Skip to main content
Erschienen in: Journal of Materials Science 20/2014

01.10.2014

Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields

verfasst von: Dae Sung Jang, Wen Ling Zhang, Hyoung Jin Choi

Erschienen in: Journal of Materials Science | Ausgabe 20/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conducting polypyrrole (PPy)-wrapped halloysite nanotube (HNT) nanocomposites (PPy/HNT) were prepared using an in situ polymerization process of pyrrole monomer in the presence of a HNT dispersion, and its electrorheological (ER) properties were investigated under applied electric fields. The morphology of both HNT and PPy/HNT nanocomposite was examined by scanning electron microscopy and transmission electron microscopy. The synthesized PPy/HNT nanocomposites were also analyzed using a physisorption analyzer, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The ER properties of the PPy/HNT nanocomposite dispersed in silicone oil measured using a rotational rheometer under different electric field strengths exhibited ER behaviors of shear stress, dynamic moduli, and relaxation modulus with a change in slope from 1.5 to 1.0.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wei C, Zhu Y, Yang X, Li C (2007) One-pot synthesis of polyaniline-doped in mesoporous TiO2 and its electrorheological behavior. Mater Sci Eng B 137:213–216CrossRef Wei C, Zhu Y, Yang X, Li C (2007) One-pot synthesis of polyaniline-doped in mesoporous TiO2 and its electrorheological behavior. Mater Sci Eng B 137:213–216CrossRef
2.
Zurück zum Zitat Stěnička M, Pavlínek V, Sáha P, Blinova NV, Stejskal J, Quadrat O (2009) The electrorheological efficiency of polyaniline particles with various conductivities suspended in silicone oil. Colloid Polym Sci 287:403–412CrossRef Stěnička M, Pavlínek V, Sáha P, Blinova NV, Stejskal J, Quadrat O (2009) The electrorheological efficiency of polyaniline particles with various conductivities suspended in silicone oil. Colloid Polym Sci 287:403–412CrossRef
3.
Zurück zum Zitat Liu F, Xu G, Wu J, Cheng Y, Guo J, Cui P (2010) Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles. Colloid Polym Sci 288:1739–1744CrossRef Liu F, Xu G, Wu J, Cheng Y, Guo J, Cui P (2010) Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles. Colloid Polym Sci 288:1739–1744CrossRef
4.
Zurück zum Zitat Zhang WL, Choi HJ (2011) Fast and facile fabrication of a graphene oxide/titania nanocomposite and its electro-responsive characteristics. Chem Commun 47:12286–12288CrossRef Zhang WL, Choi HJ (2011) Fast and facile fabrication of a graphene oxide/titania nanocomposite and its electro-responsive characteristics. Chem Commun 47:12286–12288CrossRef
5.
Zurück zum Zitat Cheng Q, Pavlinek V, He Y, Yan Y, Li C, Saha P (2011) Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres. Colloid Polym Sci 289:799–805CrossRef Cheng Q, Pavlinek V, He Y, Yan Y, Li C, Saha P (2011) Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres. Colloid Polym Sci 289:799–805CrossRef
6.
Zurück zum Zitat Zhang WL, Choi HJ (2012) Fabrication of semiconducting polyaniline-wrapped halloysite nanotube composite and its electrorheology. Colloid Polym Sci 290:1743–1748CrossRef Zhang WL, Choi HJ (2012) Fabrication of semiconducting polyaniline-wrapped halloysite nanotube composite and its electrorheology. Colloid Polym Sci 290:1743–1748CrossRef
7.
Zurück zum Zitat Li L, Yan F, Xue G (2004) Preparation of a porous conducting polymer film by electrochemical synthesis–solvent extraction method. J Appl Polym Sci 91:303–307CrossRef Li L, Yan F, Xue G (2004) Preparation of a porous conducting polymer film by electrochemical synthesis–solvent extraction method. J Appl Polym Sci 91:303–307CrossRef
8.
Zurück zum Zitat Yan F, Xue G, Wan F (2002) A flexible giant magnetoresistance sensor prepared completely by electrochemical synthesis. J Mater Chem 12:2606–2608CrossRef Yan F, Xue G, Wan F (2002) A flexible giant magnetoresistance sensor prepared completely by electrochemical synthesis. J Mater Chem 12:2606–2608CrossRef
9.
Zurück zum Zitat Weng B, Shepherd R, Chen J, Wallace GG (2011) Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation. J Mater Chem 21:1918–1924CrossRef Weng B, Shepherd R, Chen J, Wallace GG (2011) Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation. J Mater Chem 21:1918–1924CrossRef
10.
Zurück zum Zitat Lee JY, Lee J-W, Schmidt CE (2009) Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J R Soc Interface 6:801–810CrossRef Lee JY, Lee J-W, Schmidt CE (2009) Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J R Soc Interface 6:801–810CrossRef
11.
Zurück zum Zitat Yoon DJ, Kim YD (2006) Synthesis and electrorheological behavior of sterically stabilized polypyrrole–silica–methylcellulose nanocomposite suspension. J Colloid Interf Sci 303:573–578CrossRef Yoon DJ, Kim YD (2006) Synthesis and electrorheological behavior of sterically stabilized polypyrrole–silica–methylcellulose nanocomposite suspension. J Colloid Interf Sci 303:573–578CrossRef
12.
Zurück zum Zitat Yang C, Liu P, Zhao Y (2010) Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochim Acta 55:6857–6864CrossRef Yang C, Liu P, Zhao Y (2010) Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochim Acta 55:6857–6864CrossRef
13.
Zurück zum Zitat Rao Y, Pochan JM (2007) Mechanics of polymer-clay nanocomposites. Macromolecules 40:290–296CrossRef Rao Y, Pochan JM (2007) Mechanics of polymer-clay nanocomposites. Macromolecules 40:290–296CrossRef
14.
Zurück zum Zitat Carrión FJ, Arribas A, Bermúdez MD, Guillamon A (2008) Physical and tribological properties of a new polycarbonate-organoclay nanocomposite. Eur Polym J 44:968–977CrossRef Carrión FJ, Arribas A, Bermúdez MD, Guillamon A (2008) Physical and tribological properties of a new polycarbonate-organoclay nanocomposite. Eur Polym J 44:968–977CrossRef
15.
Zurück zum Zitat Singh B (1996) Why does halloysite roll? A new model. Clays Clay Miner 44:191–196CrossRef Singh B (1996) Why does halloysite roll? A new model. Clays Clay Miner 44:191–196CrossRef
16.
17.
Zurück zum Zitat Liu Y, Nan H, Cai Q, Li H (2012) Fabrication of halloysite@ polypyrrole composite particles and polypyrrole nanotubes on halloysite templates. J Appl Polym Sci 125:E638–E643CrossRef Liu Y, Nan H, Cai Q, Li H (2012) Fabrication of halloysite@ polypyrrole composite particles and polypyrrole nanotubes on halloysite templates. J Appl Polym Sci 125:E638–E643CrossRef
18.
Zurück zum Zitat Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820CrossRef Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820CrossRef
19.
Zurück zum Zitat Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interf 5:10559–10564CrossRef Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interf 5:10559–10564CrossRef
20.
Zurück zum Zitat Tierrablanca E, Romero-García J, Roman P, Cruz-Silva R (2010) Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes. Appl Catal A 381:267–273CrossRef Tierrablanca E, Romero-García J, Roman P, Cruz-Silva R (2010) Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes. Appl Catal A 381:267–273CrossRef
21.
Zurück zum Zitat Abdullayev E, Abbasov V, Tursunbayeva A, Portnov V, Ibrahimov H, Mukhtarova G, Lvov Y (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Appl Mater Interf 5:4464–4471 Abdullayev E, Abbasov V, Tursunbayeva A, Portnov V, Ibrahimov H, Mukhtarova G, Lvov Y (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Appl Mater Interf 5:4464–4471
22.
Zurück zum Zitat Dong Y, Chaudhary D, Haroosh H, Bickford T (2011) Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites. J Mater Sci 46:6148–6153. doi:10.1007/s10853-011-5605-6 CrossRef Dong Y, Chaudhary D, Haroosh H, Bickford T (2011) Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites. J Mater Sci 46:6148–6153. doi:10.​1007/​s10853-011-5605-6 CrossRef
23.
Zurück zum Zitat Zhang L, Wang T, Liu P (2008) Polyaniline-coated halloysite nanotubes via in situ chemical polymerization. Appl Surf Sci 255:2091–2097CrossRef Zhang L, Wang T, Liu P (2008) Polyaniline-coated halloysite nanotubes via in situ chemical polymerization. Appl Surf Sci 255:2091–2097CrossRef
24.
Zurück zum Zitat Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Halloysite nanotubes as biomimetic nanoreactors. Small 1:510–513CrossRef Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Halloysite nanotubes as biomimetic nanoreactors. Small 1:510–513CrossRef
25.
Zurück zum Zitat Antill SJ (2003) Halloysite: a low-cost alternative. Aust J Chem 56:723CrossRef Antill SJ (2003) Halloysite: a low-cost alternative. Aust J Chem 56:723CrossRef
26.
Zurück zum Zitat Liu Y, Cai Q, Li H, Zhang J (2013) Fabrication and characterization of mesoporous carbon nanosheets using halloysite nanotubes and polypyrrole via a template-like method. J Appl Polym Sci 128:517–522CrossRef Liu Y, Cai Q, Li H, Zhang J (2013) Fabrication and characterization of mesoporous carbon nanosheets using halloysite nanotubes and polypyrrole via a template-like method. J Appl Polym Sci 128:517–522CrossRef
27.
Zurück zum Zitat Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angew Chem Int Ed Engl 41:2446–2461CrossRef Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angew Chem Int Ed Engl 41:2446–2461CrossRef
28.
Zurück zum Zitat Sun T, Liu H, Song W, Wang X, Jiang L, Li L, Zhu D (2004) Responsive aligned carbon nanotubes. Angew Chem Int Ed Engl 43:4663–4666CrossRef Sun T, Liu H, Song W, Wang X, Jiang L, Li L, Zhu D (2004) Responsive aligned carbon nanotubes. Angew Chem Int Ed Engl 43:4663–4666CrossRef
29.
Zurück zum Zitat Rozynek Z, Knudsen KD, Fossum JO, Meheust Y, Wang B, Zhou M (2010) J Phys 22:324104 Rozynek Z, Knudsen KD, Fossum JO, Meheust Y, Wang B, Zhou M (2010) J Phys 22:324104
30.
Zurück zum Zitat Cheah K, Forsyth M, Truong VT (1998) Ordering and stability in conducting polypyrrole. Synth Met 94:215–219CrossRef Cheah K, Forsyth M, Truong VT (1998) Ordering and stability in conducting polypyrrole. Synth Met 94:215–219CrossRef
31.
Zurück zum Zitat Jang JS, Yoon HS (2004) Novel fabrication of size-tunable silica nanotubes using a reverse-microemulsion-mediated sol–gel method. Adv Mater 16:799–802CrossRef Jang JS, Yoon HS (2004) Novel fabrication of size-tunable silica nanotubes using a reverse-microemulsion-mediated sol–gel method. Adv Mater 16:799–802CrossRef
32.
Zurück zum Zitat Nicolini KP, Fukamachi CRB, Wypych F, Mangrich AS (2009) Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. J Colloid Interface Sci 338:474–479CrossRef Nicolini KP, Fukamachi CRB, Wypych F, Mangrich AS (2009) Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. J Colloid Interface Sci 338:474–479CrossRef
33.
Zurück zum Zitat Park DP, Lim ST, Lim JY, Choi HJ, Choi SB (2009) Electrorheological characteristics of solvent-cast polypyrrole/clay nanocomposite. J Appl Polym Sci 112:1365–1371CrossRef Park DP, Lim ST, Lim JY, Choi HJ, Choi SB (2009) Electrorheological characteristics of solvent-cast polypyrrole/clay nanocomposite. J Appl Polym Sci 112:1365–1371CrossRef
34.
Zurück zum Zitat Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713CrossRef Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713CrossRef
35.
Zurück zum Zitat Kaushal M, Joshi YM (2011) Self-similarity in electrorhological behavior. Soft Matter 7:9051–9060CrossRef Kaushal M, Joshi YM (2011) Self-similarity in electrorhological behavior. Soft Matter 7:9051–9060CrossRef
36.
Zurück zum Zitat Jiang J, Tian Y, Meng Y (2011) Structure parameter of electrotheological fluid in shear flow. Langmuir 27:5814–5823CrossRef Jiang J, Tian Y, Meng Y (2011) Structure parameter of electrotheological fluid in shear flow. Langmuir 27:5814–5823CrossRef
37.
Zurück zum Zitat Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46:11484–11488CrossRef Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46:11484–11488CrossRef
38.
Zurück zum Zitat Wang B, Zhou M, Rozynek Z, Fossum JO (2009) Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability. J Mater Chem 19:1816–1828CrossRef Wang B, Zhou M, Rozynek Z, Fossum JO (2009) Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability. J Mater Chem 19:1816–1828CrossRef
39.
Zurück zum Zitat Klingenberg DJ, Van Swol F, Zukoski CF (1991) The small shear rate response of electrorheological suspensions. II. Extension beyond the point–dipole limit. J Chem Phys 94:6170–6178CrossRef Klingenberg DJ, Van Swol F, Zukoski CF (1991) The small shear rate response of electrorheological suspensions. II. Extension beyond the point–dipole limit. J Chem Phys 94:6170–6178CrossRef
40.
Zurück zum Zitat Parmar KPS, Méheust Y, Schjelderupsen B, Fossum JO (2008) Electrorheological suspensions of laponite in oil: rheometry studies. Langmuir 24:1814–1822CrossRef Parmar KPS, Méheust Y, Schjelderupsen B, Fossum JO (2008) Electrorheological suspensions of laponite in oil: rheometry studies. Langmuir 24:1814–1822CrossRef
41.
Zurück zum Zitat Prasad R, Pasanovic-Zujo V, Gupta RK, Cser F, Bhattacharya SN (2004) Morphology of EVA based nanocomposites under shear and extensional flow. Polym Eng Sci 44:1220–1230CrossRef Prasad R, Pasanovic-Zujo V, Gupta RK, Cser F, Bhattacharya SN (2004) Morphology of EVA based nanocomposites under shear and extensional flow. Polym Eng Sci 44:1220–1230CrossRef
42.
Zurück zum Zitat Schwarzl FL (1975) Numerical calculation of stress relaxation modulus from dynamic data for linear viscoelastic materials. Rheol Acta 14:581–590CrossRef Schwarzl FL (1975) Numerical calculation of stress relaxation modulus from dynamic data for linear viscoelastic materials. Rheol Acta 14:581–590CrossRef
Metadaten
Titel
Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields
verfasst von
Dae Sung Jang
Wen Ling Zhang
Hyoung Jin Choi
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8443-5

Weitere Artikel der Ausgabe 20/2014

Journal of Materials Science 20/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.