Skip to main content
Erschienen in: Journal of Materials Science 14/2015

01.07.2015 | Original Paper

Lightweight high-density polyethylene/carbonaceous nanosheets microcellular foams with improved electrical conductivity and mechanical properties

verfasst von: Siamak Baseghi, Hamid Garmabi, Jaber Nasrollah Gavgani, Hossein Adelnia

Erschienen in: Journal of Materials Science | Ausgabe 14/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The high-density polyethylene (HDPE) nanocomposites were prepared by using graphite nanosheets (GNS) and expanded graphite (EG), followed by foaming with subcritical CO2 used as an environmentally benign and nonflammable foaming agent. The partially exfoliated GNS and EG endow the prepared microcellular nanocomposite foams with high electrical conductivity, improved mechanical properties, as well as density reduction up to ca. 20 %. Interestingly, insulator-to-semiconductor transition of microcellular nanocomposite foams shifts to lower nanofiller content compared to that of bulk nanocomposites. Whether the nanofiller is GNS or EG, its incorporation leads to uniformly small cells, resulting in a remarkable enhancement in ductility without sacrificing toughness. It has demonstrated that foaming of HDPE nanocomposites with EG or GNS provides tough and lightweight microcellular foams, exhibiting the potential for use in conductive high-performance lightweight nanocomposite systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jacobs LJ, Kemmere MF, Keurentjes JT (2008) Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications. Green Chem 10(7):731–738CrossRef Jacobs LJ, Kemmere MF, Keurentjes JT (2008) Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications. Green Chem 10(7):731–738CrossRef
2.
Zurück zum Zitat Fugetsu B et al (2008) Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46(9):1256–1258CrossRef Fugetsu B et al (2008) Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46(9):1256–1258CrossRef
3.
Zurück zum Zitat Im JS, Kim JG, Lee Y-S (2009) Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon 47(11):2640–2647CrossRef Im JS, Kim JG, Lee Y-S (2009) Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon 47(11):2640–2647CrossRef
4.
Zurück zum Zitat Zhang H-B et al (2011) Tough graphene–polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924CrossRef Zhang H-B et al (2011) Tough graphene–polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924CrossRef
5.
Zurück zum Zitat Dehsari HS et al (2014) Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Adv 4(98):55067–55076CrossRef Dehsari HS et al (2014) Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Adv 4(98):55067–55076CrossRef
6.
Zurück zum Zitat Xu K, Chen G, Qiu D (2013) Convenient construction of poly (3, 4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance. J Mater Chem A 1(40):12395–12399CrossRef Xu K, Chen G, Qiu D (2013) Convenient construction of poly (3, 4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance. J Mater Chem A 1(40):12395–12399CrossRef
7.
Zurück zum Zitat Zhang Z et al (2015) Template‐Directed In Situ Polymerization Preparation of Nanocomposites of PEDOT: PSS‐Coated Multi‐Walled Carbon Nanotubes with Enhanced Thermoelectric Property. Chem 10(1):149–153 Zhang Z et al (2015) Template‐Directed In Situ Polymerization Preparation of Nanocomposites of PEDOT: PSS‐Coated Multi‐Walled Carbon Nanotubes with Enhanced Thermoelectric Property. Chem 10(1):149–153
8.
Zurück zum Zitat Xu XB et al (2007) Ultralight conductive carbon-nanotube–polymer composite. Small 3(3):408–411CrossRef Xu XB et al (2007) Ultralight conductive carbon-nanotube–polymer composite. Small 3(3):408–411CrossRef
9.
Zurück zum Zitat Thomassin J-M et al (2008) Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J Mater Chem 18(7):792–796CrossRef Thomassin J-M et al (2008) Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J Mater Chem 18(7):792–796CrossRef
10.
Zurück zum Zitat Yang Y et al (2005) Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5(11):2131–2134CrossRef Yang Y et al (2005) Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5(11):2131–2134CrossRef
11.
Zurück zum Zitat Ling J et al (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5(7):2677–2684CrossRef Ling J et al (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5(7):2677–2684CrossRef
12.
Zurück zum Zitat Ye L et al (2009) Synthesis and characterization of expandable graphite–poly (methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams. Polym Degrad Stab 94(6):971–979CrossRef Ye L et al (2009) Synthesis and characterization of expandable graphite–poly (methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams. Polym Degrad Stab 94(6):971–979CrossRef
13.
Zurück zum Zitat Li Y et al (2014) Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water–blown semi–rigid polyurethane foam. J Appl Polym Sci 131(3):39885 Li Y et al (2014) Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water–blown semi–rigid polyurethane foam. J Appl Polym Sci 131(3):39885
14.
Zurück zum Zitat Sorrentino L et al (2012) Mechanical behavior of solid and foamed polyester/expanded graphite nanocomposites. J Cell Plast 48(4):355–368 Sorrentino L et al (2012) Mechanical behavior of solid and foamed polyester/expanded graphite nanocomposites. J Cell Plast 48(4):355–368
15.
Zurück zum Zitat Celzard A et al (2000) Electrical conductivity of anisotropic expanded graphite-based monoliths. J Phys D 33(23):3094CrossRef Celzard A et al (2000) Electrical conductivity of anisotropic expanded graphite-based monoliths. J Phys D 33(23):3094CrossRef
16.
Zurück zum Zitat Zheng W, Wong S-C (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63(2):225–235CrossRef Zheng W, Wong S-C (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63(2):225–235CrossRef
17.
Zurück zum Zitat Zeng C et al (2003) Polymer–clay nanocomposite foams prepared using carbon dioxide. Adv Mater 15(20):1743–1747CrossRef Zeng C et al (2003) Polymer–clay nanocomposite foams prepared using carbon dioxide. Adv Mater 15(20):1743–1747CrossRef
18.
Zurück zum Zitat Peacock A (2000) Handbook of Polyethylene: Structures, Properties, and Applications. Taylor & Francis, New York Peacock A (2000) Handbook of Polyethylene: Structures, Properties, and Applications. Taylor & Francis, New York
19.
Zurück zum Zitat Pisharath S, Wong SC (2003) Development of the morphology and crystalline state due to hybridization of reinforced toughened nylon containing a liquid-crystalline polymer. J Polym Sci Part B 41(6):549–559CrossRef Pisharath S, Wong SC (2003) Development of the morphology and crystalline state due to hybridization of reinforced toughened nylon containing a liquid-crystalline polymer. J Polym Sci Part B 41(6):549–559CrossRef
20.
Zurück zum Zitat Zhang C et al (2000) Morphology, crystallization and melting behaviors of isotactic polypropylene/high density polyethylene blend: effect of the addition of short carbon fiber. J Mater Sci 35(3):673–683. doi:10.1021/ma071025m CrossRef Zhang C et al (2000) Morphology, crystallization and melting behaviors of isotactic polypropylene/high density polyethylene blend: effect of the addition of short carbon fiber. J Mater Sci 35(3):673–683. doi:10.​1021/​ma071025m CrossRef
21.
Zurück zum Zitat Hoang T et al (2014) Tensile, rheological properties, thermal stability, and morphology of ethylene vinyl acetate copolymer/silica nanocomposites using EVA-g-maleic anhydride. J Compos Mater 48(4):505–511CrossRef Hoang T et al (2014) Tensile, rheological properties, thermal stability, and morphology of ethylene vinyl acetate copolymer/silica nanocomposites using EVA-g-maleic anhydride. J Compos Mater 48(4):505–511CrossRef
22.
Zurück zum Zitat Wilson R et al (2012) Clay intercalation and its influence on the morphology and transport properties of EVA/clay nanocomposites. J Phys Chem C 116(37):20002–20014CrossRef Wilson R et al (2012) Clay intercalation and its influence on the morphology and transport properties of EVA/clay nanocomposites. J Phys Chem C 116(37):20002–20014CrossRef
23.
Zurück zum Zitat Jolfaei AF et al (2015) Effect of organoclay and compatibilizers on microstructure, rheological and mechanical properties of dynamically vulcanized EPDM/PP elastomers. Polym Bull 72(5):1127–1144CrossRef Jolfaei AF et al (2015) Effect of organoclay and compatibilizers on microstructure, rheological and mechanical properties of dynamically vulcanized EPDM/PP elastomers. Polym Bull 72(5):1127–1144CrossRef
25.
Zurück zum Zitat Li YC, Chen GH (2007) HDPE/expanded graphite nanocomposites prepared via masterbatch process. Polym Eng Sci 47(6):882–888CrossRef Li YC, Chen GH (2007) HDPE/expanded graphite nanocomposites prepared via masterbatch process. Polym Eng Sci 47(6):882–888CrossRef
26.
Zurück zum Zitat Wang L, Chen G (2010) Dramatic improvement in mechanical properties of GNs-reinforced HDPE nanocomposites. J Appl Polym Sci 116(4):2029–2034 Wang L, Chen G (2010) Dramatic improvement in mechanical properties of GNs-reinforced HDPE nanocomposites. J Appl Polym Sci 116(4):2029–2034
27.
Zurück zum Zitat Young RJ, Lovell PA (2011) Introduction to Polymers, 3rd edn. Taylor & Francis, New York Young RJ, Lovell PA (2011) Introduction to Polymers, 3rd edn. Taylor & Francis, New York
28.
Zurück zum Zitat Aboutalebi SH et al (2011) Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater 21(15):2978–2988CrossRef Aboutalebi SH et al (2011) Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater 21(15):2978–2988CrossRef
29.
Zurück zum Zitat She Y, Chen G, Wu D (2007) Fabrication of polyethylene/graphite nanocomposite from modified expanded graphite. Polym Int 56(5):679–685CrossRef She Y, Chen G, Wu D (2007) Fabrication of polyethylene/graphite nanocomposite from modified expanded graphite. Polym Int 56(5):679–685CrossRef
30.
Zurück zum Zitat Li J et al (2007) Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites. Carbon 45(4):744–750CrossRef Li J et al (2007) Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites. Carbon 45(4):744–750CrossRef
31.
Zurück zum Zitat Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254. doi:10.1007/s10853-015-8891-6 CrossRef Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254. doi:10.​1007/​s10853-015-8891-6 CrossRef
32.
Zurück zum Zitat Lee LJ et al (2005) Polymer nanocomposite foams. Compos Sci Technol 65(15):2344–2363CrossRef Lee LJ et al (2005) Polymer nanocomposite foams. Compos Sci Technol 65(15):2344–2363CrossRef
33.
Zurück zum Zitat Nam PH et al (2002) Foam processing and cellular structure of polypropylene/clay nanocomposites. Polym Eng Sci 42(9):1907–1918CrossRef Nam PH et al (2002) Foam processing and cellular structure of polypropylene/clay nanocomposites. Polym Eng Sci 42(9):1907–1918CrossRef
34.
Zurück zum Zitat Taki K et al (2004) Visual observation of CO2 foaming of polypropylene-clay nanocomposites. Polym Eng Sci 44(6):1004–1011CrossRef Taki K et al (2004) Visual observation of CO2 foaming of polypropylene-clay nanocomposites. Polym Eng Sci 44(6):1004–1011CrossRef
35.
Zurück zum Zitat Li Y et al (2011) Numerical simulation of polypropylene foaming process assisted by carbon dioxide: bubble growth dynamics and stability. Chem Eng Sci 66(16):3656–3665CrossRef Li Y et al (2011) Numerical simulation of polypropylene foaming process assisted by carbon dioxide: bubble growth dynamics and stability. Chem Eng Sci 66(16):3656–3665CrossRef
36.
Zurück zum Zitat Hodlur R, Rabinal M (2014) Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos Sci Technol 90:160–165CrossRef Hodlur R, Rabinal M (2014) Self assembled graphene layers on polyurethane foam as a highly pressure sensitive conducting composite. Compos Sci Technol 90:160–165CrossRef
37.
Zurück zum Zitat Realinho V et al (2011) Influence of nanoclay concentration on the CO2 diffusion and physical properties of PMMA montmorillonite microcellular foams. Ind Eng Chem Res 50(24):13819–13824CrossRef Realinho V et al (2011) Influence of nanoclay concentration on the CO2 diffusion and physical properties of PMMA montmorillonite microcellular foams. Ind Eng Chem Res 50(24):13819–13824CrossRef
38.
Zurück zum Zitat Tomasko DL et al (2009) Development of CO2 for polymer foam applications. J Supercrit Fluids 47(3):493–499CrossRef Tomasko DL et al (2009) Development of CO2 for polymer foam applications. J Supercrit Fluids 47(3):493–499CrossRef
39.
Zurück zum Zitat Zhao Y et al (2007) Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 67(11):2528–2534CrossRef Zhao Y et al (2007) Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol 67(11):2528–2534CrossRef
40.
Zurück zum Zitat Lu J et al (2006) The piezoresistive behaviors of polyethylene/foliated graphite nanocomposites. Eur Polymer J 42(5):1015–1021CrossRef Lu J et al (2006) The piezoresistive behaviors of polyethylene/foliated graphite nanocomposites. Eur Polymer J 42(5):1015–1021CrossRef
41.
Zurück zum Zitat Van der Putten D et al (1992) Evidence for superlocalization on a fractal network in conductive carbon-black–polymer composites. Phys Rev Lett 69(3):494CrossRef Van der Putten D et al (1992) Evidence for superlocalization on a fractal network in conductive carbon-black–polymer composites. Phys Rev Lett 69(3):494CrossRef
42.
Zurück zum Zitat Calberg C et al (1999) Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J Phys D Appl Phys 32(13):1517CrossRef Calberg C et al (1999) Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J Phys D Appl Phys 32(13):1517CrossRef
43.
Zurück zum Zitat Stauffer D, Aharony A (1991) Introduction to percolation theory. Taylor & Francis, New York Stauffer D, Aharony A (1991) Introduction to percolation theory. Taylor & Francis, New York
45.
Zurück zum Zitat Balberg I, Binenbaum N, Wagner N (1984) Percolation thresholds in the three-dimensional sticks system. Phys Rev Lett 52(17):1465CrossRef Balberg I, Binenbaum N, Wagner N (1984) Percolation thresholds in the three-dimensional sticks system. Phys Rev Lett 52(17):1465CrossRef
46.
Zurück zum Zitat Balberg I (1986) Excluded-volume explanation of Archie’s law. Phys Rev B 33(5):3618CrossRef Balberg I (1986) Excluded-volume explanation of Archie’s law. Phys Rev B 33(5):3618CrossRef
47.
Zurück zum Zitat Zheng W, Wong S-C, Sue H-J (2002) Transport behavior of PMMA/expanded graphite nanocomposites. Polymer 43(25):6767–6773CrossRef Zheng W, Wong S-C, Sue H-J (2002) Transport behavior of PMMA/expanded graphite nanocomposites. Polymer 43(25):6767–6773CrossRef
48.
Zurück zum Zitat Zhai W et al (2012) The orientation of carbon nanotubes in poly (ethylene-co-octene) microcellular foaming and its suppression effect on cell coalescence. Polym Eng Sci 52(10):2078–2089CrossRef Zhai W et al (2012) The orientation of carbon nanotubes in poly (ethylene-co-octene) microcellular foaming and its suppression effect on cell coalescence. Polym Eng Sci 52(10):2078–2089CrossRef
49.
Zurück zum Zitat Ezquerra TA et al (2001) Alternating-current electrical properties of graphite, carbon-black and carbon-fiber polymeric composites. Compos Sci Technol 61(6):903–909CrossRef Ezquerra TA et al (2001) Alternating-current electrical properties of graphite, carbon-black and carbon-fiber polymeric composites. Compos Sci Technol 61(6):903–909CrossRef
50.
Zurück zum Zitat Hu Z, Chen G (2014) Aqueous dispersions of layered double hydroxide/polyacrylamide nanocomposites: preparation and rheology. J Mater Chem A 2(33):13593–13601CrossRef Hu Z, Chen G (2014) Aqueous dispersions of layered double hydroxide/polyacrylamide nanocomposites: preparation and rheology. J Mater Chem A 2(33):13593–13601CrossRef
51.
Zurück zum Zitat Hu Z, Chen G (2014) Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv Mater 26(34):5950–5956CrossRef Hu Z, Chen G (2014) Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv Mater 26(34):5950–5956CrossRef
52.
Zurück zum Zitat Gavgani JN et al (2014) Intumescent flame retardant polyurethane/starch composites: Thermal, mechanical, and rheological properties. J Appl Polym Sci 131(23):41158CrossRef Gavgani JN et al (2014) Intumescent flame retardant polyurethane/starch composites: Thermal, mechanical, and rheological properties. J Appl Polym Sci 131(23):41158CrossRef
53.
Zurück zum Zitat Bidsorkhi HC et al (2014) Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites. Polym Testing 37:117–122CrossRef Bidsorkhi HC et al (2014) Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites. Polym Testing 37:117–122CrossRef
54.
Zurück zum Zitat Dasari A, Yu Z-Z, Mai Y-W (2009) Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16):4112–4121CrossRef Dasari A, Yu Z-Z, Mai Y-W (2009) Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16):4112–4121CrossRef
55.
Zurück zum Zitat Collias DI, Baird DG, Borggreve RJ (1994) Impact toughening of polycarbonate by microcellular foaming. Polymer 35(18):3978–3983CrossRef Collias DI, Baird DG, Borggreve RJ (1994) Impact toughening of polycarbonate by microcellular foaming. Polymer 35(18):3978–3983CrossRef
Metadaten
Titel
Lightweight high-density polyethylene/carbonaceous nanosheets microcellular foams with improved electrical conductivity and mechanical properties
verfasst von
Siamak Baseghi
Hamid Garmabi
Jaber Nasrollah Gavgani
Hossein Adelnia
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9048-3

Weitere Artikel der Ausgabe 14/2015

Journal of Materials Science 14/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.