observations and issues on mechanisms of grain refinement during ECAP process. Mater Sci Eng A 291:46–53CrossRef
7.
Zurück zum Zitat Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979CrossRef Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979CrossRef
8.
Zurück zum Zitat Tian YZ, Li JJ, Zhang P, Wu SD, Zhang ZF, Kawasaki M, Langdon TG (2012) Microstructures, strengthening mechanisms and fracture behavior of Cu–Ag alloys processed by high-pressure torsion. Acta Mater 60:269–281CrossRef Tian YZ, Li JJ, Zhang P, Wu SD, Zhang ZF, Kawasaki M, Langdon TG (2012) Microstructures, strengthening mechanisms and fracture behavior of Cu–Ag alloys processed by high-pressure torsion. Acta Mater 60:269–281CrossRef
9.
Zurück zum Zitat Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater 47:893–899CrossRef Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater 47:893–899CrossRef
10.
Zurück zum Zitat Prangnell PB, Hayes JS, Bowen JR, Apps PJ, Bate PS (2004) Continuous recrystallisation of lamellar deformation structures produced by severe deformation. Acta Mater 52:3193–3206CrossRef Prangnell PB, Hayes JS, Bowen JR, Apps PJ, Bate PS (2004) Continuous recrystallisation of lamellar deformation structures produced by severe deformation. Acta Mater 52:3193–3206CrossRef
11.
Zurück zum Zitat Kamikawa N, Huang X, Tsuji N, Hansen N (2009) Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater 57:4198–4208CrossRef Kamikawa N, Huang X, Tsuji N, Hansen N (2009) Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater 57:4198–4208CrossRef
12.
Zurück zum Zitat Wang YM, Chen MW, Zhou FH, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915CrossRef Wang YM, Chen MW, Zhou FH, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915CrossRef
13.
Zurück zum Zitat Li YS, Zhang Y, Tao NR, Lu K (2008) Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation. Scripta Mater 59:475–478CrossRef Li YS, Zhang Y, Tao NR, Lu K (2008) Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation. Scripta Mater 59:475–478CrossRef
14.
Zurück zum Zitat Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Pergamon, Oxford, pp 333–339CrossRef Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Pergamon, Oxford, pp 333–339CrossRef
15.
Zurück zum Zitat Qu S, An XH, Yang HJ, Huang CX, Yang G, Zang QS, Wang ZG, Wu SD, Zhang ZF (2009) Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater 57:1586–1601CrossRef Qu S, An XH, Yang HJ, Huang CX, Yang G, Zang QS, Wang ZG, Wu SD, Zhang ZF (2009) Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater 57:1586–1601CrossRef
16.
Zurück zum Zitat Tao NR, Wang ZB, Tong WP, Sui ML, Lu J, Lu K (2002) An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater 50:4603–4616CrossRef Tao NR, Wang ZB, Tong WP, Sui ML, Lu J, Lu K (2002) An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater 50:4603–4616CrossRef
17.
Zurück zum Zitat Hughes DA, Hansen N (1997) High angle boundaries formed by grain subdivision mechanisms. Acta Mater 45:3871–3886CrossRef Hughes DA, Hansen N (1997) High angle boundaries formed by grain subdivision mechanisms. Acta Mater 45:3871–3886CrossRef
18.
Zurück zum Zitat Tao NR, Lu K (2009) Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scripta Mater 60:1039–1043CrossRef Tao NR, Lu K (2009) Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scripta Mater 60:1039–1043CrossRef
19.
Zurück zum Zitat An XH, Qu S, Wu SD, Zhang ZF (2011) Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu–Al alloys during thermal annealing. J Mater Res 26:407–415CrossRef An XH, Qu S, Wu SD, Zhang ZF (2011) Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu–Al alloys during thermal annealing. J Mater Res 26:407–415CrossRef
20.
Zurück zum Zitat An XH, Qu S, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2012) Enhanced strength–ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealing. Scripta Mater 66:227–230CrossRef An XH, Qu S, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2012) Enhanced strength–ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealing. Scripta Mater 66:227–230CrossRef
21.
Zurück zum Zitat Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG (2006) Tailoring stacking fault energy for high ductility and high strength in ultra-fine grained Cu and Its alloy. Appl Phys Lett 89:121906CrossRef Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG (2006) Tailoring stacking fault energy for high ductility and high strength in ultra-fine grained Cu and Its alloy. Appl Phys Lett 89:121906CrossRef
22.
Zurück zum Zitat Saha R, Ueji R, Tsuji N (2013) Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel. Scripta Mater 68:813–816CrossRef Saha R, Ueji R, Tsuji N (2013) Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel. Scripta Mater 68:813–816CrossRef
23.
Zurück zum Zitat Zhao YH, Liao XZ, Zhu YT, Horita Z, Langdon TG (2005) Influence of stacking fault energy on nanostructure formation under high pressure torsion. Mater Sci Eng, A 410–411:188–193CrossRef Zhao YH, Liao XZ, Zhu YT, Horita Z, Langdon TG (2005) Influence of stacking fault energy on nanostructure formation under high pressure torsion. Mater Sci Eng, A 410–411:188–193CrossRef
24.
Zurück zum Zitat Morikawa T, Higashida K (2010) Deformation microstructure and texture in a cold-rolled austenitic steel with low stacking-fault energy. Mater Trans 51:620–624CrossRef Morikawa T, Higashida K (2010) Deformation microstructure and texture in a cold-rolled austenitic steel with low stacking-fault energy. Mater Trans 51:620–624CrossRef
25.
Zurück zum Zitat Novikov V (1997) Grain growth and control of microstructure and texture in polycrystalline materials, CRC Press, Boca Raton, pp 53–62 Novikov V (1997) Grain growth and control of microstructure and texture in polycrystalline materials, CRC Press, Boca Raton, pp 53–62
26.
Zurück zum Zitat Burke JE, Turnbull D (1952) Recrystallization and grain growth. Prog Metal Phys 3:220–292CrossRef Burke JE, Turnbull D (1952) Recrystallization and grain growth. Prog Metal Phys 3:220–292CrossRef
27.
Zurück zum Zitat Anderson MP, Srolovitz DJ, Grest GS, Sahni PS (1984) Computer simulation of grain growth–I kinetics. Acta Metall 32:783–791CrossRef Anderson MP, Srolovitz DJ, Grest GS, Sahni PS (1984) Computer simulation of grain growth–I kinetics. Acta Metall 32:783–791CrossRef
28.
Zurück zum Zitat Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Influence of specimen dimensions and strain measurement methods on tensile stress–strain curves. Mater Sci Eng A 525:68–77CrossRef Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Influence of specimen dimensions and strain measurement methods on tensile stress–strain curves. Mater Sci Eng A 525:68–77CrossRef
29.
Zurück zum Zitat Zhao YH, Bingert JF, Liao XZ, Cui BZ, Han K, Sergueeva AV, Mukherjee AK, Valiev RZ, Langdon TG, Zhu YT (2006) Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv Mater 18:2949–2953CrossRef Zhao YH, Bingert JF, Liao XZ, Cui BZ, Han K, Sergueeva AV, Mukherjee AK, Valiev RZ, Langdon TG, Zhu YT (2006) Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv Mater 18:2949–2953CrossRef
Metadaten
Titel
Optimizing strength and ductility in Cu–Al alloy with recrystallized nanostructures formed by simple cold rolling and annealing
verfasst von
Y. Z. Tian
L. J. Zhao
S. Chen
D. Terada
A. Shibata
N. Tsuji
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8299-8

Weitere Artikel der Ausgabe 19/2014

Journal of Materials Science 19/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.