Skip to main content
Erschienen in: Journal of Materials Science 20/2014

01.10.2014

Prussian blue modified Fe3O4 nanoparticles for Cs detoxification

verfasst von: T. Arun, R. Justin Joseyphus

Erschienen in: Journal of Materials Science | Ausgabe 20/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fe3O4 nanoparticles were surface modified with Prussian blue (PB) and the nanoparticles were used for the removal of cesium (Cs) ion. The attachment of PB with the Fe3O4 and their morphology were explained based on the studies by transmission electron microscope and BET measurements. The Cs ion adsorption studies have shown that the Cs removal efficiency reached maximum within 120 min. The adsorption kinetics studies using Lagergren pseudo-first-order kinetic model suggest the values of the amount of metal ion adsorbed at equilibrium (q e) and adsorption rate constant (k 1) as 22 mg/g and 0.015 min−1, respectively. The capture efficiency of the prepared nanoparticles was studied by varying the flow channel diameter, applied magnetic field, and the fluid flow velocity. The study suggests that PB-Fe3O4 nanoparticles could be used for the detoxification of Cs where the flow velocity is in the range of few tens of cm/s.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Avery SV (1996) Fate of caesium in the environment: distribution between the abi-otic and biotic components of aquatic and terrestrial ecosystems. J Environ Radioact 30:139–171CrossRef Avery SV (1996) Fate of caesium in the environment: distribution between the abi-otic and biotic components of aquatic and terrestrial ecosystems. J Environ Radioact 30:139–171CrossRef
2.
Zurück zum Zitat Faustino PJ, Yang Y, Progar JJ, Brownell CR, Sadrieh N, May JC, Leutzinger E et al (2008) Quantitative determination of cesium binding to ferrichexacyanoferrate: Prussian blue. J Pharm Biomed 47:114–125CrossRef Faustino PJ, Yang Y, Progar JJ, Brownell CR, Sadrieh N, May JC, Leutzinger E et al (2008) Quantitative determination of cesium binding to ferrichexacyanoferrate: Prussian blue. J Pharm Biomed 47:114–125CrossRef
3.
Zurück zum Zitat Pearce J (1994) Studies of any toxicological effects of Prussian blue compounds in mammals—A review. Food Chem Toxicol 32:577–582CrossRef Pearce J (1994) Studies of any toxicological effects of Prussian blue compounds in mammals—A review. Food Chem Toxicol 32:577–582CrossRef
4.
Zurück zum Zitat Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y (2012) Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew Chem Int Ed 51:984–988CrossRef Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y (2012) Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew Chem Int Ed 51:984–988CrossRef
5.
Zurück zum Zitat Lian HY, Hu M, Liu CH, Yamauchi Y, Wu KCW (2012) Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chem Commun 48:5151–5153CrossRef Lian HY, Hu M, Liu CH, Yamauchi Y, Wu KCW (2012) Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chem Commun 48:5151–5153CrossRef
6.
Zurück zum Zitat Hu M, Belik A, Imura M, Mibu K, Tsujimoto Y, Yamauchi Y (2012) Synthesis of superparamagnetic nanoporous iron oxide particles with hollow interiors by using Prussian blue coordination polymers. Chem Mater 24:2698–2707CrossRef Hu M, Belik A, Imura M, Mibu K, Tsujimoto Y, Yamauchi Y (2012) Synthesis of superparamagnetic nanoporous iron oxide particles with hollow interiors by using Prussian blue coordination polymers. Chem Mater 24:2698–2707CrossRef
7.
Zurück zum Zitat Chiang YD, Hu M, Kamachi Y, Ishihara S, Takai K, Tsujimoto Y, Ariga K, Wu KCW, Yamauchi Y (2013) Rational design and synthesis of cyano-bridged coordination polymers with precise control of particle size from 20 to 500 nm. Eur J Inorg Chem 2013:3141–3145CrossRef Chiang YD, Hu M, Kamachi Y, Ishihara S, Takai K, Tsujimoto Y, Ariga K, Wu KCW, Yamauchi Y (2013) Rational design and synthesis of cyano-bridged coordination polymers with precise control of particle size from 20 to 500 nm. Eur J Inorg Chem 2013:3141–3145CrossRef
8.
Zurück zum Zitat Hu M, Ishihara S, Ariga K, Imura M, Yamauchi Y (2013) Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements. Chem Eur J 19:1882–1885CrossRef Hu M, Ishihara S, Ariga K, Imura M, Yamauchi Y (2013) Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements. Chem Eur J 19:1882–1885CrossRef
9.
Zurück zum Zitat Hu M, Belik AA, Imura M, Yamauchi Y (2013) Tailored design of multiple nanoarchitectures in metal-cyanide hybrid coordination polymers. J Am Chem Soc 135:384–391CrossRef Hu M, Belik AA, Imura M, Yamauchi Y (2013) Tailored design of multiple nanoarchitectures in metal-cyanide hybrid coordination polymers. J Am Chem Soc 135:384–391CrossRef
10.
Zurück zum Zitat Hu M, Yamauchi Y (2011) Synthesis of a titanium-containing Prussian-blue analogue with a well-defined cube structure and its thermal conversion into a nanoporous titanium–iron-based oxide. Chem Asian J 6:2282–2286CrossRef Hu M, Yamauchi Y (2011) Synthesis of a titanium-containing Prussian-blue analogue with a well-defined cube structure and its thermal conversion into a nanoporous titanium–iron-based oxide. Chem Asian J 6:2282–2286CrossRef
11.
Zurück zum Zitat Thompson DF, Church CO (2001) Prussian blue for treatment of radiocesium poisoning. Pharmacotherapy 21:1364–1367CrossRef Thompson DF, Church CO (2001) Prussian blue for treatment of radiocesium poisoning. Pharmacotherapy 21:1364–1367CrossRef
12.
Zurück zum Zitat Barton GB, Hepworth JL, McClanahan ED, Moore RL, VanTuyl HH (1958) Chemical processing wastes, recovering fission products. Ind Eng Chem 50:212–216CrossRef Barton GB, Hepworth JL, McClanahan ED, Moore RL, VanTuyl HH (1958) Chemical processing wastes, recovering fission products. Ind Eng Chem 50:212–216CrossRef
13.
Zurück zum Zitat Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K et al (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans 42:16049–16055CrossRef Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K et al (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans 42:16049–16055CrossRef
14.
Zurück zum Zitat Namiki Y, Namiki T, Ishii Y, Koido S, Nagase Y, Tsubota A, Tada N, Kitamoto Y (2012) Inorganic-organic magnetic nanocomposites for use in preventive medicine: a rapid and reliable elimination system for cesium. Pharm Res 29:1404–1418CrossRef Namiki Y, Namiki T, Ishii Y, Koido S, Nagase Y, Tsubota A, Tada N, Kitamoto Y (2012) Inorganic-organic magnetic nanocomposites for use in preventive medicine: a rapid and reliable elimination system for cesium. Pharm Res 29:1404–1418CrossRef
15.
Zurück zum Zitat Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231CrossRef Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231CrossRef
16.
Zurück zum Zitat Delchet C, Tokarev A, Dumail X, Toquer G, Barre Y, Guari Y, Guerin C, Larionova J, Grandjean A (2012) Extraction of radioactive cesium using innovative functionalized porous materials. RSC Adv 2:5707–5716CrossRef Delchet C, Tokarev A, Dumail X, Toquer G, Barre Y, Guari Y, Guerin C, Larionova J, Grandjean A (2012) Extraction of radioactive cesium using innovative functionalized porous materials. RSC Adv 2:5707–5716CrossRef
17.
Zurück zum Zitat Lin Y, Fryxell GE, Wu H, Englhard M (2001) Selective sorption of cesium using self-assembled monolayers on mesoporous supports. Environ Sci Technol 35:3962–3966CrossRef Lin Y, Fryxell GE, Wu H, Englhard M (2001) Selective sorption of cesium using self-assembled monolayers on mesoporous supports. Environ Sci Technol 35:3962–3966CrossRef
18.
Zurück zum Zitat Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent–Coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860CrossRef Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent–Coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860CrossRef
19.
Zurück zum Zitat Chang CY, Chau LK, Hu WP, Wang CY, Liao JH (2008) Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Microporous Mesoporous Mat 109:505–512CrossRef Chang CY, Chau LK, Hu WP, Wang CY, Liao JH (2008) Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Microporous Mesoporous Mat 109:505–512CrossRef
20.
Zurück zum Zitat Rassat SD, Sukamto JH, Orth RJ, Lilga MA, Hallen RT (1999) Development of an electrically switched ion exchange process for selective ion separations. Sep Purif Technol 15:207–222CrossRef Rassat SD, Sukamto JH, Orth RJ, Lilga MA, Hallen RT (1999) Development of an electrically switched ion exchange process for selective ion separations. Sep Purif Technol 15:207–222CrossRef
21.
Zurück zum Zitat Lilga MA, Orth RJ, Sukamto JPH, Rassat SD, Genders JD, Gopal R (2001) Cesium separation using electrically switched ion exchange. Sep Purif Technol 24:451–466CrossRef Lilga MA, Orth RJ, Sukamto JPH, Rassat SD, Genders JD, Gopal R (2001) Cesium separation using electrically switched ion exchange. Sep Purif Technol 24:451–466CrossRef
22.
Zurück zum Zitat Chen BW, Xia XH (2007) Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange. Adv Funct Mater 17:2943–2948CrossRef Chen BW, Xia XH (2007) Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange. Adv Funct Mater 17:2943–2948CrossRef
23.
Zurück zum Zitat Lilga MA, Orth RJ, Sukamto JPH, Haight SM, Schwartz DT (1997) Metal ion separations using electrically switched ion exchange. Sep Purif Technol 11:147–158CrossRef Lilga MA, Orth RJ, Sukamto JPH, Haight SM, Schwartz DT (1997) Metal ion separations using electrically switched ion exchange. Sep Purif Technol 11:147–158CrossRef
24.
Zurück zum Zitat Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, Watanabe M, Arisaka M, Nankawa T (2012) Preparation of a film of copper hexacyanoferrate nanoparticles for electrochemical removal of cesium from radioactive wastewater. Electrochem Commun 25:23–25CrossRef Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, Watanabe M, Arisaka M, Nankawa T (2012) Preparation of a film of copper hexacyanoferrate nanoparticles for electrochemical removal of cesium from radioactive wastewater. Electrochem Commun 25:23–25CrossRef
25.
Zurück zum Zitat Prout WE, Russell ER, Grob HJ (1965) Ion exchange absorption of cesium by potassium hexacyanocobalt (II) ferrate (II). J Inorg Nucl Chem 27:473–479CrossRef Prout WE, Russell ER, Grob HJ (1965) Ion exchange absorption of cesium by potassium hexacyanocobalt (II) ferrate (II). J Inorg Nucl Chem 27:473–479CrossRef
26.
Zurück zum Zitat Chen H, Kaminski MD, Rosengart AJ (2008) 2D modeling and preliminary in vitro investigation of a prototype high gradient magnetic separator for biomedical applications. Med Eng Phys 30:1–8CrossRef Chen H, Kaminski MD, Rosengart AJ (2008) 2D modeling and preliminary in vitro investigation of a prototype high gradient magnetic separator for biomedical applications. Med Eng Phys 30:1–8CrossRef
27.
Zurück zum Zitat Falkenhagen D, Brandl M, Hartmann J, Kellner KH, Posnicek T, Weber V (2006) Fluidized bed adsorbent systems for extracorporeal liver support. Ther Apher Dial 10:154–159CrossRef Falkenhagen D, Brandl M, Hartmann J, Kellner KH, Posnicek T, Weber V (2006) Fluidized bed adsorbent systems for extracorporeal liver support. Ther Apher Dial 10:154–159CrossRef
28.
Zurück zum Zitat Brandl M, Mayer M, Hartmann J, Posnicek T, Fabian C, Falkenhagen D (2010) Theoretical analysis of ferromagnetic microparticles in streaming liquid under the influence of external magnetic forces. J Magn Magn Mater 322:2454–2464CrossRef Brandl M, Mayer M, Hartmann J, Posnicek T, Fabian C, Falkenhagen D (2010) Theoretical analysis of ferromagnetic microparticles in streaming liquid under the influence of external magnetic forces. J Magn Magn Mater 322:2454–2464CrossRef
29.
Zurück zum Zitat Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R198–R206CrossRef Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R198–R206CrossRef
30.
Zurück zum Zitat Iacob G, Rotariu O, Strachan NJC, Häfeli UO (2004) Magnetizable needles and wires-modeling an efficient way to target magnetic microspheres in vivo. Biorheology 41:599–612 Iacob G, Rotariu O, Strachan NJC, Häfeli UO (2004) Magnetizable needles and wires-modeling an efficient way to target magnetic microspheres in vivo. Biorheology 41:599–612
31.
Zurück zum Zitat Ritter JA, Ebner AD, Daniel KD, Stewart KL (2004) Application of high gradient magnetic separation principles to magnetic drug targeting. J Magn Magn Mater 280:184–201CrossRef Ritter JA, Ebner AD, Daniel KD, Stewart KL (2004) Application of high gradient magnetic separation principles to magnetic drug targeting. J Magn Magn Mater 280:184–201CrossRef
32.
Zurück zum Zitat Avilės MO, Ebner AD, Chen H, Rosengart AJ, Kaminski MD, Ritter JA (2005) Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles. J Magn Magn Mater 293:605–615CrossRef Avilės MO, Ebner AD, Chen H, Rosengart AJ, Kaminski MD, Ritter JA (2005) Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles. J Magn Magn Mater 293:605–615CrossRef
33.
Zurück zum Zitat Chen H, Ebner AD, Kaminski MD, Rosengart AJ, Ritter JA (2005) Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent—2: parametric study with multi-wire two-dimensional model. J Magn Magn Mater 293:616–632CrossRef Chen H, Ebner AD, Kaminski MD, Rosengart AJ, Ritter JA (2005) Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent—2: parametric study with multi-wire two-dimensional model. J Magn Magn Mater 293:616–632CrossRef
34.
Zurück zum Zitat Tang SCN and Lo (2013) IMC Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632CrossRef Tang SCN and Lo (2013) IMC Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632CrossRef
35.
Zurück zum Zitat Arun T, Prakash K, Justin Joseyphus R (2013) Synthesis and magnetic properties of prussian blue modified Fe nanoparticles. J Magn Magn Mater 345:100–105CrossRef Arun T, Prakash K, Justin Joseyphus R (2013) Synthesis and magnetic properties of prussian blue modified Fe nanoparticles. J Magn Magn Mater 345:100–105CrossRef
36.
Zurück zum Zitat Arun T, Prakash K, Kuppusamy R, Justin Joseyphus R (2013) Magnetic properties of Prussian blue modified Fe3O4 nanocubes. J Phys Chem Solids 74:1761–1768CrossRef Arun T, Prakash K, Kuppusamy R, Justin Joseyphus R (2013) Magnetic properties of Prussian blue modified Fe3O4 nanocubes. J Phys Chem Solids 74:1761–1768CrossRef
37.
Zurück zum Zitat Kaye SS, Long JR (2007) The role of vacancies in the hydrogen storage properties of Prussian blue analogues. Catal Today 120:311–316CrossRef Kaye SS, Long JR (2007) The role of vacancies in the hydrogen storage properties of Prussian blue analogues. Catal Today 120:311–316CrossRef
38.
Zurück zum Zitat Kaye SS, Long JR (2005) Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe Co, Ni, Cu, Zn). J Am Chem Soc 127:6506–6507CrossRef Kaye SS, Long JR (2005) Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe Co, Ni, Cu, Zn). J Am Chem Soc 127:6506–6507CrossRef
39.
Zurück zum Zitat Ming H, Torad NLK, Chiang YD, Wu KCW, Yamauchi Y (2012) Size-and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. Cryst Eng Comm 14:3387–3396CrossRef Ming H, Torad NLK, Chiang YD, Wu KCW, Yamauchi Y (2012) Size-and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. Cryst Eng Comm 14:3387–3396CrossRef
40.
Zurück zum Zitat Song C, Du JP, Zhao JH, Feng SA, Du GX, Zhu ZP (2009) Hierarchical porous core– shell carbon nanoparticles. Chem Mater 21:1524–1530CrossRef Song C, Du JP, Zhao JH, Feng SA, Du GX, Zhu ZP (2009) Hierarchical porous core– shell carbon nanoparticles. Chem Mater 21:1524–1530CrossRef
41.
Zurück zum Zitat Cho W, Lee HJ, Oh M (2008) Growth-controlled formation of porous coordination polymer particles. J Am Chem Soc 130:16943–16946CrossRef Cho W, Lee HJ, Oh M (2008) Growth-controlled formation of porous coordination polymer particles. J Am Chem Soc 130:16943–16946CrossRef
42.
Zurück zum Zitat Kobler J, Bein T (2008) Porous thin films of functionalized mesoporous silica nanoparticles. ACS Nano 2:2324–2330CrossRef Kobler J, Bein T (2008) Porous thin films of functionalized mesoporous silica nanoparticles. ACS Nano 2:2324–2330CrossRef
43.
Zurück zum Zitat Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRef Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRef
44.
Zurück zum Zitat Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183CrossRef Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183CrossRef
46.
Zurück zum Zitat Lv K, Xiong LP, Luo YM (2013) Ion exchange properties of cesium ion sieve based on zirconium molybdopyrophosphate. Colloids Surf A 433:37–46CrossRef Lv K, Xiong LP, Luo YM (2013) Ion exchange properties of cesium ion sieve based on zirconium molybdopyrophosphate. Colloids Surf A 433:37–46CrossRef
47.
Zurück zum Zitat Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. J Mater Chem 22:18261–18267CrossRef Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. J Mater Chem 22:18261–18267CrossRef
48.
Zurück zum Zitat Lagergren S (1898) Zurtheorie der sogenannten adsorption gelösterstoffe. K Sven Vetenskapsakad Handl 24:1–39 Lagergren S (1898) Zurtheorie der sogenannten adsorption gelösterstoffe. K Sven Vetenskapsakad Handl 24:1–39
49.
Zurück zum Zitat Ho YS, McKay G (1999) Pseudo-second-order model for sorption processes. Process Biochem 34:451–465CrossRef Ho YS, McKay G (1999) Pseudo-second-order model for sorption processes. Process Biochem 34:451–465CrossRef
50.
Zurück zum Zitat Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue modified magnetic oxide nanoparticles for removal of cesium from contaminated environment. J Nanopart Res 15:1689–1699CrossRef Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue modified magnetic oxide nanoparticles for removal of cesium from contaminated environment. J Nanopart Res 15:1689–1699CrossRef
51.
Zurück zum Zitat Furlani EP, Ng KC (2006) Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys Rev 73:061919-1–06191910 Furlani EP, Ng KC (2006) Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys Rev 73:061919-1–06191910
52.
Zurück zum Zitat Tang W, Su Y, Li Q, Gao S, Shang JK (2013) Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res 47:3624–3634CrossRef Tang W, Su Y, Li Q, Gao S, Shang JK (2013) Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res 47:3624–3634CrossRef
53.
Zurück zum Zitat Shan C, Tong M (2013) Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide. Water Res 47:3411–3421CrossRef Shan C, Tong M (2013) Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide. Water Res 47:3411–3421CrossRef
Metadaten
Titel
Prussian blue modified Fe3O4 nanoparticles for Cs detoxification
verfasst von
T. Arun
R. Justin Joseyphus
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8406-x

Weitere Artikel der Ausgabe 20/2014

Journal of Materials Science 20/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.